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Abstract: Predictive modeling is important for assessing and reducing energy consumption and
CO2 emissions of light-duty vehicles (LDVs). However, LDV emission datasets have not been fully
analyzed, and the rich features of the data pose challenges in prediction. This study aims to conduct
a comprehensive analysis of the CO2 emission data for LDVs and investigate key prediction model
characteristics for the data. Vehicle features in the data are analyzed for their correlations and
impact on emissions and fuel consumption. Linear and non-linear models with feature selection are
assessed for accuracy and consistency in prediction. The main behaviors of the predictive models
are analyzed with respect to vehicle data. The results show that the linear models can achieve good
prediction performance comparable to that of nonlinear models and provide superior interpretability
and reliability. The non-linear generalized additive models exhibit enhanced accuracy but display
varying performance with model and parameter choices. The results verify the strong impact of fuel
consumption and powertrain attributes on emissions and their substantial influence on the prediction
models. The paper uncovers crucial relationships between vehicle features and CO2 emissions from
LDVs. These findings provide insights for model and parameter selections for effective and reliable
prediction of vehicle emissions and fuel consumption.

Keywords: CO2 emission; fuel consumption; predictive modeling; linear regression; non-linear;
generalized additive models; sustainability

1. Introduction

Accurately assessing carbon dioxide (CO2) emissions from light-duty vehicles (LDVs)
is a crucial precursor to carbon footprint reduction [1]. Global concerns regarding climate
change have led to increased efforts to mitigate the impacts of greenhouse gas (GHG)
emissions. One of the heavy contributors to GHG emissions is the CO2 released in trans-
portation, particularly from LDVs [2,3]. Thus, emission reduction in operating various
LDVs is a critical issue for sustainability. Effective strategies for emission reduction require
CO2 emissions to be correctly evaluated for LDVs [1].

Predictive modeling is an indispensable and useful tool for assessing GHG emissions
from LDVs [4]. The information on fuel consumption and resulting CO2 emissions has
been measured and calculated for vehicles entering the market and has been made public
by regulations. However, the published emission and energy values may not agree with
actual ones, because they are usually based on measurements in a laboratory setting using
standardized vehicle-operation profiles. Moreover, these measurement-based values cannot
be available for future vehicles in forecasting because they are not produced and tested
yet. Thus, useful prediction methods are necessary to evaluate GHG emission information
based on vehicle specifications.

However, feature-rich vehicle datasets impose challenges in capturing the key re-
lationships within the data for predictive modeling on vehicle GHG emissions and fuel
consumption. As vehicle datasets become large and multifaceted, traditional modeling
approaches may have difficulty identifying relevant patterns and interactions among vari-
ables. This difficulty is particularly severe when predicting CO2 emissions from LDVs, in
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which multiple vehicle characteristics contribute to emissions. Conventional straightfor-
ward prediction models offer simplicity but may struggle to capture subtle but important
non-linear effects of vehicle features. While non-linear methods can capture intricate rela-
tionships with inherent flexibility, they may be susceptible to overfitting and the nonlinear
effect of vehicle characteristics are not easy to interpret.

Hence, a systematic approach is desirable for effective feature selection, dimension-
ality reduction, and proper model selection to address the challenge of predicting CO2
emissions from feature-rich datasets in light-duty vehicles. One area of investigation is
the effectiveness of linear and non-linear modeling techniques, given the complexities
introduced by numerous vehicle features. A comparative evaluation of two well-known
methodologies—linear model selection and non-linear methods—will be useful for examin-
ing the performance and efficiency of extracting meaningful relationships from feature-rich
vehicle datasets. Another area of interest is the selection of features to be included in the
prediction models. Appropriate feature selection would increase prediction efficiency and
prevent overfitting.

The objective of this study is threefold: (1) an investigation of features affecting emis-
sions, (2) an evaluation of linear and non-linear model performance, and (3) an analysis
of prediction model behaviors. The first objective of this research is to perform a com-
prehensive analysis of the data on the CO2 emissions from LDVs. The relation of vehicle
features to CO2 emissions and fuel consumption is investigated, and the relationships
among the features are also examined. Second, this study aims to evaluate the performance
of linear and non-linear models in predicting CO2 emissions from LDVs. A hypothesis test
is conducted to evaluate the statistical significance of model parameters. These prediction
models are compared in terms of accuracy and consistency. Third, this research aims to
analyze the characteristics of the prediction models in diverse aspects. The linear models
augmented by feature selection and regularization techniques are examined for model
complexity and interpretability. Non-linear models, including generalized additive models
(GAMs), are also analyzed for model complexity and interpretability.

The contributions of this study include uncovering vehicle feature relationships, assess-
ing the effectiveness of linear and non-linear models with feature selection, and evaluating
model reliability for CO2 emission prediction for LDVs. This study finds that models
not using fuel consumption information still achieve consistently high accuracy with low
uncertainty. The results indicate that a linear model with a proper subset selection yields
performance close to non-linear models, demonstrating the validity of linear relations
for proper trade-offs between model flexibility and interpretability. The analysis also
reveals the importance of powertrain features in forecasting. The results also indicate
that nonlinear models can capture the intricate relationships among variables, enabling
more accurate estimation of CO2 emissions. These results can guide researchers and pol-
icymakers in choosing appropriate predictive models with optimized feature selection
for emission estimation. These findings can advance informed decision-making in sus-
tainable transportation planning, and support mitigating the environmental impact of
vehicular emissions.

The remainder of this paper is structured as follows. Section 2 offers an overview of
the relevant literature. Section 3 presents dataset characteristics and prediction modeling
approaches. Section 4 analyzes and discusses the empirical results and suggests insights
from the results. Section 5 concludes the paper.

2. Literature Review

Extensive research has been conducted to predict CO2 emissions and related energy
use. These studies have utilized various modeling methods, including linear regression [5,6],
support vector machines [7], and artificial neural networks [8]. Each method brings its
strengths and limitations, depending on each prediction task. However, only a limited
number of studies have focused on the prediction of CO2 emissions from LDVs.
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As the cornerstone of modern science and engineering, data analysis aids decision-
making across industries [9]. Current data analysis can handle complex data and utilizes
advanced statistical methods to enhance accuracy and interpretability [9,10]. Emerging
technologies such as artificial intelligence are pushing the boundaries of data analysis. In
particular, data analysis has provided predictive insights and unlocked the potential of
data to forecast future outcomes.

