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Analyzing to discover origins 
of CNNs and ViT architectures 
in medical images
Seungmin Oh 1, Namkug Kim 2 & Jongbin Ryu 1,3*

In this paper, we introduce in-depth the analysis of CNNs and ViT architectures in medical images, 
with the goal of providing insights into subsequent research direction. In particular, the origins of deep 
neural networks should be explainable for medical images, but there has been a paucity of studies on 
such explainability in the aspect of deep neural network architectures. Therefore, we investigate the 
origin of model performance, which is the clue to explaining deep neural networks, focusing on the 
two most relevant architectures, such as CNNs and ViT. We give four analyses, including (1) robustness 
in a noisy environment, (2) consistency in translation invariance property, (3) visual recognition 
with obstructed images, and (4) acquired features from shape or texture so that we compare origins 
of CNNs and ViT that cause the differences of visual recognition performance. Furthermore, the 
discrepancies between medical and generic images are explored regarding such analyses. We discover 
that medical images, unlike generic ones, exhibit class-sensitive. Finally, we propose a straightforward 
ensemble method based on our analyses, demonstrating that our findings can help build follow-up 
studies. Our analysis code will be publicly available.

In medical image recognition, analyzing the decision-making process of deep learning is very critical. The reli-
ability of deep learning will drop if it can’t be analyzed in the decision-making process in determining a disease. Li 
et al.1 explore the potential of utilizing a Vision Transformer (ViT) in medical data and compare its performance 
to that of Convolutional Neural Networks (CNNs). A recent study discovered that artifacts present in medical 
datasets can greatly affect the accuracy of classification  models2. In addition, a study by Raghu et al.3 examined 
the factors to be considered when applying the transfer learning method from general images to medical images.

Despite this, while quite a few studies of deep learning analysis have been conducted on generic images, 
such as  ImageNet4 dataset, it has not yet been extensively investigated in medical image recognition. Several 
 approaches5–10 for examining deep neural networks have been done on the generic dataset; such as texture-shape 
analysis, robustness, translation invariant consistency, and frequency analysis, they are still insufficient in the 
medical data for these analyses. To this end, in this paper, we introduce novel medical data analysis through 
extensive and well-designed experiments. Specifically, we aim to investigate the grounds of performance dif-
ference between the convolutional neural networks (CNNs) and vision transformer (ViT) with our analysis.

The research on whether to employ CNNs or ViT is still a contentious topic in both generic and medical 
images. Only a few  studies1,11,12, however, have been done in the medical image domain. We analyze robust-
ness, translation-invariance, obstruction, and shape-texture bias by redesigning the analyses done on generic 
images to fit medical images. This paper will identify the origins of CNNs and ViT in order to provide intuition 
for future research. We investigate  robustness7,9, translation  invariance10, obstruction, and shape-texture  bias7,8 
in medical images by revamping analyses performed on generic images. The contribution of our paper is sum-
marized as follows:

• We, in this paper, reveal the origin of CNNs and ViT model performance in medical images. To provide 
insightful analysis, we conduct extensive experiments that influence the recognition performance of medical 
images, such as shape and texture bias.

• We demonstrate a notable difference in performance by class labels in medical images. This finding illustrates 
the specific property that medical image is especially class-sensitive.

• We propose a new classification method dubbed class-conditional ensemble based on our findings. Using a 
simple strategy, the proposed ensemble method improves the performance of all metrics.
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Background
CNNs have long been the most outstanding visual recognition architecture  13–17. Extracting regional features 
with a convolutional kernel learns the strong correlation between surrounding pixels, and thus, inductive biases 
such as translation invariance and equivariance can be learned effectively. However, due to the limited kernel 
size, the convolution operation suffers from learning the global features that lead to reaching the limit of perfor-
mance improvement. To overcome this limitation,  18–21 use 1× 1 convolution to reduce focusing only on local 
information or do re-calibration through channels operation.

Vision Transformer 22–25 uses self-attention to learn the association between all pixels globally, unlike con-
volution, which only considers surrounding pixels. This is an entirely different learning process than existing 
CNN-based models, so many studies have begun to employ self-attention. Although the performance of ViT 
cannot be stated to be high in an insufficient quantity of training data, lots of effort is still being undertaken 23,24 
since ViT has a better model capacity in terms of learning global information.

