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ABSTRACT: We propose a band engineering scheme on the
biphenylene network, a newly synthesized carbon allotrope. We
illustrate that the electronic structure of the biphenylene network
can be significantly altered by controlling conditions affecting the
symmetry and destructive interference of wave functions through
periodic fluorination. First, we investigate the mechanism for the
appearance of a type-II Dirac fermion in a pristine biphenylene
network. We show that the essential ingredients are mirror
symmetries and stabilization of the compact localized eigenstates
via destructive interference. While the former is used for the band-
crossing point along high symmetry lines, the latter induces highly
inclined Dirac dispersions. Subsequently, we demonstrate the
transformation of the biphenylene network’s type-II Dirac
semimetal phase into various Dirac phases such as type-I Dirac, gapped type-II Dirac, and nodal line semimetals through the
deliberate disruption of mirror symmetry or modulation of destructive interference by varying the concentration of fluorine atoms.
KEYWORDS: biphenylene, flat band, Dirac semimetal, fluorination

Triggered by the discovery of carbon nanotubes,1,2 studies
on low dimensional carbon allotropes, such as graphene,

have significantly proliferated because one can have a variety of
intriguing electronic structures depending on the arrangement
of carbon atoms. For example, one can have massless Dirac
fermions in graphene,3,4 whereas infinitely heavy particles can
also appear in another honeycomb network of carbon atoms
called the cyclic-graphdiyne, which hosts a singular flat band.5,6

In the case of graphene, relying on its high structural stability,
one can further engineer the band structure to obtain flat
bands by tailoring it into ribbon geometries7 or twisting two
stacked graphene sheets.8,9 These peculiar electronic structures
have received great attention because they are relevant to the
possible many-body phases such as ferromagnetism10,11 and
superconductivity.12−15

Recently, another type of two-dimensional carbon allotrope,
called the biphenylene network (BPN), was synthesized16 and
has attracted significant interests in various properties of BPN
layers including electronic, optical, mechanical, thermal,
magnetic, and chemical properties.17−53 Moreover, from the
first-principles analysis, BPN turned out to exhibit another
intriguing band dispersion called type-II Dirac fermion
consisting of two heavily inclined cones, so that we have
open Fermi surfaces instead of Fermi points or circles.17,18 In
type-II Dirac semimetals,54 one can have electron- and hole-
type carriers simultaneously in contrast to the type-I case such
as graphene. This intricate band shape may lead to a variety of
unusual electronic phenomena such as anisotropic transport

and magnetoresistance behavior55−58 and undamped gapless
plasmon modes.59 Therefore, engineering their band shapes is
important to tune their electronic properties for applications.

In this Letter, we first analyze the origin of the type-II Dirac
dispersion of the pristine BPN from the perspective of
destructive interference and symmetry. The essential feature
of the type-II Dirac dispersion of the pristine BPN is that it is
inclined so that a flat band with a zero Fermi velocity appears
along a high symmetry line, while the Dirac band-crossing is
protected by mirror symmetry. We show that the pristine BPN
hosts a proper destructive interference stabilizing a stripe-type
compact localized state, which signals the existence of a flat
band, along the mirror-symmetric axis in momentum space.
This implies that one can engineer the electronic structures of
the BPN by controlling the conditions for destructive
interference and symmetries. We demonstrate that this can
be done successfully by absorbing fluorine atoms at various
positions. We show that we can have diverse Dirac dispersions
of different kinds, such as type-I, massive, and nodal line Dirac
fermions, by fluorinating the BPN periodically.
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Figure 1. (a) The lattice structure, (b) band structure, and (c) 3D energy structure near the ΓY line of pristine BPN. The unit cell is represented by
a dashed box in (a). Several Dirac points are denoted by DP1, DP2, and DP3 in (b). NFB indicates the nearly flat band.

Figure 2. Optimized geometries of fluorinated BPN monolayers with different concentrations of fluorine and their electronic structures: (a, b)
C6F0.5, (c, d) C6F1.0, (e, f) C6F1.5, and (g, h) C6F2.0. Gray (cyan) spheres represent carbon (fluorine) atoms. Dirac nodes, gapped-Dirac points, and
nodal lines are denoted by DP, g-DP, and NL, respectively.
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To investigate the geometrical and electronic properties of
pristine single-layer BPN, we perform geometry optimization
of BPN using first-principles calculations based on density
functional theory (DFT). The optimized geometry and energy
bands of BPN are shown in Figure 1(a) and (b), respectively.
As in the previous study,17,18 we observe a couple of type-II
Dirac points whose Dirac nodes lie on ΓY near the Fermi
energy EF as denoted by DP1 in Figure 1(b). As highlighted in
Figure 1(c), there are two tilted Dirac dispersions around the Γ
point. corresponding to DP1 in Figure 1(b). While the Dirac
point is developed by the crossing of two bands along ΓY, it is
essential that one of them is almost flat for realizing a type-II
Dirac fermion. Therefore, it is crucial to understand the origin
of the flat dispersion along ΓY to reveal the mechanism for the
appearance of the type-II Dirac semimetal, which will be
discussed in the following subsection.