Among the various approaches, linear regression has been widely used in data analysis
owing to its simplicity, interpretability, and well-established theoretical foundation [11,12].
Linear regression seeks to identify the best-fitting linear relationship between variables to
make predictions [13]. In situations where the comprehension of straightforward relation-
ships is essential, the linear models provide great interpretability [14].

Excluding irrelevant or less important variables from a multiple regression model
is critical for model efficiency and interpretation of results. Numerous studies have in-
corporated feature selection techniques such as forward and backward selection in linear
models [15,16] and have successfully improved model accuracy and removed irrelevant
features. Advancements in regularization techniques, such as lasso [17] and ridge regres-
sion [18], have contributed to reducing overfitting and enhancing model generalization [19].
Thus, linear model selection can provide an effective framework for straightforward under-
standing of the impact of numerous factors on emissions. Feature selection can also aid in
identifying key contributors to emissions and potential areas for reduction.

Non-linear models are often necessary when the key relationships among variables are
much more complex than simple linear relations. These nonlinear models excel at uncov-
ering complex non-linear patterns within the data and interactions among variables [14].
One such efficient non-linear method category includes GAMs. These models have been
used increasingly in various scientific disciplines, including environmental science [20],
epidemiology [21], and economics [22], owing to their ability to reveal intricate patterns
possibly overlooked by linear models. GAMs flexibly provide smooth and continuous
representations of non-linear patterns [23], making them potential candidates for exploring
the complex relationships between vehicle features and CO2 emissions in LDVs to provide
insights often missed by linear models. However, the complexity of GAMs can increase
with choice of smoothing functions, possibly reducing the ease of interpretation and raising
concerns about overfitting.

The balance between prediction accuracy and model interpretability is a critical con-
sideration in predictive modeling [14]. Although advanced algorithms and intricate
models often yield high forecasting accuracy, they may sacrifice the transparency and
comprehensibility of underlying mechanisms. Achieving this trade-off is essential for
CO2 emission prediction, as decision-makers and stakeholders require not only accurate
emission assessments but also a clear understanding of the complex factors in emission
sources. The prediction for LDV emissions is no exception in terms of the required accuracy
and interpretability.

Various datasets exist regarding vehicular emissions. One of the comprehensive and
systematically organized datasets is provided by the Canadian government for LDVs [24].
A few studies have analyzed this dataset using different methods, including polynomial
regression with a single predictor and convolutional neural networks [25], as well as
employing different machine learning methods [26]. Classification methods have been
employed to predict CO2 ratings with high accuracy by incorporating fuel consumption as
a primary feature [27].

It is necessary to develop emission prediction models without fuel consumption data
and explore the effect of diverse vehicle characteristics. Studies on LDV emission data
have used reported fuel consumption values in the dataset and obtained a straightfor-
ward relationship with emissions [27,28]. This indicates the intrinsic link between fuel
consumption and CO2 emissions [28]. However, emission values may be converted from
fuel consumption values. Moreover, exact information on fuel consumption may not al-
ways be readily available, severely constraining future emission predictions. Therefore,
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exploring alternative strategies is desirable for conditions in which fuel consumption data
are not accessible.

Various tools and approaches exist for calculating and monitoring vehicle fuel con-
sumption. In Europe, the New European Driving Cycle (NEDC) utilized standardized
testing methods typically carried out in controlled laboratory settings to assess fuel effi-
ciency in passenger cars [29]. In 2017, the World Harmonized Light Vehicles Test Procedure
(WLTP) for LDVs was introduced to reflect real-world emission conditions [30]. The Vehicle
Energy Consumption Calculation Tool (VECTO) is the European Commission’s simulation
tool for calculating CO2 emissions and fuel consumption for heavy duty vehicles [31].
Japan has also adopted a standard for measuring power sources (fuel or electricity) from
passenger cars under WLTP [32]. In the United States, the Environmental Protection Agency
(EPA) provides standardized test methods and fuel consumption calculations for all new
cars and light trucks [33]. Manufacturers in Canada employ standard five-cycle testing,
involving controlled laboratory testing and analytical procedures, to generate fuel con-
sumption data [34]. Several studies argue that, although inevitable, these standardized
methods have limitations: they cannot reflect every aspect of numerous real-world condi-
tions, and well-prepared standard testing can lead to misleading results [35–37]. Real time
recording and metering are also used to promote reducing fuel consumption [37]. These
measurement-based results, however, cannot be used to forecast future cars because they
have not yet been created and assessed. Thus, appropriate prediction methods are required
to assess GHG emission data based on vehicle specifications.

Although the prediction of vehicular energy use and CO2 emissions has been investi-
gated extensively using various methods, there exist many aspects that still deserve more
attention for better prediction. The trade-off between model flexibility and interpretability
deserves more attention, in particular for best model selection. The selection of vehicle
features also needs further investigation to improve models’ predictive power and inter-
pretability. This study is conducted to address these research gaps in the existing literature.
The contributions of this study include uncovering relationships among vehicle features,
assessing the effectiveness of linear and non-linear models with best feature selection, and
evaluating the reliability of the models for predicting CO2 emissions in LDVs.

3. Data and Methodology

This section describes data analysis and modeling approaches for predicting CO2
emissions from light duty vehicles (LDVs). The characteristics of the dataset used are
provided, highlighting the relevance of key variables for evaluating CO2 emissions and
energy use. This section also explains prediction models selected and compares their
accuracy and efficiency.