Analytic study on deep neural networks 5–7 to the generic images (i.e., ImageNet 4) has been conducted to 
analyze CNNs and ViT. When adequate training data is available, ViT has a lower risk of falling into a local mini-
mum. However, when the training data is insufficient, CNNs can readily learn the inductive bias well and perform 
better than ViT. To complement these two architectures, studies on hybrid models are also increasing. Several 
studies 1,11,12 in the medical domain examine the performance of CNNs and ViT, as well as the effect of transfer 
learning with ImageNet pre-trained architecture. Raghu et al. 3 raised concerns about over-parameterization 
when applying transfer learning to medical datasets, given the small amount of training data. In a recent study, 
Juodelyte et al. 26 put forward a method to enhance the resilience of transfer learning in medical data, specifically 
addressing the challenge of out-of-distribution data. Examining the issue of medical dataset composition, a study 
by Bissoto et al. 2 found that artifacts present in the skin image datasets 27,28 have a notable influence on visual 
recognition. The research conducted by Sun et al. 29 explored the impact of training with corrupted images and 
the extent to which models relied on these artifacts.

Settings
We conduct various experiments using CNNs, ViT, and hybrid architectures to explore their respective char-
acteristics. Additionally, we investigate how their strengths are leveraged across multiple forms of data. All 
training is done using the AdamW optimizer with a learning rate of 0.0001 and cosine annealing scheduler. The 
loss function is binary cross entropy, and the input image size is 224× 224 . All the experiments were conducted 
using 5-fold cross-validation. The numbers in brackets in the experimental results represent the 95% confidence 
interval for the results of the five validations. In addition, unless specified otherwise, we use AUROC to evaluate 
the classification performance.

Architecture
The experiment is divided into CNNs, ViT, and hybrid, because this analysis is to find the origin of CNNs and 
ViT architectures in the medical data. We select CNN-based  ResNet13 and  DenseNet15, which are commonly 
used in medical data. For the ViT architecture,  DeiT24 and Swin-Transformer23 are utilized, while  CoAtNet25 and 
 MaxViT30 are chosen as hybrid architecture. We attempt to select backbones with similar parameters to ensure 
a fair evaluation and backbones are trained as classification tasks.

Dataset
The dataset is used differently depending on the analysis.  CheXpert31 is used in robustness and consistency 
analysis, ChestX-ray1432 is used for obstruction analysis, and  ISIC201733 is used to find texture and shape bias.

CheXpert31 is a large chest radiograph dataset. It consists of 224,316 chest radiographs for training and 
200 validation radiographs. And the labels of train data are made into natural language processing and the 
labels of validation data are made by experts. In our analysis, we train the compare groups as a multi-label task 
using five pathology classes: Cardiomegaly(Cd.), Edema(Ed.), Consolidation(Co.), Atelectasis(A.), and Pleural 
Effusion(P.E.).

ChestX-ray14 is an extension of ChestX-ray832 by adding six additional thorax lesions. It is a chest X-ray 
dataset comprised of frontal-view radiograph images with fourteen lesion labels. The labels are made into natural 
language processing from the associated radiological reports. The datasets for training and validation have sizes 
86524 and 25596, respectively. In our analysis, we train the compare groups as a multi-label task using 14 classes. 
Also, we use bounding box annotation data that consists of 8 classes for performance measuring.

ISIC201733 is a skin lesion dataset comprising 2000 training images and 150 validation images with 3 classes 
and segmentation annotation of lesion area. In our analysis, we train the compare groups as a multi-class task 
using three classes.

Empirical study
In order to ensure fair comparisons, we use similar scales of networks of CNNs and ViT. Table 1 provides the 
number of parameters utilized in our experiments.

Robustness
The robustness  analysis7,9 investigates the performance deterioration when various corruptions are applied to the 
medical images. A total of 16 forms of corruption(Fig. 1b) are employed, including brightness, elastic transform, 
lossy compression, and Gaussian blur, with corruption intensities ranging from I1 to I5. I1 and I2 are the levels 
of corruption that typically exist in the real world. Extreme corruption, l3 to l5, can also occur in images of very 
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fat or thin people as a limit to the visualizable area of the image histogram. It is evident that a model’s ability to 
handle corrupted data directly impacts its performance with real-world medical images. Due to certain patients’ 
inability to hold their breath or maintain stillness during X-ray procedures, the resulting images may become 
distorted. In addition, variations in noise and brightness can occur due to differences in the patient’s body form, 
as the medical equipment is not calibrated individually for each patient. Given the potential for medical images to 
be corrupted in various real-world settings, this paper conducts a robustness analysis. We exhibit the performance 
gap of AUROC based on the intensity of architectures. This gap between clean (i.e., original data) and corrupted 
data can be measured to validate the robustness. The absolute performance of CLEAN is better for CNNs, which 
is consistent with previous  research34 showing that CNNs generally perform better in noiseless settings. Therefore, 
rather than comparing absolute performance, we study which architecture is more noise-robust by measuring the 

