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The characterization of .n � 1/-spheres
with nC 4 vertices having maximal

Buchstaber number
By Suyoung Choi at Suwon, Hyeontae Jang at Suwon and Mathieu Vallée at Villetaneuse

Abstract. We present a computationally efficient algorithm that is suitable for graphic
processing unit implementation. This algorithm enables the identification of all weak pseudo-
manifolds that meet specific facet conditions, drawn from a given input set. We employ this
approach to enumerate toric colorable seeds. Consequently, we achieve a comprehensive char-
acterization of .n � 1/-dimensional PL spheres with nC 4 vertices that possess a maximal
Buchstaber number. A primary focus of this research is the fundamental categorization of non-
singular complete toric varieties of Picard number 4. This classification serves as a valuable
tool for addressing questions related to toric manifolds of Picard number 4. Notably, we have
determined which of these manifolds satisfy equality within an inequality regarding the num-
ber of minimal components in their rational curve space. This addresses a question posed by
Chen, Fu, and Hwang in 2014 for this specific case.

1. Introduction

Our interest lies at the intersection of geometry, with the classification of non-singular
complete toric varieties, and discrete mathematics, with the enumeration of piecewise linear
(PL) spheres.

Toric geometry. A toric variety of complex dimension n is a normal algebraic variety
over the field of complex numbers C that admits an effective algebraic action of .C�/n having
a dense orbit. The fundamental theorem for toric geometry states that the classification of toric
varieties of complex dimension n is equivalent to that of fans in Rn. The cone generated by
a finite set of rational vectors R � Rn is cone.R/ D ¹

P
r2R ˛rr W ˛r � 0º. A fan in Rn is

a collection of cones that is closed under taking faces and such that the intersection of any
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pair of them is a face of both. The one-dimensional cones of a fan are called the rays. The
combinatorial structure of a fan † in Rn having m rays is represented by a pair .K; �/, where

� K is the underlying complex of †, with vertex set Œm� D ¹1; : : : ; mº, whose face lattice
is isomorphic to that of †, and

� �W Œm�! Zn is a map that is one-to-one assigning vertices ofK to the primitive generator
of the rays of †.

The fan is therefore given by† D ¹cone.¹�.i/ºi2� / W � 2 Kº. In this article, we are interested
in compact smooth toric varieties, simply toric manifolds, that are characterized by complete
non-singular fans, whose pairs .K; �/ satisfy

� K is a simplicial complex, which is a PL sphere, and

� � satisfies the non-singularity condition for K: for any face ¹i1; : : : ; ikº in K, the set
¹�.i1/; : : : ; �.ik/º is unimodular, namely, it is part of a basis of Zn.

For a simplicial complexK on Œm�with dim.K/D n� 1, its Picard number is Pic.K/Dm� n.
WhenK is obtained from a complete non-singular fan, this number is the Picard number of the
associated toric manifold; see [23, Section 3.4]. Kleinschmidt [30] and Batyrev [9] classified
toric manifolds of “small” Picard numbers 2 and 3, respectively.

The classification of complete non-singular fans necessitates the classification of PL
spheres that can serve as their underlying simplicial complexes. For Picard number at most 3,
every PL sphere is polytopal by Mani [33], and can therefore be described using Gale dia-
grams [25]. Using this, one can characterize which PL spheres support a complete non-singular
fan [19, 24].

In this article, we take one more step and focus on the case of Picard number 4. However,
the same method is hardly applicable for Picard number 4 since 3-dimensional Gale diagrams
are difficult to use. Moreover, a non-polytopal PL sphere of Picard number 4 exists as shown
in [26], and there also exists a complete non-singular fan whose underlying simplicial com-
plex can be non-polytopal [37]. Therefore, we approach the problem using other combinatorial
properties of PL spheres, such as their property of being weak pseudo-manifolds.

Enumeration of weak pseudo-manifolds and PL spheres. The enumeration of trian-
gulations of manifolds has been a longstanding challenge since the end of the 19th century.
The advances made in this area have provided valuable tools for researchers studying discrete
and PL geometry. Computer-assisted enumeration has been a major approach for tackling these
problems and we follow this direction in the present article.

In particular, the aforementioned works focus on the enumeration of weak pseudo-man-
ifolds, pseudo-manifolds, PL manifolds, PL spheres, and polytopal spheres. Let K be a sim-
plicial complex on Œm�. It is pure if its maximal faces are all of the same size. These top
dimensional faces are called the facets of K, and are of size dim.K/C 1. The faces of size
dim.K/ are called the ridges. A simplicial complex is a weak pseudo-manifold if it is pure
and every ridge is contained in exactly two facets. Additionally, it is a pseudo-manifold (with-
out boundaries) if its ridge-facet graph is connected. One example of a pseudo-manifold is the
boundary of the .n � 1/-simplex 𝜕�n�1 whose facets are the subsets of size n of ŒnC 1�, and
has Picard number 1. Any set of affinely independent points v1; : : : ; vnC1 2 Rn yields a geo-
metric realization j𝜕�n�1j of 𝜕�n�1 that is homeomorphic to the sphere Sn�1. A simplicial
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complex K of dimension n � 1 is a PL sphere if there exists a subdivision of K and a subdi-
vision of 𝜕�n�1 such that these subdivisions are isomorphic. It is a PL manifold if the link of
each of its faces is a PL sphere. A polytopal sphere is the boundary complex of a simplicial
polytope. We have the following hierarchy on simplicial complexes:

polytopal spheres � PL spheres � PL manifolds � pseudo-manifolds

� weak pseudo-manifolds � pure simplicial complexes:

The notable advance in enumerating these simplicial complexes progresses along two direc-
tions: small dimensions and small Picard numbers. It is well known that PL spheres of dimen-
sion 2 are equivalent to 3-connected planar graphs, and for up to 23 vertices, they can be
generated using the plantri algorithm, as demonstrated in [10]. Enumerations of polytopal or
non-polytopal PL spheres of dimension 3 with 8 and 9 vertices are provided in [2,3], following
the work in [26] and [1], respectively. While the enumeration of PL spheres of Picard number
at most 3 has been accomplished in [25], the enumeration for Picard number 4 remains an open
problem.

The enumerations of all weak pseudo-manifolds of dimension 2 with 7 and 8 vertices are
documented in [16] and [17], respectively. Lutz and Sulanke extensively used a new method
based on lexicographic enumeration to obtain (weak) pseudo-manifolds of dimensions 2 and 3,
with up to 12 and 11 vertices, as detailed in [32, 36]. Additionally, in [5], a characterization of
pseudo-manifolds of Picard number at most 3 is provided.

We challenge the enumeration of PL spheres and weak pseudo-manifolds of Picard num-
ber 4. In this paper, we introduce a new method that consists in representing a pure simplicial
complex as a ¹0; 1º-vector, allowing for the use of linear algebra for fast computations, and
adaptability to graphic processing unit (GPU) programming. In Section 2, readers can find an
explicit algorithm described in the Compute Unified Device Architecture (CUDA) language
for enumerating weak pseudo-manifolds whose facets are in a given input set and satisfy affine
conditions on the associated vector.

(Real) Buchstaber number and classification problems in toric topology. Without
any assumption on the simplicial complexK on Œm�, we construct a topological space called the
polyhedral product .X; Y /K of K with respect to a pair .X; Y / of topological spaces which is

.X; Y /K ´
[
�2K

¹.x1; : : : ; xm/ 2 X
m
W xi 2 Y when i … �º:

The moment-angle complex ZK ofK is .D2; S1/K , and the real moment-angle complex RZK
ofK is .D1; S0/K , whereDd represents the d -dimensional disk, and Sd�1 denotes its bound-
ary sphere of dimension d � 1. We observe that the T 1-action on the pair .D2; S1/ yields the
canonical action of the m-dimensional torus Tm D .S1/m on ZK . The Buchstaber number
s.K/ is the maximal integer r for which there exists a subtorus of rank r acting freely on ZK .