3.1. Characteristics of the Data: Vehicle Features, Fuel Consumption, and CO2 Emissions

The dataset in this study contains fuel consumption and CO2 emission values from a
variety of vehicles and their major features (specifications) in the LDV category. The dataset
was collected from the official open data portal of the Canadian Government [24]. The data
span a period of 10 years: from 2014 to 2023. LDVs are common vehicles of weight less
than or equal to 10,000 pounds and used primarily for transporting passengers and cargo.
LDVs include cars, vans, sport utility vehicles (SUVs), and pickup trucks. Therefore, the
dataset can be considered comprehensive. The dataset covers most LDV types available in
the North American market and provides sufficiently large data points for analysis. The
dataset comprises 10,252 emission cases. Please note that the data are for new car models
that are developed and introduced into the market with four- to seven-year intervals.
For example, the same car names in the dataset may mean new car models of five years
apart with different powertrains, specifications, and fuel consumptions; they cannot be
considered as repeated measurements of the same car. Every new car model must receive a
fuel consumption rating determined by mandatory standard testing [29–34].
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The dataset contains diverse vehicle, fuel, and emission information. Table 1 shows
summary statistics of the dataset regarding vehicle features and their corresponding values.
The abbreviations and terms used in the table are explained in the Abbreviations. The
dataset contains vehicle features, such as engine sizes, number of cylinders in engines, and
number of gear ratios in transmissions (gearboxes), as well as fuel consumption data.

Table 1. Summary of the carbon dioxide (CO2) emission values in the dataset.

Make Model Class Transmission Fuel

Min. FORD: 357 Mustang: 27 SUV_Small:1145 AM7: 659 D: 252
Median GMC: 479 Sierra 4WD: 31 SUV_Standard: 767 M6: 1108 E: 413
Max. BMW: 706 F-150 FFV: 44 SUV_Smal: 1145 AS8: 1884 Z: 4652

(Other): 7321 (Other): 10,056 (Other): 5468 (Other): 3505 X: 4934
Class factor factor factor factor factor

Engine Cylinders Consp.City Consp.Hwy Consp.Comb CO2 Emissions

Min. 0.9 3 4 3.9 11 94
Median 3 6 12.1 8.8 27 248
Max. 8.4 16 30.6 20.9 71 608
Class numeric integer numeric numeric numeric numeric

The dataset consists of mixed data types. Categorical variables depict factor data
types, allowing for the classification and comparison of discrete attributes. Numerical
data types are employed to express non-categorical attributes, such as fuel consumption
and number of engine cylinders. This information allows the analysis of the relationships
between different vehicle features and CO2 emissions. CO2 emission values are in grams
per kilometer (g/km).

The dataset includes fuel consumption values. Data on the amount of fuel consump-
tion provide benefits for predicting CO2 emissions but also have limitations. In many
countries, reporting and labeling of vehicle fuel efficiency for new cars have been manda-
tory. The amount of GHG emissions should also be reported. This fuel consumption
information can be used to estimate CO2 emissions. However, this benefit is limited to
existing vehicles on the market. For the prediction for future cars, the fuel consumption
values are not available. The official fuel consumption values are also usually generated
by laboratory testing with standardized operation profiles. Thus, there are situations in
which we need to predict emissions without fuel consumption information and examine
prediction performance.

3.2. Preprocessing of the Data

Given the mixed variable types within the vehicle dataset and the format of the input
data types in prediction models, data preprocessing was necessary. This step was essential
to enhance data quality, resolve inconsistencies, and ensure compatibility with the analytical
methods to be used. The preprocessing steps included variable removal, data cleaning,
data transformation, and normalization.

As the first step of data preprocessing, we excluded Make, Model, and Class from
the considered features in predicting CO2 emissions. They were removed because of their
categorical nature and the potential to introduce a high degree of complexity to the model.
This step was similar to a data transformation phase during data preprocessing. These
attributes involved various levels of categorization, such as different vehicle manufacturers,
models, and classes. While these features can be influential in understanding the context
of the data and the vehicles being analyzed, they might not directly contribute to the
predictive accuracy for CO2 emissions based on vehicle specifications. By excluding them,
the analysis could focus more on general attributes that have a direct and quantifiable
relationship with CO2 emissions, potentially leading to a more streamlined and generalized
predictive model.

As a next step of the preprocessing, a data cleaning process was also implemented to
correct inaccuracies, outliers, and missing values. In this study, the tested dataset does not
have any missing values.
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Data transformation was also performed. In this study, the Gear variable was derived
from the Transmission feature, representing the number of gear ratios (an integer). Then,
the feature Transmission was removed from the dataset. In addition, since the Fuel feature
was qualitative, binary variables were formulated for each fuel type: ethanol as type E,
Diesel as type D, and gasoline as types X and Z.

Subsequently, the data underwent normalization or standardization to harmonize
variables onto a common scale. This allowed for fair comparisons and prevented any
undue influence of variable magnitudes on the analysis.

3.3. Exploratory Analysis of the Data

Before the main statistical modeling or hypothesis testing, preliminary exploratory
data analysis (EDA) was conducted. EDA, including visual exploration of the data, helped
to gain insights, identify patterns, and detect anomalies. It also served as a valuable tool
for guiding feature selection processes.

The first EDA was a correlation analysis. A correlation analysis was conducted among
seven quantitative feature variables: Gear (number of gear ratios in transmissions), Engine
(engine size as the total volume of the combustion cylinders), Cylinder (number of cylinders
in an engine), three Cons.* variables (fuel consumptions under three operating conditions),
and CO2 Emissions. Figure 1 shows the pairwise correlations between different quantitative
feature variables in the dataset. The number in each cell (square) is the linear correlation
coefficient between the two variables, which ranges from −1 to 1.
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As shown in Figure 1, all seven features are positively correlated. The Engine and
Cylinders features have a strong positive correlation (0.92), suggesting that larger engine
sizes are often associated with more cylinders. The correlation coefficient between Engine
and Consp.City (fuel consumption in city) is 0.83, another strong association indicating
larger engines consume more fuel. There is a relatively weak correlation between Gear
and the other variables. CO2 Emissions have moderate to strong positive correlations with
Engine, Cylinders, and Fuel consumptions variables. This means that these attributes are
potentially influential factors affecting CO2 emissions in LDVs, but a single feature may
not be able to fully explain CO2 emissions. Fuel consumption variables have extraordi-
narily strong correlations with CO2 emissions, as expected. As revealed by data analysis
in later sections, fuel consumption and CO2 emissions can be proxies for each other in
prediction models.
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The strong relationship between the engine size and number of cylinders is elaborated
in Figure 2. As indicated in Figure 2a, as the engine size increases, so does the number of
cylinders. This trend reflects that more combustion chambers are required to accommodate
larger total engine displacement (volume). This strong correlation suggests a possibility
to include either the engine size or number of cylinders in a predictive model for CO2
emissions, rather than both, if we would like to reduce model complexity.
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The exploratory analysis shown in Figure 2a also revealed some minor cases with
special vehicle characteristics. One example is an exceptionally large engine size of over
seven liters. There exist two such cases that look like outliers. In fact, these vehicles are
luxury sports car models: Bugatti Chiron with a 16-cylinder 8-liter engine and Dodge Viper
with a 10-cylinder 8.4-liter engine. These outliers representing muscle cars may affect the
results of the statistical analysis, and this effect will be examined in later sections.