Table 1.  Performance and size of models on CheXpert. The terms ’Clean’ and ’Corrupted’ refer to the quality 
of the original data, indicating whether it is free from any corruption or if it has been corrupted, as mentioned 
in Section ’Robustness’. Under the double line is the average of the models representing each architecture.

Architecture # of Params Clean Corrupted

ResNet50 22.43 0.87 (0.00) 0.78 (0.01)

DenseNet201 17.26 0.87 (0.00) 0.81 (0.01)

DeiT Small 20.66 0.88 (0.00) 0.81 (0.00)

Swin Tiny 26.25 0.88 (0.00) 0.81 (0.00)

CoAtNet 0 25.44 0.87 (0.00) 0.80 (0.01)

MaxViT Tiny 27.22 0.88 (0.00) 0.81 (0.01)

CNNs 19.845 0.872 0.794

ViT 23.455 0.878 0.811

Hybrid 26.330 0.875 0.804

Figure 1.  Experimental results and examples of the robustness with 16 types of corruption. A big margin 
indicates a considerable deterioration in performance due to corruption. We take this finding to mean that ViT 
is more resistant to corruption than CNNs. It is also worth noting that Edema and Pleural Effusion are more 
susceptible to corruption than other lesions.

Table 2.  Performance degradation of the corruptions with five intensities on CheXpert. The Archi. denotes 
architecture. We conducted the experiment using a 5-fold cross-validation method. The numbers in 
parentheses represent the 95% confidence interval.

Archi.

�AUROC↓(AUROCclean − AUROCcorrupted)

I1 I2 I3 I4 I5 Mean

Res. 0.03 (0.00) 0.05 (0.01) 0.07 (0.01) 0.12 (0.02) 0.17 (0.02) 0.09 (0.01)

Dense. 0.01 (0.00) 0.03 (0.00) 0.05 (0.00) 0.10 (0.00) 0.14 (0.01) 0.07 (0.00)

DeiT 0.02 (0.00) 0.03 (0.00) 0.05 (0.00) 0.09 (0.01) 0.13 (0.01) 0.06 (0.00)

Swin 0.02 (0.00) 0.04 (0.00) 0.06 (0.00) 0.09 (0.01) 0.14 (0.01) 0.07 (0.01)

CoAt. 0.02 (0.01) 0.04 (0.01) 0.06 (0.01) 0.11 (0.01) 0.16 (0.01) 0.08 (0.01)

Max. 0.01 (0.01) 0.03 (0.01) 0.04 (0.01) 0.09 (0.02) 0.15 (0.01) 0.06 (0.01)

CNNs 0.021 0.039 0.060 0.110 0.157 0.077

ViT 0.019 0.037 0.057 0.090 0.133 0.067

Hybrid 0.015 0.034 0.053 0.100 0.157 0.072
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amount of performance degradation. As the level of corruption grows in all backbones, so does the performance 
degrades in Table 2. CNNs are the least resilient to corruption data, while ViT is the most robust under the same 
corruption data. On the other hand, on the clean dataset, CNNs outperform the ViT architecture considerably 
due to their efficient convolution operation. Another intriguing fact is that performance differences between 
classes within a single dataset can be significant. The Fig. 1a shows the margin by class. It can be seen that Edema 
and Pleural Effusion have a significant performance gap when compared to other classes. This is interpreted as 
follows for two reasons. The first is that Edema and Pleural Effusion have low texture information compared to 
other classes in the dataset. The second reason is that CNNs learn more texture information than ViT. As a result, 
texture corruption considerably reduces the performance of the texture-sensitive Edema and Pleural Effusion 
classes for CNNs. The correlation between CNNs and textures is more detailed in Section ’Shape and texture bias’.