Similarly, there is an S0-action on the pair .D1; S0/. For clarity and consistency in our
terminology throughout this paper, we will treat S0 as the additive group Z2 D Z=2Z with
two elements ¹0; 1º. This yields the canonical Zm2 -action on RZK . The real Buchstaber num-
ber sR.K/ is defined by the maximal rank r of a subgroup of Zm2 acting freely on RZK .
Determination of the Buchstaber and real Buchstaber numbers is one of the central questions
in toric topology, and it has been actively studied in many literatures such as in [4,8,20,22,27].
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It is noteworthy that, when an r-dimensional subtorus H of Tm acts freely on ZK ,
the resulting quotient space ZK=H supports a well-behaved torus action Tm=H Š Tm�r

with an orbit space that exhibits a reverse face structure isomorphic to K. It is known that
s.K/ � sR.K/ � Pic.K/; see [20]. In particular, a toric manifold associated with K is topo-
logically obtainable from the quotient of ZK by a free action of subtorus of dimension m � n;
see [11, 18] for details. Consequently, considering PL spheres whose Buchstaber number is
maximal, that is, equal to m � n, is of significant importance.

A simplicial complex of dimension n � 1 is said to be toric colorable if it has a maximal
Buchstaber number, and Zn2-colorable if it has a maximal real Buchstaber number. We have
the following hierarchy on PL spheres:

fan-like � toric colorable � Zn2-colorable;

where a fan-like PL sphere is a simplicial complex that is the underlying complex of some
complete non-singular fan. Therefore, the first step for classifying toric manifolds of Picard
number 4 is to characterize toric colorable PL spheres of Picard number 4. This derives the
following classification problem.

Problem 1.1. Which PL spheres of Picard number 4 have (real) Buchstaber number 4?

The key tool for obtaining the answer lies in the finiteness of the problem. This result
stems from Choi and Park [14], who established that there exists a finite set of PL spheres,
called toric colorable seeds, from which all toric colorable PL spheres can be derived through
iterated wedge operations (this operation is also referred to as the J -construction in [7]).
The maximal number of vertices of a toric colorable seed of Picard number p � 3 is 2p � 1.
Consequently, we only need to enumerate the toric colorable seeds up to n D 11.

In this paper, we use that toric colorable seeds must belong to certain binary matroids,
as detailed in Section 3. This restricts the number of facets inputted into our GPU algo-
rithm, allowing us to obtain results for n up to 10. In addition, we mathematically address
the extreme case n D 11 to further reduce the algorithmic complexity and derive the following
main theorem.

Theorem 4.8. Up to isomorphism, the number of toric (or Zn2-)colorable seeds of
dimension n � 1 and Picard number p � 4 is as follows, with the empty slots displaying zero.

n

p 1 2 3 4 5 6 7 8 9 10 11 > 11 Total

1 1 1
2 1 1
3 1 1 1 3
4 1 4 21 142 733 1190 776 243 39 4 3153

The database containing the toric colorable seeds of Picard number 4, the CUDA script,
and a C++ version of the script (which we used for both performance comparison and verifi-
cation purposes) are available on the third author’s Github repository https://github.com/
MVallee1998/GPU_handle.

https://github.com/MVallee1998/GPU_handle
https://github.com/MVallee1998/GPU_handle
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From [14], we obtain this corollary of Theorem 4.8 which completely solves Problem 1.1.

Corollary 1.2. The toric (or Zn2-)colorable PL spheres of dimension n � 1 and Picard
number p � 4 are precisely those obtained after consecutive wedge operations on the toric (or
Zn2-)colorable seeds (of Theorem 4.8).

In summary, the set of toric (or Zn2-)colorable PL spheres of dimension n � 1 and Picard
number p � 4 is “finitely generated” through multiple wedge operations on the explicit

1C 1C 3C 3153

seeds outlined in Theorem 4.8.

Application to the space of rational curves on toric manifolds. We anticipate that our
theorem contributes to the understanding of toric manifolds of Picard number 4. For instance,
in this paper, we employ it to address a question posed by Chen, Fu, and Hwang [12] in 2014
for this specific case.

Let X be a toric manifold whose corresponding fan has m rays and RatCurves.X/ the
normalized space of rational curves on X . Fix an irreducible component K of RatCurves.X/.
Then we have a universal family �WU! RatCurves.X/, which is a complex projective line
bundle, and �WU! X , which is an evaluation map. The component K is called minimal if �
is dominant and ��1.x/ is complete for a general point x 2 X . The degree of K is defined as
the degree of the intersection of the anti-canonical divisor ofX with any member in K . In [12],
it is shown that the sum of the degrees of all minimal components is less than or equal to m,
and it is asked when the equality holds. In Section 5, we answer this question for every toric
manifold of Picard number 4.

2. Classification of weak pseudo-manifolds by graphic processing unit computing

In this section, we provide a general approach on how to use graphic processing unit
(GPU) parallel computing capability for classifying weak pseudo-manifolds with given prop-
erties.

2.1. Enumerating weak pseudo-manifolds. Let K be a pure simplicial complex of
dimension n � 1 on the vertex set Œm� D ¹1; 2; : : : ; mº. A facet of K is a face of size n, and
a ridge is a face of size n � 1. We denote by F .K/ and R.K/ the sets of facets and ridges
ofK, respectively. We will often use the words facets and ridges without specifying a simplicial
complex when referring to a subset of size n and a subset of size n � 1 of Œm�. Technically, they
refer to the facets and ridges of the simplicial complex whose facets are the subsets of size n
of Œm�. We shall provide an algorithm as follows.

Input: A set F of facets, and a collection G of affine functions on the subsets of F , called
properties.

Output: The set of weak pseudo-manifoldsK such that F .K/ � F and g.F .K// > 0 for all
g 2 G , namely, K satisfies all the properties.
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Provided any set of facets F D ¹F1; : : : ; FM º, we can compute the set R D ¹r1; : : : ; rN º

of all ridges that come from these facets. We then construct the ridge-facet incidence matrix
A.F / D .ai;j / of size N �M as follows:

ai;j D

´
1; ri � Fj ;

0 otherwise;

for i D 1; : : : ; N and j D 1; : : : ;M . A simplicial complex K whose facets are all in some set
of facets F D ¹F1; : : : ; FM º can be regarded as a characteristic vector

K D .k1; : : : ; kM /
t
2 ZM with kj D

´
1; Fj 2 K;

0; Fj … K;

for j D 1; : : : ;M . The pure simplicial complex K is a weak pseudo-manifold if any ridge of
K is in exactly two facets of K. That reflects in the following property.

Proposition 2.1. Let F be a set of facets, A D A.F / the ridge-facet incidence matrix
of F , and K a pure simplicial complex whose facets are all in F . Then K is a weak pseudo-
manifold if and only if the coordinates of the product AK are all in ¹0; 2º.

From that, in ZM2 , the characteristic vectors of weak pseudo-manifolds are all included
in the Z2-kernel of the matrix A, seen as a linear map AWZM2 ! ZN2 .

Let B D ŒK1 � � � Ks� be a matrix whose columns form a Z2-basis of kerZ2
.A/. Every

weak pseudo-manifold K is uniquely expressed as one of the 2s possible Z2-linear combina-
tions of K1; : : : ; Ks , namely, K D

Ps
iD1 xiKi .mod 2/ D BX , for X D .x1; : : : ; xs/t 2 Zs2.