Figure 2b reveals the relationship between CO2 emissions and engine size, segregated
by the number of cylinders. There is a general trend upward in each group of cylinders.
This trend suggests that vehicles with larger engine sizes within the same cylinder category
tend to emit more CO2. It is known that a greater number of cylinders typically allows for
a larger total combustion volume, namely a larger engine size. In this way, we can explore
a potential causal relationship between vehicle features and emission values.

Each of the engine sizes and number of cylinders has a consistently strong correlation
with CO2 emissions regardless of time (vehicle model year or emission assessment year).
Figure 3 illustrates the average CO2 emissions over a span of 10 years, from 2014 to 2023.
The emission values are stratified by the engine size and number of cylinders regardless of
time changes. While there is a slight upward trend in emissions over time, the increase is
not substantial. Thus, we may consider excluding the year variable in features selection
since it appears to have a relatively minor impact on the emission pattern.

In the top panel of Figure 3, the engine sizes were categorized into three groups: small
(≤2), medium (2–4), and large (4–8.4). The larger the engine size, the higher the CO2
emissions. The emissions of the medium engine group were approximately 50 g/km higher
than those of the small group. The large engine group had approximately 70 g/km more
emissions than the medium group. The average emissions of the large engine group had
slightly more fluctuations over time.
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over time.

The bottom panel of Figure 3 shows the average CO2 emissions over time based on the
number of cylinders. Eight values in cylinder sizes were used in the dataset. Cylinders 5
and 16 appeared only for part of the entire time frame, reflecting rare cases in the market or
recent introductions (size 16 began in 2018). The 16-cylinder case had the highest emissions,
exceeding 500 g/km, whereas the other cases consistently recorded below 400 g/km. For
fewer than eight cylinders, the average CO2 emissions remained relatively stable over time,
whereas cylinders exceeding 10 exhibited more fluctuations. The trend fluctuation is not
unusual, with only a few data points for the very high number of cylinders. As mentioned
previously, a small number of these data points correspond to a few sports car models.

3.4. Modeling Approaches and Evaluation Metrics

In this study, the choice of an appropriate model hinges on a key trade-off between
model flexibility and interpretability. Linear models offer a high degree of interpretability,
making them easier to comprehend the relationships between variables. However, their
simplicity may limit the ability to capture the complex and non-linear patterns inherent
in data, potentially compromising predictive power. On the other hand, many non-linear
models can capture intricate relationships among data features. However, non-linear
models are prone to overfitting and difficult to interpret.

Some methods provide a middle ground, offering greater flexibility than simple linear
models but still preserving a degree of interpretability. For instance, generalized additive
models (GAMs) can capture complex non-linear relationships in the data using a smoothing
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function. This makes GAMs a valuable tool for understanding intricate patterns. However,
it is worth noting that the complexity of GAMs can increase with the number of features and
the choice of smoothing or segmentation strategies. This added complexity can sometimes
reduce interpretability.

Recognizing the importance of this trade-off, this study employs diverse models,
ranging from linear methods for their interpretability to non-linear methods like GAMs for
their enhanced flexibility. By systematically adjusting model complexities and fine-tuning
parameter settings, this research aims to reveal valuable insights into striking the optimal
balance between predictive accuracy and interpretability for the emission dataset. Through
this exploration, we aim to identify the most suitable modeling strategy for effectively
addressing the core patterns and relationships within the data.

This study also uses feature selection for refined and efficient predictive models. Fea-
ture selection chooses subsets of variables from a larger pool of variables to construct more
efficient and meaningful models. In particular, feature selection is used for linear models
in this study because it allows for the identification of the most influential variables in
predicting CO2 emissions, helps enhance interpretability, and reduces overfitting. In feature
selection, two scenarios are considered, depending on the use of fuel consumption features.
In the first scenario, the fuel consumption-related features (Consp.City, Consp.Hwy, and
Consp.Comb) are included in the prediction model. The second scenario assumes that fuel
consumption data are not available, and the fuel consumption-related features are excluded
from the variables in the prediction model. Furthermore, interaction terms between features
were incorporated into the models; however, their presentation is omitted in this paper due
to the page limit.

To evaluate the statistical significance of model parameters, a hypothesis test is also
conducted to examine the null hypothesis of:

H0: There is no relationship between the predictor variable and response (CO2 emissions); model
coefficient β = 0.

Ha: There is some relationship between the predictor variable and response (CO2 emissions); model
coefficient β ̸= 0.

3.4.1. Linear Regression Methods

The linear models in this study are distinguished by the features included in each
model. Various subset selection methods are employed to fit the linear models to the
emission data. Each linear model selects a different subset of features among 10 vehicle
features to construct its predictive model. The linear models are divided into two categories
depending on the inclusion of fuel consumption information in the selected feature subset;
one uses fuel consumption variables to fit the model, but the other does not. In each
category, more linear models are examined by further feature selection.

In this study, feature selection utilizes several methods, including best subset selection,
validation set approach, and lasso. The best model among a set of models of different sizes
can be determined by choosing the one with the highest adjusted R2 or lowest Bayesian
information criterion (BIC) and Akaike information criterion (AIC). These techniques help
strike a balance between model complexity and prediction performance. The objective is to
avoid overfitting by excluding irrelevant or redundant variables while ensuring that the
model captures essential patterns in the data. EDA and correlation analysis also serve as
a starting point for feature selection in the linear regression model. They verify that only
relevant variables are incorporated in the models.