Consistency of translation invariance
Translation invariance is an important property that allows the model to recognize an object regardless of 
its translation  changes10. Two random translation changes are randomly added to the original images for 
evaluating the translation invariance property, as seen in Fig. 2b. We measure the model’s translation invari-
ance ability using the recognition consistency of these two translation changes, and its formula is defined as 
Consistency = 1

N

∑
i 1 {y1i = y2i }, where y1i  and y2i  are labels of randomly translated two images from original 

images that have yi labels. N denotes the number of images, and y represent the label of images. We ensure that 
no more than 7% of the image is lost during this translation change to preserve the lesion information. There 
are distinctive cases in medical images where a lesion has a fixed onset location or appears randomly in multiple 
locations. As a result, the significance of translation invariance changes based on the types of diseases, and if 
the appropriate analysis is applied, the performance can be enhanced further. In Table 3, the consistency of the 
translation invariant property is high in the order of CNNs, hybrid, and ViT. The highest consistency of CNNs 
is due to the pooling layer of its architectural design and is consistent with earlier  studies35. On the other hand, 
unlike the CNNs having a pooling layer, ViT consists of only the self-attention layer that encodes global pixel 
interactions without the pooling layer. However, as demonstrated in Fig. 2a, in three classes, Cardiomegaly, 
Edema, and Atelectasis, the translation invariance property is less important because the site of one is constant 
for these three lesions. As a result, in these classes, ViT outperforms CNNs architecture.

Figure 2.  Experimental result and examples of consistency analysis on the translation invariant property. a) 
It shows the per-class performance deviation of the consistency. Interestingly, each design of CNNs and ViT 
outperforms the others in different classes, demonstrating that architectural choice is critical in medical image 
recognition. b) The left-top is an original image, and the others are randomly translated from the original image.

Table 3.  Consistency performance against the translation invariant property on CheXpert. CNNs have been 
shown to outperform alternative architectures in terms of consistency performance. This finding suggests that 
the pooling operation of CNNs is highly effective in capturing the translation changes of medical images.

Archi. Cd. Ed. Co. A. P. E. Mean

Res. 0.87 (0.03) 0.90 (0.03) 0.92 (0.02) 0.89 (0.02) 0.87 (0.02) 0.89 (0.02)

Dense. 0.88 (0.02) 0.91 (0.04) 0.88 (0.02) 0.90 (0.03) 0.88 (0.03) 0.89 (0.02)

DeiT 0.84 (0.02) 0.85 (0.04) 0.85 (0.01) 0.84 (0.01) 0.83 (0.03) 0.84 (0.02)

Swin 0.88 (0.03) 0.93 (0.03) 0.90 (0.04) 0.89 (0.02) 0.88 (0.04) 0.90 (0.03)

CoAt. 0.90 (0.03) 0.91 (0.04) 0.91 (0.03) 0.91 (0.04) 0.91 (0.04) 0.91 (0.03)

Max. 0.88 (0.02) 0.90 (0.02) 0.87 (0.03) 0.88 (0.02) 0.88 (0.02) 0.88 (0.01)

CNNs 0.878 0.904 0.898 0.895 0.873 0.889

ViT 0.858 0.890 0.873 0.868 0.855 0.869

Hybrid 0.891 0.905 0.890 0.896 0.896 0.895
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This finding holds significant importance in developing a suitable method for medical image recognition. 
We propose a straightforward yet powerful approach to develop a class-conditional ensemble method using 
CNNs and ViT architecture. Our ensemble method takes a different approach compared to the general ensemble 
method. Instead of simply summing up the estimated probabilities of its member networks, our method uses the 
deviation of consistency to incorporate the estimated probability of each architecture conditionally. Specifically, 
we give more weight to the estimated probability of the three translation-change insensitive classes to the ViT 
architecture. We assigned a weight of 0.75 to the translation-change insensitive classes and a weight of 0.25 to 
the rest classes for the ViT architecture. This weighting value is applied in reverse to CNNs. Note that this is only 
to demonstrate the possibilities that our analysis can provide for future studies; we do not utilize a sophisticated 
learning algorithm. Nevertheless, our class-conditional approach performs better than the general ensemble 
method, as shown in Table 4.