We find a suitable basis zK1; : : : ; zKs to reduce the number of cases to compute.
We first explain how to construct this basis when the set F D

�
Œm�
n

�
contains all possi-

ble facets of Œm� and R D
�
Œm�
n�1

�
all the ridges. There are

�
m
n

�
facets and

�
m
n�1

�
ridges. For

a ridge r , we will write as .AK/r the coordinate of AK corresponding to r . Let us denote by
P .r/´ ¹j 2 ŒM � W r � Fj º the set of the indexes in F of the facets containing r , called the
parents of r , that are the only facets contributing to .AK/r . In this first case, any ridge has
m � nC 1 parents. For a kernel matrix B whose row are indexed by F , let us denote by BP .r/

the matrix whose rows are the ones of B taken at indexes P .r/. For every r 2 R, for every
t D 1; : : : ; s, the t th column of BP .r/ has an even number of ones since the basis element Kt
has an even number of facets containing r . Performing a mod 2 Gaussian elimination on the
columns of BP .r/ yields a matrix of the following form:

BP .r/E D ŒZm�n 0�;

with the .k C 1/ � k-matrix

Zk D

266666664

1 0 � � � 0

0 1
: : :

:::
:::
: : :

: : : 0

0 � � � 0 1

1 � � � 1 1

377777775
;
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for some integer k, and E 2 GL.s;Z2/ corresponding to the operations performed in the
Gaussian elimination. The columns of the new matrix BE correspond to a convenient basis
of the Z2-kernel of A. Indeed, only its first m � n columns have facets contributing to .AK/r .
Moreover, taking the mod 2 linear combination of strictly more than two of them makes .AK/r
be strictly greater than 2, which is a case we want to avoid computing since we focus on
weak pseudo-manifolds; see Proposition 2.1. Thus, this decreases the number of Z2-linear
combinations containing the firstm � n new generators that we need to compute from 2m�n to�

m � n

0

�
C

�
m � n

1

�
C

�
m � n

2

�
:

By writing r1´ r and E1´ E, one can inductively repeat the latter process by taking
care at step k C 1 of

� choosing each time a new ridge rkC1 such that

P .r i / \P .rkC1/ D ; for all i D 1; : : : ; k;

� starting the Gaussian pivot at columns index k.m � n/C 1 so that the structure of the
generators of previous columns is not lost.

This process terminates at some step kmax whenever one of the former conditions cannot be
satisfied. We obtain a final matrix, whose columns are the new basis elements zK1; : : : ; zKs and,
up to reordering, whose rows are according to the sets P .r1/; : : : ;P .rkmax/, which looks as
follows:

BE1 � � �Ekmax D

2666666664

Zm�n 0 : : : : : : 0

0 Zm�n
: : :

:::
:::

: : :
: : :

: : :
:::

0 : : : 0 Zm�n 0
? ? ? ? ?

3777777775
D Œ zK1 � � � zKs�:

In this case, we decrease the total number of Z2-linear combinations from 2s to�
1C .m � n/C

�
m � n

2

��kmax

2s�kmax.m�n/

since we should take at most 2 basis elements for each block Zm�n and s � kmax.m � n/

columns zKi remain after these blocks.
As for the general case, there may be ridges having less than m � nC 1 parents. In this

case, we try to wisely choose some ridges r1; : : : ; rkmax such that the blocks Zk are of the
maximum possible size, so we minimize the number of Z2-linear combinations BX of the
generators we need to compute. That provides a partition I1; : : : ; Il of ¹1; : : : ; sº such that if
we are to sum more than two basis elements with indexes in Ik , for k D 1; : : : ; l , we are sure
not to obtain a weak pseudo-manifold. We can split the vectorX in the Z2-linear combinations
BX as blocks according to this partition: X D

Pl
kD1Xk , with Xk representing the part of X

whose only nonzero coordinates are in Ik . Let us denote by Xk the set of all such possible Xk
for k D 1; : : : ; l .
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If we recap our process, given a set of facets F , we constructed

� the ridge-facet incidence matrix A whose Z2-kernel contains all weak pseudo-manifolds,
� a matrix B whose columns form a convenient basis zK1; : : : ; zKs of kerZ2

.A/,
� a partition I1; : : : ; Il of ¹1; : : : ; sº,
� the sets X1; : : : ;Xl of partitions of the vectors of Zs2 such that, for all k D 1; : : : ; l ,
Xk 2 Xk has a maximum of two nonzero coordinates which are all in Ik ,

such that any weak pseudo-manifold whose facets are in F is of the form K D BX , with

X D

lX
kD1

Xk for some .X1; : : : ; Xl/ 2 X.F / D X1 � � � � �Xl ;

satisfying that the entries of AK corresponding to the chosen ridges are in ¹0; 2º. Moreover,
given any affine function K 7! g.K/, it is easy to check using computer programming that
g.K/ > 0 is verified.

2.2. Generalities about GPU programming. In this article, we used Nvidia Compute
Unified Device Architecture (CUDA) [38]. One will notice that the syntax and vocabulary may
differ from other GPU languages.

The general idea behind GPU computing is that it allows parallelizing tasks with two
layers of parallel programming without requiring a supercomputer. Parallel programming takes
several forms, and the two we will use are the following.

� Data parallelism: one has a list of elements X and wants to apply the same function g to
every element X 2 X. In this case, each call of the function g is independent.

� Task parallelism: one has an element X and wants to apply a set of similar functions
g1; : : : ; gk on X in order to obtain the result as a list .g1.X/; : : : ; gk.X//. The simplest
example is a matrix productAX , and if each row ofA is denoted by ai , then the functions
gi are the inner products with the ai .

In all that follows, a thread (of execution) will be a processing unit that computes machine
operations linearly, and a GPU will be a two-layered structure of threads. Namely, a GPU will
be a set of p grids, and each grid will be a set of q threads. Therefore, a GPU can be seen as
p � q threads organized for parallel programming, as in Figure 1. The number p � q of GPU
threads that can run simultaneously is roughly the number of CUDA cores (if we consider
Nvidia GPUs) and is around seventeen thousand for the current architectures (as of 2024).
Thus a single GPU would be approximately equivalent to at least a thousand central processing
unit (CPU) threads.

In CUDA programming, we use this two-layered structure as follows.

� First layer (blocks): Let X D ¹X1; : : : ; XN º be the set of data on which we want to apply
the same function g, called the kernel. We create some list of N blocks indexed by an
integer i . Each block embodies the function call g.Xi /. A block has three possible states:
on hold, active, and completed. In the beginning, every block is on hold. Then the p grids
of the GPU are filled with some blocks which will be running; these are active, and the
rest are waiting to be launched on the grid and remain on hold. Whenever some active
block has completed, the GPU replaces it with a block on hold. The program terminates
when all blocks are completed.
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� � �

q threads per grid

� � �

:::

� � �

p grids

Figure 1. The two layered parallel structure of a GPU.

� Second layer (threads): Whenever we send a block to a grid, the operations made in the
block are split into threads using task parallelism, and we distribute any procedures in g
into q functions which will run simultaneously on all q threads of the grid. Notice that
we need every thread to finish its tasks to obtain the result. We can explicitly require this
condition by synchronizing the threads.

In all that follows, we will use such notation:

� a set X is denoted as a list list_X,

� a matrix A D Œai;j � is represented as an array A whose entry at index i; j is

A[i][j] D ai;j ;

� a binary vector X 2 Zk2 is represented as a binary variable x on k bits.

We will use the following processor instructions on binary variables [38]:

� the bitwise and operation x&y, 64 operations per cycle,

� the bitwise exclusive-or operation xˆy, 64 operations per cycle,

� the population count operation popcount(x) which counts the number of “1” bits, called
active bits, in the value of x, 16–32 operations per cycle, and

� atomic operations, that we use to avoid memory access errors when many threads may
want to write at the same memory location concurrently. The processor scheduler creates
a queue of all atomic operation calls.

A cycle is the shortest time interval considered in a processor unit that it performs at its
frequency. If the frequency is 1 GHz, the processor realizes 109 cycles per second.

The thread synchronization allows us to manage how the threads behave in parallel as
follows.

� The syncthreads() command asks all the threads to wait for each others and come
across the same line in the algorithm code of the kernel.

� The syncthreads_and(test) and syncthreads_or(test) commands for a local
thread variable test allows us to manage the and and the or operation over all of the
variables test existing in each thread of a grid. For example, if a thread encounters
a condition that should stop the current case in a loop, then all the threads should stop at
once since it is useless to compute this case.
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2.3. The GPU algorithm for classifying weak pseudo-manifolds. To simplify our
explanations, we suppose that there are s D 64 generators and that we can write the product
X1 � � � � �Xl as Xa �Xb such that Xa and Xb describe the 32 first and last generators,
respectively. We thus decompose K as Ka CKb , with Ka D BXa and Kb D BXb for every
.Xa; Xb/ 2 Xa �Xb . Both vectors Xa and Xb are binary vectors whose nonzero coordinates
are in the 32 first or last coordinates, respectively, which we store as 32 bits variables xa and xb,
namely, as unsigned integers.