3.4.2. Non-Linear Methods

In this study, we employ GAMs to capture possible intricate non-linear relationship be-
tween predictor and response variables (CO2 emissions). GAMs offer a general framework
for extending conventional linear models by accommodating non-linear functions, denoted
as fj for variable j. These non-linear functions are systematically computed for each feature,
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and their contributions are then combined to form the overall model. In this study, these
functions are fitted using smoothing splines due to their flexibility. The general form of
GAMs is as follows (note that the mathematical symbols are explained in Abbreviations):

yi = β0 +
p

∑
j=1

f j
(
xij

)
+ ϵi (1)

The selection of the degrees of freedom (df ) in functions of GAMs is a deliberate
process aimed at achieving a balance between model flexibility and avoiding overfitting.
The degrees of freedom can be chosen through an iterative procedure. The models can be
set to a conservative df value and then the df value is adjusted incrementally to observe
changes in model fit and predictive accuracy.

In addition, the smoothing parameter λ for smoothing splines is fine-tuned using
leave-one-out cross-validation (LOOCV). This approach helps identify the optimal value of
λ, which determines the appropriate degrees of freedom. By using LOOCV, the model’s
performance is assessed comprehensively. This ensures that the chosen values for λ and df
result in a GAM that effectively captures essential patterns in the data, avoiding overfitting.

3.4.3. Evaluation Metrics

The accuracy of the models is evaluated by three metrics. They are the mean squared
error (MSE), root mean squared error (RMSE), and coefficient of determination (R2):

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2, (2)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 =

√
MSE, (3)

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (4)

A low MSE and RMSE or high R2 values generally indicate better model performance.
The RMSE effectively represents the average difference between the predicted and observed
CO2 emissions values.

In addition to the three metrics, additional measures are evaluated. To examine the
performance consistency of the model selection, the uncertainty of the evaluation metrics
is also assessed. The uncertainty of evaluation metrics is evaluated using Monte Carlo
cross-validation (MCCV) or repeated random subsampling. MCCV is a straightforward
method that randomly divides the data into two parts (learning and test sets) and repeats
the procedure N times [38]. In this study, 500 different train-test sets are used (N = 500). In
each of the 500 train-test split cases, the data are randomly divided into a 70% training and
30% test set.

The standard deviation (SD) among these different test sets serves as an indicator of
the degree of uncertainty in estimating the aforementioned metrics. The SD of the metrics
for the 500 cases represents the variability in these metrics for each prediction model. This
variability measure can be considered as standard error (SE) [14,39]. These uncertainties
can provide a range of values around the average statistics (MSE, RMSE, and R2), and
suggest the level of confidence on the estimates or variability among them. Low SD values
indicate performance consistency regardless of case changes; high SD values suggest less
performance consistency with changes in cases.
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4. Results, Analysis, and Discussion

This section presents the results obtained from linear and non-linear prediction models.
The empirical results are also analyzed in terms of model performance and characteristics.
The practical implications are also discussed.

The computational resources for this study were not demanding. The learning mod-
els were implemented on a computation server with an Intel Xeon Silver 4210 CPU at
2.20 GHz and 96.0 GB of RAM, utilizing R Studio. The execution times for the models were
not usually long.

4.1. Linear Regression Models

The results of a variety of linear regression models were examined, and the analysis
shows that the linear models predict emission values consistently with high accuracy and
effectiveness as well as provide excellent interpretability and reliability. The results are
summarized in Table 2. These linear regression models, though less flexible than non-
linear counterparts, are able to predict emissions with high accuracy. To evaluate the
statistical significance of model parameters, a hypothesis test is also conducted to examine
the null hypothesis that the coefficient for a particular variable is equal to zero, against
the alternative hypothesis that it is not equal to zero. The coefficients of the models have
low p-values, indicating statistical significance. Thus, we can reject the null hypothesis. In
other words, we assert the presence of a relationship between predictor variable and the
response CO2 emissions, denoted by model coefficient β ̸= 0. A comprehensive analysis of
different linear models was conducted with 500 different train-test splits in MCCV, and the
analysis shows the consistency of the linear models in predicting CO2 emissions against
the varying train-test sets. The SD values are within 3% of the average values. The linear
models also provide high interpretability through linear variable relations such as additivity
and proportionality.

Table 2. Performance comparison of linear models with different subset selection. (Note that the ‘✓’
mark indicates the inclusion of the corresponding predictor variable.).
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ta Base linear
regression ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 25.038

± 2.747
4.996

± 0.274
0.993

± 0.001

Subset selection ✓ ✓ ✓ 27.605
± 2.967

5.247
± 0.282

0.992
± 0.001

W
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um
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io
n

da
ta Base linear

regression ✓ ✓ ✓ ✓ ✓ ✓ ✓ 944.706
± 27.912

30.733
± 0.454

0.742
± 0.007

Best subset
selection ✓ ✓ ✓ ✓ ✓ 944.856

± 27.934
30.735
± 0.454

0.742
± 0.007

Subset selection 1 ✓ ✓ ✓ 950.469
± 27.918

30.826
± 0.453

0.74
± 0.007

Subset selection 2 ✓ ✓ ✓ ✓ 995.688
± 30.863

31.551
± 0.488

0.728
± 0.007

Subset selection 3 ✓ ✓ ✓ ✓ 1080.095
± 31.782

32.861
± 0.484

0.705
± 0.008

Subset selection 4 ✓ ✓ 1014.799
± 31.137

31.852
± 0.488

0.722
± 0.007

Validation set
approach ✓ ✓ ✓ ✓ ✓ ✓ 944.602

± 27.913
30.731
± 0.454

0.742
± 0.007

LASSO ✓ ✓ ✓ ✓ ✓ ✓ 944.669
± 27.914

30.732
± 0.454

0.742
± 0.007
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In general, the models in the first scenario using the fuel consumption data exhibit
superior average performance with lower variability, compared with the models in the
second scenario not using the fuel consumption data. The study explored the predic-
tive power of linear models with the scenarios involving the presence or absence of fuel
consumption data. In scenarios where fuel consumption data are unavailable, the fuel
consumption-related features (Consp.City, Consp.Hwy, and Consp.Comb) are excluded,
indicated by the shaded columns in Table 2. The predictive performance of linear models is
considerably high with the fuel consumption data. For example, with the fuel consumption
data, the R2 values are close to one; without the fuel consumption data, the R2 is still high,
ranging from 0.7 to 0.8.