We introduce fluorine atoms to a single-layer BPN to
engineer its electronic structures. A single-layer BPN has two
distinct carbon sites that fluorine atoms can attach to in a
primitive cell: one located at the junction of one hexagon and
two octagons and the other located at the junction of one
square, one hexagon, and one octagon. We denote the first site
and the second one by C(688) and C(468), respectively, as
shown in Figure 1(a). Regarding a pristine BPN monolayer,
binding energies of fluorine (F) atoms to carbon sites are
computed as follows: 3.20 eV/F for C(468) and 2.21 eV/F for
C(688). It implies that F atoms energetically prefer to bind to
C(468) rather than C(688). Varying fluorine concentrations x,
we consider four fluorinated BPN layers C6Fx for x = 0.5, 1.0,
1.5, and 2.0, whose atomic structures are displayed in Figures

2(a), (c), (e), and (g), respectively. DFT calculations also
reveal that F atoms energetically prefer to attach to the C(468)
sites for higher F concentrations. Corresponding binding
energies of F to C(468) sites are 3.45, 3.51, 3.48, and 3.50 eV/
F for x = 0.5, 1.0, 1.5, and 2.0, respectively. All structures of the
four fluorinated BPN layers are fully relaxed, and their dynamic
stability is verified by calculating phonon dispersions as shown
in Supporting Figure 6.60,61

Band structures of the fluorinated BPNs are plotted on the
right side of the atomic configurations in Figure 2. Intriguingly,
diverse nodal states emerge depending on the F concen-
trations. At fluorine concentrations of 0.5 and 1.0, gapped
type-II Weyl nodes are found as a result of crossing between
flat bands near EF along ΓY and energy bands hosting saddle-
point van Hove singularity (vHS) at Y. See the red circles in
Figure 2(b) and (d). This gap opening is attributed to the
mirror symmetry breaking with respect to the monolayer BPN
plane due to fluorine attachment. On the other hand, we found
gapless and gapped type-I Dirac points along the x- and y-axis
in C6F1.5 as shown in Figure 2(f) while nodal rings appear in
C6F2 as noted in Figure 2(h). For clarity, we provide 3D band
structures of these two compounds in Supporting Figure 3. An
effective Hamiltonian is formulated using a tight-binding
model in the next subsection to provide a more accurate
interpretation.

To understand how the variety of relativistic dispersions can
be stabilized in pristine BPN and fluorinated BPNs, we
conduct an analysis of their wave function symmetries. Here,
we first focus on the protection or gap-opening mechanisms of
the nodal points or lines, while the origin of the inclination in

Figure 3. (a) The tight-binding band structures of the pristine BPN with band parameters {tsx, tsy, ty, td, ts, tp, E0} = {−3, −2.7, −2.7, −2.8, −0.7, 0,
−0.5}. We indicate the 1D flat bands along XS and YΓ by F1 and F2, respectively. The parabolic band crossing with the flat band F2 is denoted by
P. (b) Bloch wave function corresponding to the parabolic band P at Γ. Colored circles represent the amplitudes of the wave function. Red (cyan)
color implies that the sign of the amplitude is 1 (−1), while the radius of the circle is proportional to the magnitude of the amplitude. Thick vertical
and horizontal lines represent the mirror symmetry planes. In (c) and (d), we illustrate the stripe-CLS1 and stripe-CLS2 corresponding to the flat
bands F1 and F2, respectively. In (c), the hopping processes are summarized. The CLS can be an eigenmode even if the longer-ranged hopping
processes represented by the yellow arrow are further included due to the destructive interference at sites L1 and L2.
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Dirac dispersions is addressed in the next subsection.
Specifically, we consider only the wave functions of the
bands near the Fermi level. The symmetries of the wave
functions are visualized by plotting the amplitudes of the Bloch
wave function at the Γ point as illustrated in Supporting Figure
2. For the pristine BPN, one can show that the band-crossing
along ΓY in Figure 1(b) is protected by the mirror symmetry
with respect to the yz plane, which is denoted by Mx. The
nearly flat band (NFB) and the dispersive band, which
constitute the type-II Dirac point, correspond to the mirror
eigenvalues −1 and 1, respectively, as shown in Supporting
Figure 2(a). Furthermore, upon close inspection of the wave
function depicted in Supporting Figure 2(a), an intriguing
resemblance to the anti-bond wave function of benzene
becomes apparent. This finding may imply a potential
connection between the electronic properties of the material
under investigation and those of benzene, which is known for
its aromatic properties and unique bonding characteristics.