The dot product in Z of the binary forms x and y of two integers x and y, respectively, is
the number popcount(x&y) of active bits of the bitwise and operation. Its mod 2 reduction is
popcount(x&y)&1, the value of its least significant bit.

The main idea of the algorithm is to use M threads to compute each coordinate of
K 2 ZM2 , with M being the number of facets in F , as provided in Algorithm 2.2.

Algorithm 2.2 (The GPU algorithm for enumerating weak pseudo-manifolds).

Input: The list list_F, corresponding to the set of facets F , and the list list_G, corre-
sponding to the set of affine functions G .

Output: The list list_K of weak pseudo-manifolds K with facets in list_F and that satisfy
g(K)>0 for every g in list_G.

1: Procedure INITIALIZATION

2: Compute the ridge-facet incidence matrix A D A.F / 2 ZN�M2 and store it in A, a col-
umn sparse matrix: A[k][i] represents the index of the kth nonzero coordinate of the
ith column of A.

3: Compute

B D Œ zK1 � � � zK64� D

264 a1 b1
:::

:::

aM bM

375
and store it as two lists list_a and list_b of integers, where list_a[k] and
list_b[k] represents the binary value of the row vectors ak and bk , respectively.

4: Enumerate Xa and Xb , and store them as two lists list_Xa and list_Xb.
5: Create a list list_Ka of all the Ka:
6: for all xa 2 list_Xa do
7: for k D 1; : : : ;M do
8: Ka[k] popcount(a[k]&xa)&1
9: end for

10: end for
11: end Procedure
12: Shared memory: Integer array r of sizeN , such that r[k] stores the kth coefficient of the

product AK.
13: Function KERNEL(xa,Ka)
14: i local thread index
15: b list_b[i]
16: ka list_Ka[i]
17: for all xb 2 list_Xb do
18: skip False



Choi, Jang and Vallée, Toric colorable PL spheres of Picard number 4 277

19: Ki (popcount(b&xb)ˆka)&1
20: syncthreads()
21: for all g 2 list_G do
22: compute g.K/ using the thread values Ki
23: if g.K/ � 0 then
24: skip True
25: break
26: end if
27: end for
28: if syncthreads_or(skip) then
29: continue to the next xb
30: end if
31: Reinitialize each value of r to 0 using the threads
32: if Ki D 1 then
33: for k D 1; : : : ; n do
34: increment r[A[k][i]] using the atomic add operation
35: if r[A[k][i]] � 3 then
36: skip True
37: break
38: end if
39: end for
40: end if
41: if syncthreads_or(skip) then
42: continue to the next xb
43: end if
44: Add K to the list of results list_K
45: end for
46: end Function
47: Procedure MAIN

48: Launch the jXaj blocks that correspond to all the pairs (xa,Ka) on the KERNEL.
49: end Procedure

Remark 2.3. When we say “using the threads”, we mean we evenly distribute the oper-
ations to perform among the threads. For example, to reinitialize the array r, we use the fact
that we have q threads that can set to zero q coordinates simultaneously until all coordinates
reset. Thus, it requires dN

q
e iterations, where N is the number of ridges. We use a similar

process for calculating the image by the affine functions g 2 G .

Remark 2.4. We use the atomic add operation for incrementing values in r since many
threads may write at the same memory location r[k].

The global complexity of this algorithm is

O

�
jXaj

p
� jXbj �

N

q
� .˛jG j C 1/

�
;

where ˛ is the average complexity of the atomic operation when called multiple times for
a given g 2 G .
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3. Preparation for applying the algorithm

3.1. Finiteness of the problem and seedness. Let K and L be simplicial complexes
on the vertex sets V and W , respectively, with V \W D ;. The join of K and L is the sim-
plicial complex K � L D ¹� [ � W � 2 K; � 2 Lº on the vertex set V [W . The link of a face
� in K is the simplicial complex LkK.�/ D ¹� n � W � � � 2 Kº. For the sake of simplicity,
we denote the simplicial complex consisting of a single maximal simplex � by just � . The
(simplicial) wedge of K at a vertex v is wedv.K/ D .I � LkK.v// [ .𝜕I �K n v/, where I is
a 1-simplex with two new vertices, and K n v is the simplicial complex on V n ¹vº consisting
of the faces of K that do not contain v.

A simplicial complex K of dimension n � 1 is a PL sphere, respectively a PL ball, if it
has a subdivision that is isomorphic to any of 𝜕�n, respectively of�n�1. It is a PL manifold if
the link of each of its faces is a PL sphere. It is known that a PL sphere is a PL manifold; see
[28, Lemma 1.17]. We refer the reader to [5] for more detailed definitions about PL manifolds.

A PL sphereK is called a seed if it is not a wedge of another PL sphere L. The following
proposition follows immediately from the definition of the wedge.

Proposition 3.1 (Seedness from minimal non-faces). A PL sphere K is a seed if and
only if it satisfies the seedness condition; there is no face ¹v;wº in K such that, for every
minimal non-face � of K, we have either ¹v;wº \ � D ¹v;wº or ;.

Note that the seedness condition can be defined for general simplicial complexes.
Since the links of both new vertices in wedv.K/ are isomorphic to K, if wedv.K/ is

a PL sphere, so is K. The converse also holds.

Proposition 3.2. Let K be a PL sphere and let v be a vertex of K. Then wedv.K/ is
a PL sphere.

Proof. Suppose that K is an .n � 1/-dimensional PL sphere. Since K � 𝜕¹w1; w2º,
the suspension of K, is isomorphic to an edge subdivision of wedv.K/, both have the same
PL structure. Moreover, K � w1 is a PL ball since K is a PL sphere. Hence

K � 𝜕¹w1; w2º D .K � w1/ [K .K � w2/

is a PL sphere.

Let K be a simplicial complex on the vertex set Œm�. A characteristic map over K is
a map �W Œm�! Zn satisfying the non-singularity condition forK: for each face � ofK, �.�/ is
a unimodular set. Then it is known that the existence of characteristic maps overK is equivalent
to the maximality of the Buchstaber number ofK, i.e., s.K/ D m � n; see [11]. We callK toric
colorable if it admits a characteristic map.

One can also consider its mod 2 analogue. A mod 2 characteristic map over K is a map
�RW Œm�! Zn2 satisfying that �R.�/ is a linearly independent set for all � 2 K. Similarly, we
call K Zn2-colorable if it admits a mod 2 characteristic map.
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Proposition 3.3 ([13, 21]). Let K be an .n � 1/-dimensional PL sphere and v a vertex
ofK. ThenK is toric colorable if and only if so is wedv.K/, andK is Zn2-colorable if and only
if wedv.K/ is ZnC12 -colorable.

Note that the composition of a characteristic map overK and mod 2 reduction Zn ! Zn2
yields a mod 2 characteristic map over K. As a consequence, we firstly focus on Zn2-colorable
seeds.

We often see a mod 2 characteristic map �R as a characteristic matrix

Œ�R.1/ �R.2/ � � � �R.m/�:

Up to isomorphism, we may assume that the facet ¹1; 2; : : : ; nº is in K. With this assump-
tion, to check Zn2-colorability, it is enough to consider mod 2 characteristic maps of the form
�R D ŒIn M� since the non-singularity for K is preserved by the left multiplication with an
element of GL.n;Z2/.

Let us define dual characteristic maps (DCM) over K. For �R D ŒIn M�, the DCM
associated with �R is a map �RW Œm�! Zm�n2 such that

�R D Œ�R.1/ �R.2/ � � � �R.m/�
t
D

"
M

Im�n

#
:

We shorten the term injective DCM to IDCM.

Theorem 3.4 ([14]). Let K be an .n � 1/-dimensional PL sphere with m vertices and
v, w distinct vertices of K. Then the following statements are true.