The strong influence of the fuel consumption data is more noticeable with feature
selection in the model construction. In Table 2, when fuel consumption data are available,
there are two models. The base linear regression model includes all 10 features, and the
model with subset selection relies solely on three features—combined fuel consumption,
and fuel types D and E. The model with subset selection yields minimal difference from the
base linear regression model in terms of average MSE, RMSE, and R2. With superior values
in MSE (approximately 28) and R2 (approximately 0.99) and only marginal differences from
the base model, choosing models with fewer feature sets can enhance interpretability. The
low SD of the metrics indicates less variability in the respective measures.

Note that the strong influence of the fuel consumption data may originate from the
way the emission data are generated in the provided dataset. The CO2 emission values in
the original government data were deduced from the fuel consumption values possibly
through simple conversion (calculation) rather than the direct emission measurements on
vehicles. This is speculated due to the evident relationship between CO2 emissions and
fuel consumption, making it feasible to predict either of these variables with a similar level
of accuracy. This means that only one of the variables is sufficient for prediction models
and the other variable can be derived by simple conversion. Thus, we can also predict fuel
consumption and obtain emissions through conversion.

In the second scenario in which the fuel consumption data are not available, the linear
regression models still predict the emissions quite accurately. These linear models mostly
utilize the powertrain features (first three variables in Table 2) and exclude certain binary
fuel variables. The R2 values are over 0.7, with only general vehicle characteristics such as
powertrain specifications.

In addition, even in the scenario of unavailable fuel consumption data, these linear
methods predict emissions quite consistently. The SD for each of these metrics is calculated
across 500 different train-test splits in MCCV, as shown on the right-hand side of Table 2. In
most cases, the SD values fluctuate around 1% for R2, 1.5% for RMSE and 3% for MSE. These
low SD values in the performance of each prediction model mean consistency regardless of
train-test set changes.

The prediction is also consistent regardless of the linear models with different feature
subsets. The results show quite similar performance metrics, indicated by slight differences
in terms of average MSE, RMSE, and R2 across models. These linear models exhibit only
minimal variations in performance metric averages. RMSE values are around 31 and
R2 values around 0.74. In addition, the SD in each metric does not differ significantly
between models.

As the performance metrics decline, variability tends to increase. For instance, con-
sidering the linear regression model, the RMSE’s SD in the scenario of available fuel
consumption data is approximately 0.27, whereas it reaches 0.45 or 0.48 in that of unavail-
able fuel consumption data. Table 2 shows that in the cases of available fuel consumption
data, 68% of the results in each model fall within a range of ±0.001 (one SD away from the
mean), while in the other cases the range is wider at ±0.007.

The results of the feature selection indicate that the powertrain characteristics are reli-
able features for predicting CO2 emissions. Subset selection 1 includes only the powertrain
features. It is worth noting that by deselecting the fuel-type variables, subset selection 1
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demonstrates only slight differences compared with other linear methods that incorporate
a larger number of variables. This suggests that the impact of fuel-type variables is not
as strong as expected in terms of prediction model performance. The impact of fuel-type
variables needs to be examined with additional data on vehicle characteristics in a separate
future study.

Analysis of the feature selection results indicates that, among the powertrain charac-
teristics, Engine Size is the most influential feature. Subset selections 2–4 were conducted to
explore the relationship between Engine Size and Cylinders. The selections that include the
Engine Size feature tend to yield slightly improved results compared to those that exclude
it. For instance, the outcomes indicate that subset selection 4 achieves an R2 value of
0.72 ± 0.007 and an RMSE value of 31.85 ± 0.488 with just two variables (Gear and Engine
Size). Subset selection 3, which includes four variables but excludes the Engine Size feature,
achieves an R2 value of 0.71 ± 0.008 and RMSE value of 32.86 ± 0.484. A supplementary
performance assessment of subset selection 4 is carried out using 80:20 train-test ratio for
the splits. The results remain consistent with that of the earlier split ratio, yielding an R2

value of 0.72 ± 0.008 and RMSE of 31.85 ± 0.643.
An analysis of the sensitivity to outliers was conducted to assess the robustness of the

selected predictors to subset selection 1. Outliers resembling those depicted in Figure 2 are
omitted, and the result was compared with that of the original model. The p-values for all
coefficients were less than 10−16, indicating statistical significance. Overall, both models
provide statistically significant relationships between the predictors and CO2 emissions,
with similar intercepts and coefficients for most predictors. The detailed results are omitted
due to space constraints in the paper.

In addition, models incorporating interaction terms among features have been ex-
plored. On average, these models show around 1.6% increase in R2 compared to the
models without interaction terms. The details are not described in this section due to their
non-significance and page limit.

The results analysis demonstrates the effectiveness of feature selection of the models
for the dataset. When linear models exhibit comparable performance metrics, opting for
models with fewer variables provides enhanced interpretability without too much sacrific-
ing of predictive accuracy. This streamlined approach not only simplifies the model but
also facilitates a clearer understanding of the underlying relationships between vehicle
attributes and CO2 emissions. By employing subset selection methods, analysts can navi-
gate the challenge of feature-rich datasets, ensuring that the chosen variables contribute
significantly to the model’s predictive power and interpretability. The combination of
linear regression and subset selection methods offers a powerful toolkit for modeling and
understanding relationships within complex datasets.

4.2. Non-Linear Regression Models

In this section, the results of non-linear models will be explored to examine how
they enhance prediction. We will focus on the cases in which fuel consumption data are
unavailable, thereby narrowing our analysis to seven key features for predicting CO2
emissions. Hence, not using the fuel consumption data is reasonable because an almost
perfect linear relationship exists between emissions and fuel consumption, as shown in the
preceding sections. Because of the relationship between the emission and fuel consumption
data, instead of emissions, fuel consumption can be the response variable.