On the other hand, the mirror symmetry Mx is broken in
C6F0.5 and C6F1. As a result, the wave functions are not mirror-
symmetric with respect to the yz plane as shown in Supporting
Figure 2(b) and (c), and band crossings along ΓY are all
gapped out, realizing massive type-II Dirac fermions as shown
in Figure 2(b) and (d). Although several type-II Dirac nodes,
denoted by g-DP2 in Figure 2(b) and (d), look gapless, they
actually have tiny gaps whose energy is about 0.1 meV. Note
that C6F0.5 and C6F1 respect the mirror symmetry My with
respect to the zx plane, so their wave functions are either
mirror symmetric or mirror anti-symmetric as illustrated in
Supporting Figure 2(b) and (c). Thus, band-crossings
indicated by DP1 and DP2 in Figure 2(b) and DP in Figure
2(d) are protected along ΓX. As like the two previous
compounds, C6F1.5 satisfies only the mirror symmetry My, so it
has gapless and gapped-out Dirac nodes on ΓX and ΓY,
respectively. See Figure 2(f). In contrast to C6F0.5 and C6F1,
C6F1.5 does not stabilize flat bands, resulting exclusively in
type-I Dirac fermions. Finally, in C6F2, both mirror symmetries
Mx and My are respected. The system, therefore, becomes
gapless along both ΓX and ΓY as illustrated in Figure 2(h). In
fact, these two nodes are part of the nodal line.

In this subsection, we discuss another crucial condition for
the appearance of type-II Dirac fermions in pristine BPN and
the aforementioned fluorinated BPNs by analyzing how flat
bands are stabilized along certain symmetry axes. To this end,
we apply a tight-binding method, which is advantageous for flat
band analysis. The essential mechanism for the development of
the dispersionless band is the existence of a compact localized
state (CLS), which is a localized eigenstate having nonzero
amplitudes only inside a finite region.62−65 Although electrons
can move on the lattice via hopping processes, such an
extremely localized mode can exist due to the destructive
interference hosted by the special lattice structures. The CLS is
considered a characteristic eigenstate of a flat band because it is
guaranteed to exist when it is completely flat.64 While one can
have N (the number of unit cells) for different CLSs centered
at different positions, they are not independent of each other if
the Bloch eigenstate corresponding to the flat band possesses a
discontinuity in momentum space. Such a flat band is called a
singular flat band, and its geometric and topological aspects
have been studied extensively.6,64−67

First, regarding the fact that energy bands of our interest
mostly originate from pz orbitals of carbon atoms, we construct
an effective tight-binding model consisting of the six pz orbitals