Obstruction
Efforts to apply deep learning in medical images have long been made, but there are numerous issues that must 
be resolved before they can be employed in the real world. For example, there is a significant discrepancy between 
the image used for training deep neural networks and images utilized for diagnosis in the real world. Publicly 
accessible datasets often contain images of diseases that are easily recognizable. However, real-world images 
are captured under various conditions, which may result in minimal evidence of the disease. In this section, we 
will be examining how the model’s performance is affected when certain regions of the lesion are intentionally 
occluded from the image, leaving only a small portion of the lesion visible. To this end, we evaluate architectures 
on the ChestX-ray14 dataset while occluding random lesion regions of the image, as shown in Fig. 3b. For this 
experiment, we used bounding box labels provided by the official website (https:// nihcc. app. box. com/v/ Chest 
Xray- NIHCC). Figure 3a indicates the performance degradation according to the ratio of obstruction regions 
for each architecture. The most noticeable finding is that ViT has a low-performance degradation rate compared 
to CNNs and hybrids, which is also consistent with Section ’Robustness’ results. The performance degradation 
in CNNs accelerates as the masking ratio increases. This result is interpreted as being particularly vulnerable 
to obstruction due to the convolution operation that encodes the association between surrounding pixels. As a 
result, it is worthwhile to employ ViT in medical images where only a portion of the lesion is visible or when the 
image is obtained from a different view.

Shape and texture bias
Previous  studies7,8 have found that shape information, rather than texture, is critical for humans to recognize 
images. However, deep learning models, particularly CNNs, distinguish images based on texture rather than 

Table 4.  Performance comparison between general and our class-conditional ensemble methods. Our 
ensemble method performs better than the baseline. The Acc., F1., Spe., Sen., and Pre. represent accuracy, 
F1 score, specificity, sensitivity, and precision, respectively. In this table, we report the absolute value of each 
metric.

Method Acc. AUROC AUPRC F1. Spe. Sen. Pre.

General ensemble 0.743 0.668 0.508 0.320 0.914 0.280 0.502

Class-conditional ensemble 0.744 0.670 0.510 0.329 0.909 0.293 0.503

Figure 3.  Experimental results and examples of the obstruction analysis. (a) As the masking ratio of the 
obstruction increases, the performance degrades while the degradation of ViT is much smaller than others. 
(b) The left-top is the cases where the masking ratios are 15%, 30%, 45%, and 60% in clockwise order on the 
ChestX-ray14 dataset.

https://nihcc.app.box.com/v/ChestXray-NIHCC
https://nihcc.app.box.com/v/ChestXray-NIHCC
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shape. Since the origin of humans and deep neural networks may differ in understanding images, and even 
between deep neural networks, depending on the constitution of the architecture, such as CNNs and ViT, as 
shown in Fig. 4. This difference cannot be conclusively determined in which information should be considered 
more, however, it can be useful to give a foundation for creating an appropriate algorithm. As a result, regarding 
the analysis of shape and texture bias, we have conducted validation tests on CNNs and ViT using medical images. 
We measured the recognition performance specifically on shape-only and texture-only images, as demonstrated 
in Fig. 5. To eliminate texture information, we synthesized the lesion area. Also, we evaluate the performance 
of networks using texture-only images. In this experiment, we report performance degradation when using the 
shape-only images compared to the original clean images. It is noticeable that ViT shows a substantially lower 
performance degradation than CNNs and hybrid architectures, as shown in Table 5. This means that ViT learns 
more shape information because the boundary edge of the lesion region still keeps shape information even when 
the lesion region is veiled. As a result of ViT’s shape-aware property, its performance is better than other architec-
tures. On the other hand, Table 6 shows that CNNs perform better than ViT using only texture images. This result 
indicates that CNNs are able to learn texture information more effectively. To summarize, ViT performs better on 
datasets with prominent shape features, while CNNs perform better on datasets with more texture information.

Discussion and conclusion
In this paper, we investigate the origins of medical image recognition in modern deep architectures such as CNNs, 
ViT, and hybrid. We find their origins using a variety of analyses, including disease classification, robustness, 
translation invariance, obstruction, and shape-texture bias.