Among various non-linear methods, GAMs are employed to accommodate non-linear
associations between individual vehicle features and the response variable (CO2 emissions).
GAMs compute distinct non-linear functions for each feature and aggregate their contribu-
tions. Following Equation (1), the GAMs used to predict CO2 emissions are as follows:

CO2 Emisisons = β0 + f1(Engine Size) + f2(Gear) + f3(Cylinders) + f4(Fuel Type) + ϵ (5)

Although Engine Size, Gear, and Cylinders are quantitative variables, Fuel Type is
qualitative. In Equation (5), the first three functions f 1 to f 3 are modeled using smoothing
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splines for the quantitative variables. The fourth function f 4 is established by assigning a
distinct constant value for each fuel type.

Figure 4 presents the relationship between each feature and the response (CO2 emis-
sion), as well as the results of fitting the model by Equation (5) for different GAMs. Each
segment in a sub-figure represents the fitted function alongside pointwise standard errors.
All models in Figure 4 utilize a step function to model the fuel type.
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Each model represents its unique configuration with different df for the Engine, Gear,
and Cylinders features. In Figure 4a,b, both GAM-1 and GAM-2 are customized with
pre-determined degrees of freedom for these specific features. GAM-2 has a higher df.
Unlike these two models, GAM-CV in Figure 4c utilizes a LOOCV method to determine an
appropriate df for each function. The specific df settings are listed in Table 3.

Table 3. Average performance comparison of the GAMs with different degrees of freedom across 500
train-test splits.

Gear Engine Cylinders Fuel Type MSE
± SD (g²/km²)

RMSE
± SD (g/km)

R2

± SD

GAM-1 df = 4 df = 4 df = 4 Step function 886.023
± 25.549

29.763
± 0.429

0.758
± 0.007

GAM-2 df = 17 df = 17 df = 19 Step function 827.215
± 25.022

28.758
± 0.435

0.774
± 0.007

GAM-CV df = 3 df = 2 df = 8 Step function 897.082
± 25.907

29.948
± 0.433

0.755
± 0.007
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Across all models in Figure 4, under the condition that all the other variables are held
constant, each function reveals clear trends in CO2 emissions by each variable. The f 1
(Engine Size) panel shows a significant increase in emissions with larger engines, attributed
to the fact that larger engines typically burn more fuel. In the f 2 (Gear) panel, emissions
exhibit fluctuations but generally rise with higher gear values, indicating that higher gear
number transmissions are associated with cars of more fuel consumption. The f 3 (Cylinders)
panel illustrates emissions increasing with more cylinders due to the greater capacity for
combustion in engines with more cylinders. In the fuel type panel, CO2 emissions are
lowest for ethanol (fuel type E) and high for the other types (diesel as fuel types D and
gasoline as fuel types X and Z), reflecting differences in the energy density and combustion
characteristics of the fuel types as well as different life cycle emissions [40].

Unlike the other models, GAM-2 offers a high degree of freedom with 17 degrees
for Gear and Engine Size and 19 for Cylinders, resulting in more intricate and fluctuating
functions as depicted in Figure 4b. In the engine function, emissions generally rise with
larger engine sizes, peaking at size 7. The decline at Engine Size 8 may not be statistically
meaningful; there are only a few such data points. The high df and limited number of
data points may make the analysis biased, resulting in an inaccurate trend. In such a small
number of cases, some unique vehicle characteristics may affect emission values, including
large engines on relatively lightweight vehicles such as sport cars. As explained in Section 2,
these are luxury muscle cars that may not seriously concern fuel consumption.

For both GAM-1 and GAM-2, the gear function panel shows a quite similar trend in
CO2 emissions. The emissions increase up to gear size 4, followed by a decrease up to
size 7, and then an increase. These patterns likely stem from various factors, including
transmission efficiency, engine power output, and emission control technologies. The cases
in which the number of gears is zero and one correspond to the vehicles with continuously
variable transmissions (CVT) or only a few special vehicles with exceedingly small engines.
They are abbreviated as AV0 and AV1 in the dataset. Some combinations of a CVT and
engine can increase fuel efficiency. It is reasonable that the emissions decrease as the
number of gears increases from four to six or eight. The transmissions in vehicles are
usually more efficient with more available gear ratios. The higher numbers may also mean
more recent and thus more fuel-efficient vehicles.

However, this trend of CO2 emissions with gear variable is worth more detailed atten-
tion. The increasing fuel efficiency with higher gear variable values does not seem always
to be the case. The emission increase beyond number 7 may reflect several possibilities. In
some cases, the transmissions with more available gear ratios may have counter-effects
for overall fuel efficiency of a vehicle. A high number in available gear ratios may mean a
large thus less fuel-efficient car. Overfitting problems may exist. In fact, in this dataset, this
non-linear behavior is a consequence of the combination of a high degree of freedom of the
GAMs and limited data points beyond variable value 7. The two data points correspond to
fuel-guzzling sports cars as mentioned in Section 3.1. These outliers distorted the non-linear
trend in GAM-1 and GAM-2.

Overall, GAM-2 excels in capturing intricate non-linear connections between each
feature and emission responses, surpassing the capabilities of GAM-1. This enhanced
flexibility may come at the cost of overfitting when applied to novel, unseen data.

To address this concern, GAM-CV is explored. Figure 4c illustrates the results of
GAM-CV. This model employs a cross-validation approach to ascertain the optimal degrees
of freedom for each function, setting them at 3, 2, and 8 for gear, engine, and cylinder
variables, respectively. Although this cross-validation procedure slightly reduces predictive
performance, it enhances the model’s generalization ability. Thus, GAM-CV ensures that
the model is not overly tailored to the training data, allowing it to perform reliably and
make accurate predictions on new, unseen data.

Table 3 presents the average performance metrics of the models depicted in Figure 4
over the 500 samples of train-test splits in MCCV. It shows that in 68% of the outcomes,
GAM-2 exhibits slightly better performance, as indicated by its lower RMSE values, ap-
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proximately 28.8 g/km (±0.435), and higher R2 values, approximately 0.77. On the other
hand, GAM-CV shows a minor reduction in predictive performance with R2 values of
roughly 0.76 (±0.007) and MSE value of approximately 897 (±25.9). However, it offers the
advantage of preventing the model from overfitting to the training data.