(1) If every facet of K contains v or w, then K is a wedge or a suspension with respect to v
and w.

(2) If K is a seed that is not a suspension, then every DCM over K must be an IDCM.

Statements (2) and (3) both imply

(3) if K is a seed and m � n � 3, then m � 2m�n � 1.

We conclude from statement (3) of Theorem 3.4 that there are only finitely many Zn2-
colorable seeds of fixed Picard number p. We now focus on the case p D 4. By statement (3)
of Theorem 3.4, we have n � 11, implying that it is enough to enumerate colorable seeds of
dimension up to 10 (n D 11).

3.2. Checking isomorphism using minimal non-faces. One demanding problem when
enumerating simplicial complexes is dealing with isomorphism. If a simplicial complex K has
m vertices, then there are mŠ possible relabelings for K. Given two simplicial complexes K
and L, with respective vertex sets V and W , we want to find if they are isomorphic. One
solution is to use McKay’s graph isomorphism algorithm [34] on the face posets of K and L.
We provide here a different solution for testing isomorphism by using their sets of minimal
non-faces (MNF).
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For every vertex v of K, we define its color sequence cK.v/ by the increasing sizes of
the minimal non-faces of K containing v. For example, if

MNF.K/ D ¹¹1; 2; 3º; ¹3; 4º; ¹4; 5; 6º; ¹2; 6º; ¹1; 6ºº;

then cK.1/ D .2; 3/, cK.5/ D .3/, and c.6/ D .2; 2; 3/. The color sequence of a vertex is
preserved under isomorphism. The procedure for checking the existence of an isomorphism
between two simplicial complexes K and L is the following.

(1) Check whether K and L have the same combinatorial aspects such as the numbers of
faces and the numbers of non-faces.

(2) Check whether ¹cK.v/ W v 2 Œm�º D ¹cL.v/ W v 2 Œm�º, by counting repetitions, using
their MNF sets.

(3) We give partitions V1; : : : ; Vk and W1; : : : ; Wk of V and W with respect to color se-
quences in K and L, respectively. We compute every relabeling �i WVi ! Wi for every
i D 1; : : : ; k. They provide every relabeling � D �1 � � � � � �k WV ! W that preserves
the color sequences. If one � sends one-to-one the minimal non-faces of K to the ones
of L, then K is isomorphic to L.

The number of relabelings that we compute is .jV1jŠ/ � � � � � .jVkjŠ/ instead of jV jŠ. This pro-
vides a fine improvement when there are many different color sequences and only a few vertices
share the same color sequence.

3.3. Collecting PL spheres among weak pseudo-manifolds. We need a criterion for
a weak pseudo-manifold to be a PL sphere. We obtain this criterion in two steps. First, when
the Picard number is small enough, there is a nice characterization of PL manifolds that are
PL spheres.

Theorem 3.5 ([6]). LetK be a PL manifold such that Pic.K/ � 7. IfK is a Z2-homol-
ogy sphere, then it is a PL sphere.

By using the above theorem and by the definition of PL manifolds, we obtain the follow-
ing lemma.

Lemma 3.6 (PL sphereness). A weak pseudo-manifoldK of Picard number at most 7 is
a PL sphere if and only if the link of any face (including the empty face) ofK is a Z2-homology
sphere.

Proof. The “only if” part is immediate, so it is enough to show the “if” part. Suppose
that the link of any face of K is a Z2-homology sphere. By applying Theorem 3.5, let us prove
that the link of each face of K is a PL sphere.

We use induction on the dimension of the link of a face. We remark that the link of each
.n � 2/-face ofK is the 0-sphere S0 by the definition of weak pseudo-manifolds. In particular,
it is a PL sphere. For k � n � 3, let � be a k-face of K, and L D LkK.�/ its link. Note that
LkL.v/ for a vertex v of L is equal to LkK.¹vº [ �/. Therefore, if the link of any .k C 1/-face
of K is a PL sphere, then L is a PL manifold. By assumption, L is a Z2-homology sphere and
PicL � PicK � 7, so it is a PL sphere by Theorem 3.5. By induction, the link of each face is
a PL sphere.
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If we proceed our enumeration inductively, we can use the following method for ver-
ifying the PL sphereness of a given weak pseudo-manifold. Let Sı.n; p/ denote the set of
Zn2-colorable seeds of Picard number p and dimension n � 1, up to isomorphism. Let us sup-
pose that we have obtained all Sı.k; p/ for k < n and p � 4. Given any Zn2-colorable weak
pseudo-manifold K, we apply the following procedure to check if it is a PL sphere.

(1) Check if the Z2-Betti numbers of K are the ones of a sphere, namely, .1; 0; : : : ; 0; 1/.

(2) For every vertex v of K, let Kv D LkK.v/, and let Lv be the seed that Kv is obtained
from. Since the PL sphereness property is invariant under the wedge operation, we need
to check for every v thatLv is isomorphic to a representative in Sı.k; p/, for some p � 4
and k < n. For this purpose, we use the isomorphism-checking method we provided in
Section 3.2.

We now have the tools for checking

� the seedness condition on a simplicial complex with Proposition 3.1,

� the existence of an isomorphism between two simplicial complexes in Section 3.2, and

� the PL sphereness of a weak pseudo-manifold of Picard number 4 with Lemma 3.6.

4. Toric colorable PL spheres of Picard number four

In this section, we focus on enumerating all .n � 1/-dimensional toric colorable seeds of
Picard number 4.

4.1. A first intuitive procedure. One could intuitively try to find all PL spheres and
compute their (real) Buchstaber numbers. However, it is hopeless when we consider high
dimensions. We could obtain results up to n D 6 by applying either Algorithm 2.2 or other
known methods such as lexicographic enumeration [36], but it seems to take too long to finish
for bigger n.

Remark 4.1. Up to isomorphism, one can compute the numbers of .n � 1/-dimensional
PL spheres and seeds of Picard number 4 up to n D 6, and their real Buchstaber numbers sR
as follows.

n 2 3 4 5 6

PL spheres 1 5 39 337 6257
sR D 4 1 5 37 281 2353
sR D 3 0 0 2 56 3904

seeds 1 4 23 194 4237
sR D 4 1 4 21 142 733
sR D 3 0 0 2 52 3504

Since we focus on Zn2-colorable seeds, we use a different approach in all that follows.
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4.2. Enumeration for n � 10. In this subsection, we enumerate all .n � 1/-dimen-
sional Zn2-colorable seeds on Œm� of Picard number 4 for n � 10.

Suppose that a Zn2-colorable seed supports an IDCM. We first investigate the combinato-
rial structure of the IDCM itself.

A matroid M is a simplicial complex with the augmentation property; for any �; � 2M
with j� j < j� j, there exists x 2 � n � such that � [ ¹xº 2M . The dual matroid M of M is
defined on the same vertex set as M , and its facets are the complements of each facets of M ,
which are called the cofacets of M . For a full row-rank n �m matrix �R over Z2, the sim-
plicial complex M�R , whose facets are the sets of column indexes of n linearly independent
columns of �R, forms a matroid. This matroid is called the binary matroid associated with �R.
Therefore,K supports a mod 2 characteristic map �R if and only ifK is a subcomplex ofM�R .
By linear Gale duality [21], the dual matroid M�R is equal to M�Rt . We can easily verify the
following proposition using the definitions of M�R and M�Rt .

Proposition 4.2. Let K be an .n � 1/-dimensional simplicial complex on Œm� and �R

an m � .m � n/ matrix over Z2 of rank m � n. Then K supports �R as a DCM if and only if
it is a subcomplex of M�Rt DM�R .

As we recall, reducing the number of facets in the input of Algorithm 2.2 leads to
a smaller dimension of the mod 2 kernel of the ridge-facet incidence matrix, resulting in faster
execution of Algorithm 2.2. Proposition 4.2 provides us with a smaller set of facets, as desired.