In clean images, CNNs outperform ViT when models with similar parameters are used. CNNs have the 
advantage of being highly resilient to the translation invariant property due to their powerful local convolution 
operation. Additionally, the global self-attention operation in ViT enhances its robustness. More specifically, 
as shown in Fig. 6 regarding the robustness and consistency of the translation invariant property, it is worth 
noting that all architectures show similar variance in generic images (i.e.ImageNet), but with medical ones, the 
variances are considerably different depending on the architecture. This is because the unique feature of each 
lesion class considerably differs in the medical images from the generic images. We summarize our analyses 
in Table 7; CNNs perform well on clean images due to their strong local operator and have the advantage of 

Figure 4.  Experimental result of frequency analysis. Each graph depicts the amplitude variation by frequency 
in the CheXpert dataset. CNNs learn higher frequency features, whereas ViT learns lower ones relatively. In 
other words, CNNs use texture information to make predictions rather than shape information, but ViT actively 
utilizes shape information.

Figure 5.  Examples of synthesized images for shape and texture analysis on the ISIC2017 dataset. We remove 
the color values from each lesion location of the original images (first row), leaving only the shape information 
of the lesion boundary (second row). To leave the texture information only, we crop the lesion area of the 
original images and stretch it (third row).
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translation invariance. ViT, on the other hand, achieves better results on robustness and obstruction analysis, as 
well as a higher shape bias akin to humans. Despite the worse performance of ViT compared to CNNs with the 
clean setting, due to insufficient medical images for training a model sufficiently, it is helpful for the real-world 
scenario under severe noise and wild settings.

Table 5.  Experimental results of the shape bias analysis. We present the decrease in performance as �
AUROC↓ ( AUROCclean − AUROCshape ) resulting from the use of shape-only images instead of the original 
ones. We report the average value from the last three rows.

Backbone Melanoma Seborrheic Keratosis Nev Mean

Res. 0.12 (0.01) 0.36 (0.01) 0.18 (0.01) 0.21 (0.01)

Dense. 0.17 (0.02) 0.23 (0.01) 0.13 (0.01) 0.18 (0.01)

DeiT 0.20 (0.01) 0.20 (0.01) 0.16 (0.01) 0.18 (0.00)

Swin 0.19 (0.02) 0.23 (0.01) 0.14 (0.01) 0.19 (0.01)

CoAt. 0.17 (0.02) 0.25 (0.01) 0.15 (0.01) 0.19 (0.01)

Max. 0.21 (0.01) 0.28 (0.01) 0.13 (0.01) 0.20 (0.01)

CNNs 0.143 0.294 0.156 0.196

ViT 0.198 0.211 0.150 0.186

Hybrid 0.188 0.266 0.138 0.196

Table 6.  Experimental results of the texture bias analysis. We show the performance decrease as �AUROC↓
(AUROCclean − AUROCtexture ) resulting from the use of texture-only images instead of the original ones. We 
present the average value in the last three rows.

Backbone Melanoma Seborrheic Keratosis Nev Mean

Res. 0.55 (0.03) 0.15 (0.03) 0.36 (0.03) 0.33 (0.02)

Dense. 0.69 (0.06) 0.19 (0.04) 0.49 (0.03) 0.42 (0.04)

DeiT 0.70 (0.03) 0.14 (0.03) 0.49 (0.03) 0.40 (0.02)

Swin. 0.69 (0.04) 0.10 (0.03) 0.64 (0.03) 0.41 (0.02)

CoAt. 1.11 (0.04) 0.31 (0.07) 0.60 (0.04) 0.60 (0.05)

Max. 0.86 (0.03) 0.26 (0.03) 0.54 (0.03) 0.50 (0.02)

CNNs 0.620 0.171 0.425 0.371

ViT 0.696 0.121 0.563 0.404

Hybrid 0.985 0.285 0.570 0.551

Figure 6.  Experimental comparison between generic (i.e., ImageNet) and medical (i.e., CheXpert) images. We 
compare the variance regarding the robustness and consistency of translation invariance for three architectures 
by class. Medical image data has a higher variance in robustness, while it has a significantly different variance for 
each class in the consistency value.
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Data availability

In this paper, we have used all the publicly available datasets, such as CheXpert, ChestX-ray14, and ISIC2017. 
Each dataset can be downloaded from their public repository (CheXpert. https:// stanf ordml group. github. io/ 
compe titio ns/ chexp ert/; ChestX-ray14. https:// nihcc. app. box. com/v/ Chest Xray- NIHCC; ISIC2017. https:// 
chall enge. isic- archi ve. com/ data/).
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