for the pristine BPN to understand the origin of its flat bands
along ΓY and XS, as shown in Figure 3(a). Along these lines,
the Hamiltonian can be regarded effectively as a one-
dimensional system hosting flat bands. The effective 1D
Hamiltonians along ΓY and XS are obtained by the inverse
Fourier transform of the Bloch Hamiltonian with kx = 0 and kx
= π, respectively. Therefore, we seek a CLS compactly
localized along the y-axis in order to understand the origin
of flat bands. Six tight-binding parameters are denoted by tsx,
tsy, ty, td, ts, and tp as represented in Figure 3(c). Main features
of the DFT calculations can be captured by the tight-binding
parameters {tsx, tsy, ty, td, ts, tp, E0 } = {−3, −2.7, −2.7, −2.8,
−0.7, −0.3, −0.5}, where E0 is the overall energy shift. Two
perfectly flat bands around the Fermi level along ΓY and XS
are denoted by F1 and F2, respectively. Their energies are
given by EF1 = −tp − ts + tsx − tsy + E0 and EF2 = −tp − ts − tsx +
tsy + E0. The flatness of these flat bands is robust against
variation of those tight-binding parameters. The CLSs
corresponding to the flat bands F1 and F2 are plotted in
Figure 3(c) and (d). As the effective Hamiltonians are
translationally invariant along the y-axis, the CLSs are
compactly localized along the same direction. On the other
hand, they are extended along the x-direction modulating with
the fixed momenta kx = 0 and kx = π. These CLSs are denoted
as the stripe-CLSs. One can notice that the lattice structure
provides a destructive interference at the sites linking two
neighboring square plaquettes of carbon atoms, denoted by L1,
as explained in Figure 3(c). While the flat band F2 has a Dirac
band-crossing with a dispersive band, this is protected by
mirror symmetry Mx because the CLS and the wave functions
in the dispersive band have mirror eigenvalues −1 and +1,
respectively, as shown in Figure 3(b) and (d). This band-
crossing between the flat and dispersive bands results in a type-
II Dirac fermion, as plotted in Figure 3(a). Note that a long-
range hopping tp does not break the flatness of the flat band
because this hopping process also offers destructive interfer-
ence for the same CLS, denoted by L2 in Figure 3(c). In fact,
what we have obtained so far belongs to the type-III Dirac
fermion because the dispersion is perfectly flat along a
direction.68 Depending on the values of longer-range hopping
parameters, this type-III Dirac semimetal transforms into type-
I or type-II Dirac fermions, as shown in DFT calculations.
Although the longer-range hybridizations would not provide
such a destructive interference and, therefore, deform the flat
band, the resultant bandwidth is tiny, as we observed in DFT
calculations because their hopping amplitudes should be much
smaller than the nearest neighbor ones. Even if the flat band is
warped, the band-crossing is robust against the inclusion of the
long-range processes, because mirror symmetry is still
respected. The pristine BPN has another mirror symmetry
My, and the type-I Dirac dispersions along ΓX are protected by
it.

As a next step, we show that by fluorinating BPN, such as
C6F0.5 and C6F1, we can have gapped type-II Weyl semimetals.
In the tight-binding analysis, the fluorination is assumed to be
equivalent to making a vacancy at the corresponding carbon
site. This assumption is reasonable since hybridization between
the pz orbital and fluorine atoms leads to bonding and anti-
bonding states whose energies might be pushed away from the
energy window of our interest. For C6F0.5 and C6F1, stripe-
CLSs can still be stabilized along the chain of square plaquettes
of carbon atoms, which are not fluorinated and extended along
the x-axis, as shown in Figure 4(a) and (b). As a result, the flat
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bands appear along ΓY and XS, as shown by the nearly flat
bands in the DFT band structures in Figure 2(b) and (d).
However, due to the broken mirror symmetry by the fluorine
atoms, any band-crossing along these high-symmetry lines does
not have to be protected. Indeed, all of the band-crossings of
type-II Dirac dispersions along ΓY are gapped out, as discussed
in the previous subsection. In the case of C6F0.5, we note that
the energy gap at the higher Dirac point (g-DP2) is tiny but
nonzero. Namely, we obtained massive type-II Dirac fermions
by fluorination, which breaks mirror symmetry while
maintaining destructive interference. Since the attached
fluorine atoms do not break My, type-I Dirac dispersions
along ΓX and SY are all immune from being gapped out. If we
attach more fluorine atoms, any stripe-CLSs cannot be an
eigenmode because all of the possible destructive interferences
are obstructed by the fluorine atoms, as shown in Figure 4(c)
and (d). Therefore, we cannot expect flat bands in C6F1.5 and
C6F2, and no type-II Dirac semimetals are expected in these
compounds. Instead, type-I and nodal line semimetals appear,
as shown in the DFT calculations.

In this paper, we have shown that a variety of Dirac particles,
such as massless or massive type-I and -II Dirac, and a nodal
line can be obtained by the manipulated fluorination on the
BPN. In our band engineering scheme, it is crucial that one can
eliminate destructive interference and mirror symmetries by
properly locating the fluorine atoms. Especially the concept of
controlling destructive interference is first proposed in this
paper, showing that one can manipulate the electronic
structure of a solid by reshaping its wave function in real
space. While we have focused on a specific material system, our
work eventually proposes a novel band engineering method,
where we control the slope of a part of the Dirac dispersion by

manipulating the condition for destructive interference via the
molecular absorption technique.

Attaching atoms to two-dimensional lattices or surfaces on a
microscopic level is experimentally feasible. By using scanning
tunneling microscopy (STM), hydrogen atoms or CO
molecules can be absorbed and controlled on a graphene or
Cu(111) surface on the atomic scale,69,70 and even an
automated manipulation of their position is possible.71

Moreover, the fluorination of another carbon allotrope,
graphene, has been extensively studied.72−76 Therefore, we
believe that our band engineering scheme can be realized in
experiments so that fluorinated BPN could be an ideal platform
to study intriguing phenomena from various types of Dirac
dispersions and flat bands.
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