Furthermore, we leverage the upper bound theorem for facets of PL spheres; see [35].
According to this theorem, the number of facets of an .n � 1/-dimensional simplicial sphere
of Picard number 4 is less than or equal to the number of facets of the cyclic n-polytope
C n.nC 4/ with nC 4 vertices. It is known that the number of facets of C n.nC 4/ is

fn�1.C
n.nC 4// D

�
nC 4 � dn

2
e

4

�
C

�
nC 3 � bn

2
c

4

�
I

see [11] for example.
This condition is represented by the affine function

g.K/ D fn�1.C
n.nC 4// � kKk1 C 1;

where kKk1 is the 1-norm of the vectorK, which corresponds to the number of facets ofK. Let
�RW Œm�! Z42 be an injective map, and denote by F .�R/ D F .M�R/ the set of facets of the
associated binary matroid. Algorithm 2.2, with inputs F .�R/ and the affine function g, outputs
the set of all weak pseudo-manifolds that support �R and satisfy the upper bound theorem.

At first glance, it might seem necessary to run the algorithm on each of the
�
11
n

�
� nŠ

injective maps �R, even if we fix Œ�R.nC 1/ �R.nC 2/ �R.nC 3/ �R.nC 4/�D I4. How-
ever, we can significantly reduce this large number of cases by observing that many injective
maps yield the same outputs up to isomorphism.

Let ƒ.n; p/ be the set of all .nC p/ � p matrices over Z2 of the form
�
M
Ip

�
, with no

repeated rows. We consider the product of two symmetric groups Sn �Sp which acts on
ƒ.n; p/ as follows: ��

M

Ip

�
; .s; t/

�
7!

�
P tsMPt

Ip

�
;
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where Ps and Pt are column permutation matrices corresponding to permutations s and t . Let
us call each element of ƒ.n; p/=Sn �Sp an IDCM orbit.

Proposition 4.3. For .s; t/ 2 Sn �Sp, there is an isomorphism between the binary
matroids associated to �R 2 ƒ.n; p/ and �R ı .s; t/ 2 ƒ.n; p/.

Proof. We partition the vertex set Œm� into

V1 D Œn� and V2 D ¹nC 1; nC 2; : : : ; nC pº:

It is evident that the matrix �
P tsM

Ip

�
preserves the same non-singularity information on cofacets, with the vertices in V1 relabeled
according to permutation s. Additionally, since Pt is invertible, we have M.�RPt /

t DM�Rt .
Then, applying t to V2 in the equation�

P tsMPt

Ip

�
D

�
P tsM

P tt Ip

�
Pt

yields the same non-singularity conditions for�
P tsM

Ip

�
and

�
P tsMPt

Ip

�
:

Letƒı.n; 4/ � ƒ.n; 4/ be a set containing one representative per IDCM orbit. By Propo-
sition 4.3, it is enough to input Algorithm 2.2 with F .�R/ for all �R 2 ƒı.n; 4/. Table 1
displays how efficient our method is. It provides the dimension of the kernel of the ridge-facet
incidence matrix A

��
Œm�
n

��
and the size of the set X

��
Œm�
n

��
which represents the number of

element in its kernel for which we should verify whether they are weak pseudo-manifolds,
together with max�R.dim kerA.F .�R/// and max�R jX.F .�R//j. The number of IDCM or-
bits ofƒ.n; 4/ and the computation time of the call of Algorithm 2.2 at line 5 of Algorithm 4.4
are also provided. This demonstrates that our reductions enable computability of the problem,
for example with n D 10,

� the choice of the convenient basis made in Section 2.1 reduces the number of cases from
2286 ' 1e86 to 5e74 for the set of facets

�
Œm�
n

�
, and from 256 ' 7e16 to 4e14 for F .�R/,

and

� taking into account that Zn2-colorable seeds are subcomplexes of the binary matroid
associated to an IDCM divides the number of cases to compute by a factor of 1060.

Algorithm 4.4. The full procedure for obtaining every .n � 1/-dimensional seed of
Picard number 4 supporting an IDCM is as follows.

Input: Integer n � 2.

Output: The set Kı.n; 4/ of .n � 1/-dimensional seeds of Picard number 4 supporting an
IDCM up to isomorphism.
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1: Procedure GETIDCM-COLORABLESEEDSPIC4(n)
2: Computeƒı.n; 4/ � ƒ.n; 4/, a set containing one representative for each IDCM orbit.
3: K.n; 4/ ;

4: for all �R 2 ƒı.n; 4/ do
5: K.�R/ output of Algorithm 2.2 with inputs F .�R/ and G D ¹gº,

with g.K/ D fn�1.C.n; nC 4// � kKk1 C 1
6: K.n; 4/ K.n; 4/ [K.�R/

7: end for
8: for all K 2K.n; 4/ do
9: if Pic.K/ < 4 then discard Kend if

10: if K does not satisfy the seedness condition then discard Kend if
11: end for
12: Select Kı.n; 4/ �K.n; 4/ with one representative K up to isomorphism
13: for all K 2Kı.n; 4/ do
14: if K is not a PL sphere then discard Kend if
15: end for
16: end Procedure

n 2 3 4 5 6 7 8 9 10 11

dim kerA
��
Œm�
n

��
10 20 35 56 84 120 165 220 286 364ˇ̌

X
��
Œm�
n

��ˇ̌
352 2e5 1e9 3e14 7e18 8e21 3e31 4e57 5e74 2e93

Number of IDCM orbits 7 16 28 35 35 28 16 7 3 1
max�R.dim kerA.F .�R/// 7 13 21 24 28 34 42 48 56 64
max�R jX.F .�R//j 56 3e3 5e5 1e6 2e7 9e8 1e11 3e12 4e14 4e16

Time spent for one orbit 1 ms 10 ms 0.1 s 0.6 s 1.3 s 3 m 15 m 2 h 12 d 3 y

Table 1. Data table for Picard number 4 and n D 2; : : : ; 11. The time spent refers to Algorithm 2.2
running on an Nvidia Quadro A5000. The time written in bold in the case n D 11 is an
estimation.

Running Algorithm 4.4 for n � 10 gives Table 2.

n 2 3 4 5 6 7 8 9 10

jK.n; 4/j at line 7 90 1119 20383 79877 322837 503624 469445 224854 99374
jK.n; 4/j at line 11 22 578 13679 47012 204714 310217 305280 140933 57956
jKı.n; 4/j at line 13 2 5 49 256 1791 2194 1401 381 56
jKı.n; 4/j at line 16 1 4 20 142 733 1190 776 243 39

Table 2. The output of Algorithm 4.4 for n � 10.

Now, all that remains are the seeds that do not admit any IDCM. We show there actually
remains a single one not outputted by Algorithm 4.4.
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From Theorem 3.4, they must be suspensions. Let L D 𝜕Œv; w� �K be the suspension
of an .n � 2/-dimensional simplicial complexK, and suppose that L is Zn2-colorable. We may
assume that a characteristic map �R overL satisfies �R.v/ D Œ1 0 � � � 0�t . Then, for any facet
¹vº [ ¹v1; : : : ; vn�1º of L, the .1; v/ minor of the matrix Œ�R.v/ �R.v1/ � � � �

R.vn�1/� is
equal to 1. This implies that LkL.1/ D K is Zn�12 -colorable. Hence, the suspension operation
preserves Zn2-colorability while also preserving seedness, and increases the Picard number by
one. Therefore, it is sufficient to consider the suspensions of the seeds of Picard number 3.

The three Zn2-colorable seeds of Picard number 3 are the boundaries of a pentagon, a 3-
dimensional cross polytope, and a cyclic polytope C 4.7/ (see [19]).

The suspension of a pentagon and a cyclic polytope both support an IDCM and have been
obtained in Table 2 for n D 3 and 5. Finally, the boundary of a cross polytope does not support
any IDCM, but does support a DCM, so we add it to the result Kı.4; 4/ in Table 2.

Theorem 4.5. Up to isomorphism, the number of Zn2-colorable seeds of dimension
n � 1 and Picard number 4 for n � 10 is as follows.

n 2 3 4 5 6 7 8 9 10

Zn2-colorable seeds 1 4 20C 1 142 733 1190 776 243 39

4.3. Enumeration for n D 11. As shown in Table 1, the time complexity of the extreme
case n D 11 remains too long. To address this, we leverage the results obtained from the dimen-
sion just below to construct the seeds for this extreme case.

Let K be a Z112 -colorable seed on ¹1; 2; : : : ; 15º of dimension 10 (n D 11). We know
that the link of the vertex 15 has Picard number at most 4 and is a Z102 -colorable seed, which
we have already enumerated. We construct all Z112 -colorable seeds of dimension 10 from the
Z102 -colorable ones of dimension 9. Firstly, if K has only vertices whose links have Picard
numbers at most 2, then K is the boundary of a product of simplices [25] and therefore not
a seed. Suppose that the link of 15 has Picard number 3. Since there is no 9-dimensional seed
of Picard number 3, this implies that the link of vertex 15 is not a seed. By the following lemma,
we can identify another vertex of K whose link has Picard number 4.

Lemma 4.6. Let K be a seed of Picard number 4. Assume that K has a vertex v such
that Pic.LkK.v// D 3 and there exist two vertices v1 and v2 of LkK.v/ such that every facets
of LkK.v/ contains either v1 or v2. Then there is a vertex ofK whose link has Picard number 4.

Proof. Let ¹v1º [ � be a facet without v2. There is one more facet containing � since
it is a ridge of the PL sphere LkK.v/. By assumption, it must be ¹v2º [ � . That shows every
vertex in LkK.v/ forms an edge with both v1 and v2.

Let w be the vertex not in LkK.v/. If v1 2 LkK.w/, then LkK.v1/ has Picard num-
ber 4. If both v1; v2 … LkK.w/, then LkK.w/ is an .n � 2/-dimensional PL sphere with n
vertices. This means that LkK.w/ D 𝜕�n�1. Then if w0 is a vertex of LkK.w/ other than w,
then Pic.LkK.w0// D 4.

That implies any Z112 -colorable seed of Picard number 4 has a vertex whose link also has
Picard number 4, which we relabel as vertex 15.
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Before we apply Algorithm 4.4 for this case, we need some preparation as follows. We
firstly select an injective map N�W ¹1; : : : ; 14º ! Z42 and choose a 9-dimensional PL sphere L
that supports N�. We seeL as the link of the vertex 15 in some Z112 -colorable seedK supporting
some IDCM �R with the restriction �Rj¹1;:::;14º D N�. Since jZ42 n ¹0ºj D 15, once N� is cho-
sen, �R is uniquely determined. There are 114 9-dimensional Z102 -colorable PL spheres that
support an IDCM, among which 39 are seeds and 75 are non-seeds. They can be obtained from
Algorithm 4.4 by skipping the step that discards the non-seeds, for instance.

Let yL be the simplicial complex ¹� [ ¹15º W � 2 Lº. All PL spheres K having its vertex
15 whose link is L contains yL. That provides the following conditions on the components of
K 2 ZM :

(1) for all yLj D 1, Kj D 1, and

(2) for all yLj D 0 with yLj 3 ¹15º, Kj D 0.

We will denote by I and J the set of indexes of the facets satisfying condition (1) and condi-
tion (2), respectively. After reordering the rows of B , the two conditions appear as follows:

(4.1) BX D

264 BI

BJ

BŒM�n.I[J/

375X D
2641

0
?

375:
A mod 2 Gaussian elimination process on the columns of B gives a column-reduced echelon
form zB which yields another set of generators for the mod 2 kernel of A. Denote by sI and sJ
the maximal index of nonzero column of zBI and of zBJ , respectively. To respect conditions (1)
and (2), we need

xt D

8̂<̂
:
1; t D 1; : : : ; sI ;

0; t D sI C 1; : : : ; sJ ;

? otherwise;

for X D .x1; : : : ; xM /t . If no such X satisfy this conditions, then there is no Z112 -colorable
seed K that supports �R and whose link of the vertex 15 is L.

Applying Algorithm 4.4 with a revised version of the initialization of Algorithm 2.2 that
takes into account condition (4.1) on the entries of X yields the following.

Theorem 4.7. There are exactly four Z112 -colorable 10-dimensional seeds of Picard
number 4.

4.4. Toric colorability. Remember that it is enough to check whether each seed among
the Zn2-colorable ones supports a characteristic map for obtaining all the toric colorable seeds
of Picard number 4.

Let K be a Zn2-colorable seed of Picard number 4, and �R a mod 2 characteristic map
over K. If we regard each image vector of �R as a ¹0; 1º-vector of Zn, and denote by � the
obtained map, then � is not necessarily a characteristic map overK. Therefore, we change some
1’s in the image vectors of � to�1’s until it becomes a characteristic map overK. Brute-forcing
this method provides at least one characteristic map supported by every Zn2-colorable seed we
enumerated. The toric colorability is thus equivalent to the Zn2-colorability for PL spheres of
Picard number 4. This yields the full theorem.
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Theorem 4.8. Up to isomorphism, the number of toric (or Zn2-)colorable seeds of
dimension n � 1 and Picard number p � 4 is as follows, with the empty slots displaying zero.

n

p 1 2 3 4 5 6 7 8 9 10 11 > 11 Total

1 1 1
2 1 1
3 1 1 1 3
4 1 4 21 142 733 1190 776 243 39 4 3153

5. Application to the normalized space of rational curves
on toric manifolds of Picard number four

This section is devoted to answering a question of Chen, Fu, and Hwang in [12] and
assumes the reader is familiar with it. We also refer to [29, 31] for more details about rational
curves on algebraic varieties. LetX be a toric manifold. For an irreducible component K of the
normalized space of rational curves on X , denote by �WU!K and �WU! X the associated
universal family morphisms. The irreducible component K is called a minimal component if
� is dominant and, for a general point x 2 X , the variety ��1.x/ is complete. Members of
such K are called minimal rational curves, and the degree of K is defined by the degree of the
intersection of the anti-canonical divisor of X with any member in K .

Recall that X is characterized by a complete non-singular fan with its underlying sim-
plicial complex K on Œm� and its primitive ray vectors �.i/ for i 2 Œm�. In particular, � is
a characteristic map over K. Conversely, if a characteristic map � over K gives a fan with
underlying simplicial complex K, then � is called fan-giving.

For each minimal non-face ¹v1; v2; : : : ; vkº of K, the set ¹�.v1/; �.v2/; : : : ; �.vk/º is
called a primitive collection of .K; �/.

Theorem 5.1 ([12, Proposition 3.2]). Let X be a toric manifold of complex dimen-
sion n, and let .K; �/ represent its associated fan. The minimal components of degree k on
X bijectively correspond to primitive collections ¹�.v1/; �.v2/; : : : ; �.vk/º of .K; �/ such that
�.v1/C � � � C �.vk/ D 0.

We consider two primitive collections

V D ¹�.v1/; �.v2/; : : : ; �.vk/º and W D ¹�.w1/; : : : ; �.wl/º

that correspond to two minimal components. Assume that they intersect, so without loss of
generality, �.vk/ D �.wl/. Then

�.v1/C � � � C �.vk�1/ D ��.vk/ D ��.wl/ D �.w1/C � � � C �.wl�2/:

This means that the two cones generated by V n ¹vkº and W n ¹wlº are the same. Hence, for
two primitive collections V and W corresponding to minimal components, there are only two
possibilities: either V D W , or V \W D ;. Using this property and the previous theorem, one
obtains the following inequality.
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Proposition 5.2 ([12, Proposition 3.5]). Let X be a toric manifold of complex dimen-
sion n and Picard number p. Then

(5.1)
n�1X
kD0

nk.k C 2/ � nC p;

where nk is the number of minimal components in the normalized space of rational curves on
X of degree k C 2.

We consider the fan associated to X , represented by a pair .K; �/. Through a direct
interpretation of inequality (5.1), equality holds if and only if there is a partition P of the
vertex set of K such that, for each � D ¹v1; : : : ; vkº 2 P , � is a minimal non-face of K, and
�.v1/C � � � C �.vk/ D 0. Let us call such partition optimal. The rest of this section is devoted
to finding in which cases there exists such an optimal partition forK of Picard number at most 4
that supports a fan-giving characteristic map.

Firstly, observe that the left multiplication of a characteristic matrix by an invertible
matrix does not affect whether it has an optimal partition. Such two matrices are called Davis–
Januszkiewicz equivalent (or simply D-J equivalent). Hence, we suppose that the first n col-
umns of an n �m characteristic matrix overK form the n � n identity matrix with the assump-
tion that ¹1; 2; : : : ; nº is a facet of K.

For a simplicial complex K, assume that the following two matrices are (mod 2) charac-
teristic maps over K:

(5.2) � D

"
1 0 a
0 In�1 A

#
and � D

"
1 0 b
0 In�1 A

#
:

Then, using the notation introduced in [15], the matrix

(5.3) � ^1 � D

2641 0 0 a
0 1 0 b
0 0 In�1 A

375
is a (mod 2) characteristic map over wed1.K/ if it satisfies the (mod 2) non-singularity con-
dition. For any other vertex v, one can construct a (mod 2) characteristic map over wedv.K/
from two (mod 2) characteristic maps over K similarly.

Theorem 5.3 ([13]). For a vertex v of a simplicial complex K, every (mod 2) charac-
teristic map over wedv.K/ is of the form � ^v � for two (mod 2) characteristic maps � and �
over K up to D-J equivalence. Moreover, � ^v � is fan-giving if and only if both � and � are
fan-giving.

Remark 5.4. Let v be a vertex of K. Notice that, by taking any two (mod 2) charac-
teristic maps � and � over K, we cannot always construct the matrix “� ^v �”. However, for
a single (mod 2) characteristic map overK, the matrix � ^v � can always be constructed. Such
(mod 2) characteristic map over wedv.K/ is called the canonical extension of � at v. For more
details on the compatibility of the operation ^v in the mod 2 case, see [15].
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Lemma 5.5. For a simplicial complexK and a vertex v ofK, letƒ D � ^v � be a fan-
giving characteristic map over wedv.K/, where � and � are characteristic maps overK. Then
.wedv.K/;ƒ/ has an optimal partition if and only if both .K; �/ and .K;�/ have optimal
partitions.

Proof. Without loss of generality, it is enough to consider the case v D 1. Then we can
additionally assume that characteristic maps are of the forms (5.2) and (5.3). Then, for a subset
¹v1; : : : ; vkº of the vertex set of K, ƒ.v1/C � � � Cƒ.vk/ D 0 if and only if the sum is zero
component-wise. Henceƒ.v1/C � � � Cƒ.vk/ D 0 if and only if �.v1/C � � � C �.vk/ D 0 and
�.v1/C � � � C �.vk/ D 0.

By Theorem 5.3 and Lemma 5.5, it is enough to investigate only seeds of Picard number p
to determine which fan of Picard number p has an optimal partition. Then, by Theorem 4.8,
we obtain the following corollary.

Corollary 5.6. A PL sphere K of Picard number p � 4 supports a fan-giving charac-
teristic map � that has an optimal partition if and only ifK is achieved by a sequence of wedge
operations from the boundary of

� a 1-simplex if p D 1,

� a square if p D 2,

� a 3-dimensional cross polytope if p D 3, and

� either a hexagon or a 4-dimensional cross polytope if p D 4.

Moreover, each of the listed seeds supports a unique fan-giving characteristic map with an
optimal partition, and thus � is obtained by sequential canonical extensions.

Before proving Corollary 5.6, we need some preliminary results about the join of two
simplicial complexesK and L on ¹1; 2; : : : ; m1º and ¹m1 C 1;m1 C 2; : : : ; m2º, respectively.
Any minimal non-face ofK � L is a minimal non-face of eitherK or L. In addition, a (mod 2)
characteristic map � over K � L can be represented as

� D

"
�11 �12

�21 �22

#
;

where �11 is a characteristic map overK, and �22 is a characteristic map over L. Furthermore,
by D-J equivalence, if dim.K/ D n1 � 1, then we can assume that the first n1 columns of �11
form an identity matrix, and the first n1 columns of �21 are zeros. A similar argument holds
for �12 and �22.

Proof of Corollary 5.6. We first consider the boundary of any cross polytope. Recall
that the suspension of K is the join of a 0-sphere S0 and K. Then any characteristic map �
over S0 � S0 is of the form "

1 ˙1 0 b

0 a 1 ˙1

#
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up to D-J equivalence if the vertex set of each S0 are ¹1; 2º and ¹3; 4º. Hence .S0 � S0; �/ has
an optimal partition if and only if

� D

"
1 �1 0 0

0 0 1 �1

#
:

up to D-J equivalence. Since S0 � � � � � S0 has minimal non-faces ¹1; 2º; ¹3; 4º; : : :, a similar
argument holds, so .S0 � � � � � S0; �/ has an optimal partition if and only if � is a block diago-
nal matrix whose block diagonal elements are all Œ1 �1� up to D-J equivalence. Note that any
toric colorable seed of Picard number 1 is S0, and any of Picard number 2 is S0 � S0.

For Picard number 3, there are two toric colorable seeds that are not the boundary of
a 3-dimensional cross polytope:

(1) the boundary of a pentagon,

(2) the boundary of a 4-dimensional cyclic polytope C 4.7/ with 7 vertices.

For (1), one can check that there is no partition of the vertex set consisting of minimal non-
faces. For (2), there is no fan-giving characteristic map from [13].

Finally, for Picard number 4, we use the list of toric colorable seeds obtained in Theo-
rem 4.8. Similarly to the classification of toric colorable PL spheres, we approach it from the
mod 2 characteristic map perspective. Suppose that P is an optimal partition for .K; �/. Then,
for any ¹v1; : : : ; vkº 2 P , the sum �.v1/C � � � C �.vk/ is also zero in mod 2. For a mod 2
characteristic map �R over K, we call a partition P of Œm� weakly optimal if P satisfies the
condition of optimal partition with a mod 2 characteristic map �R instead of a characteristic
map. Since K has finitely many mod 2 characteristic maps, we can investigate all possibilities.
For an .n � 1/-dimensional regular seed, there is no partition consisting of minimal non-faces
if n is 10 or 11. Moreover, the boundary of the hexagon is the only Picard number 4 toric
colorable regular seed which has a weakly optimal partition. More precisely, consider the
boundary K of the hexagon whose facets are ¹1; 2º; ¹1; 6º; ¹2; 3º; ¹3; 4º; ¹4; 5º; ¹5; 6º. Then
there are four partitions, as follows: P1 D ¹¹1; 3º; ¹2; 5º; ¹4; 6ºº, P2 D ¹¹1; 4º; ¹2; 6º; ¹3; 5ºº,
P3 D ¹¹1; 5º; ¹2; 4º; ¹3; 6ºº, and P4 D ¹¹1; 4º; ¹2; 5º; ¹3; 6ºº. Suppose that P1 is an optimal
partition of .K; �/. We can choose a D-J class with

�.1/ D

"
1

0

#
; �.2/ D

"
0

1

#
:

Then, by optimality of P1,

�.3/ D

"
�1

0

#
; �.5/ D

"
0

�1

#
:

By fan-givingness of �,

�.4/ D

"
�1

�1

#
:

Again, by optimality of P1,

�.6/ D

"
1

1

#
;
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but � does not yield a fan. Hence there is no � such that P1 is an optimal partition for .K; �/.
The partitions P2 and P3 are the same as P1 since they are obtained after rotating the labels of
the hexagon. For P4, by using optimality and fan-givingness, one can similarly show that it is
an optimal partition of .K; �/ if and only if

� D

"
1 0 �1 �1 0 1

0 1 1 0 �1 �1

#
:

There are in addition three suspended seeds of Picard number 4 other than the boundary
of a 4-dimensional cross polytope:

(1) the suspension of the boundary of a pentagon and

(2) the suspension of the boundary of C 4.7/.

For these cases, by construction of the suspension, there is no optimal partition from reasons
similar to the Picard number 3 case.
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