4.3. Linear versus Non-Linear Models: Performance Variations and Insights

This section compares the results obtained from linear and non-linear methods for
predicting CO2 emissions and evaluates the variations in models’ performance.

Both approaches have distinct characteristics that affect their predictive performance.
Linear regression offers interpretability and simplicity, making it suitable for understanding
the direct relationships between variables. However, the nonlinear method can capture
complex relations within the data, accommodating non-linear patterns.

Figure 5 compares the performances of the various methods used to predict CO2
emissions without the fuel consumption data. The evaluation of these methods is based on
the mean value of two performance metrics: RMSE and R2.
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In Figure 5, linear models exhibit slightly inferior performance compared to non-linear
methods. The linear models achieve RMSE values of approximately 31 g/km and R2 values
around 0.73. On the other hand, non-linear methods display higher R2 values: greater by
two to seven percentage points. They also achieve lower RMSE values, averaging 3 g/km
less compared with the linear approaches.

Among the non-linear methods, both GAM-1 and GAM-CV demonstrate substantial
effectiveness, with only marginal differences in their performance. Both models attain
an R2 value of approximately 0.76, with GAM-CV excelling in enhancing the model’s
generalization ability through a lower degree of freedom setting. Despite their effectiveness,
GAMs may present challenges in terms of interpretability. In contrast, a linear model
LR-SE1 (linear regression with subset selection 1) provides greater interpretability and
demonstrates a performance that is not significantly different from those of GAMs.

Figure 6 illustrates the consistency of the models’ performance over various (500) train-
test splits in MCCV. The spreads of the performance over train-test splits are shown using
box plots and histograms. Figure 6 compares three representative models: LR, LR-SE4,
and GAM-CV. The base linear regression model LR (utilizing all features) demonstrates
a moderate predictive ability with an RMSE of 30.7 ± 0.454 and an R2 of 0.74 ± 0.007.
LR-SE4 (linear regression with subset selection 4) comprises only two features (gear and
engine) and offers a more straightforward interpretation. In contrast, GAM-CV involves
four features with non-linear functions and offers slightly higher performance compared to
the other two models. However, this comes at a cost of added complexity in interpretation,
making it considerably more complex to interpret.
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While from a purely statistical point of view the difference between GAM-CV and
LR-SE4 is significant, in a practical sense it remains relatively small. A paired t-test at
the 95% confidence level indicates that the difference in RMSE and R2 between GAM-CV
and LR-SE4 is statistically significant. This statistical significance is obvious, because one
is a linear model and the other a non-linear one. However, in practice, this difference
is relatively negligible: approximately 2 g/km and three percentage point differences in
RMSE and R2, respectively.

For this dataset, linear models with subset selection yield reasonably superior results
with interpretability. We can see that linear models offer a high degree of interpretability,
making it easier to comprehend the relationships among variables. However, their simplic-
ity may limit their ability to capture the complex and non-linear patterns inherent in some
datasets, potentially compromising predictive power. On the other hand, non-linear meth-
ods like GAMs provide a greater level of flexibility than linear models, and still preserve a
degree of interpretability. However, the complexity of GAMs can increase with the number
of features and the choice of smoothing or segmentation strategies. This added complexity
can sometimes reduce the ease of interpretation and raise concerns about overfitting. The
decision between linear and non-linear methods necessitates a thoughtful consideration of
these tradeoffs, including the risk of overfitting, to align with specific modeling objectives
and the characteristics of the dataset.
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4.4. Insights for Decision Making and Practice

The results of this study can provide significant implications in practice for predicting
CO2 emissions and fuel consumption as well as sustainable planning in design, manufac-
turing, supply chains, etc. The study’s findings can offer valuable guidance for researchers,
policymakers, and automotive manufacturers in their efforts to address sustainability
challenges and reduce the carbon footprints of LDVs.

The results suggest that linear models can be used successfully in many practical
situations such as forecasting for an industry or the transportation sector. The analysis
showed that, despite their simplicity, linear models could predict CO2 emissions (or fuel
consumption) with a comparable accuracy to that of nonlinear models. The linear models
for emission prediction are also easy to implement in practice. They can be estimated using
simple calculations and ordinary software such as spreadsheet software. The effects of the
vehicle parameters in the linear models are also easy to interpret owing to their additivity
and proportionality. These linear models are intuitive to understand and recognize the
effect of each variable for practitioners. Thus, unless extremely high accuracy is necessary,
linear models could be utilized easily and widely with confidence for many applications.

Successful prediction using parsimonious feature selection suggests the effectiveness
of using only important vehicle variables for emission and energy use prediction in prac-
tice. The results showed that models with fewer variables could enhance interpretability
without significantly compromising accuracy. For example, a linear model incorporating
only Gear and Engine Size features produced satisfactory results while maintaining high
interpretability. Applying feature selection intuitively using variable correlation could be
an easy but effective approach in practice.

The results imply that the prediction models can be used for forecasting the emissions
of future vehicles that do not have fuel consumption information yet. The results showed
that the vehicle emissions can be estimated quite accurately using only vehicle specifications
but fuel consumption values. The feature selection analysis emphasizes that, within
powertrain characteristics, engine size is the most influential factor affecting CO2 emissions.
These findings mean that the survey or market trends on vehicle specifications could be
used effectively to forecast emission trends in the future. These overall forecasts can be
utilized for the analysis of the vehicle market and transportation sector. These forecasts
will also be useful for decision-makers in formulating policies and regulations for the
future. Meaningful forecasts can help prepare effective strategies for emission reduction,
contributing to an environmentally friendly transportation ecosystem.

The analysis of the model performance suggests enormous potential for improved
accuracy with additional feature data and modified prediction models. Our research high-
lights the significance of tailoring predictive models based on the specific attributes in the
dataset. Feature selection and regularization techniques play pivotal roles in augmenting
the predictive capabilities of the prediction models. For example, the results indicated
the importance of powertrain features in the prediction. By carefully selecting relevant
features, practitioners can enhance prediction accuracy while maintaining model simplicity
and interpretability. This accuracy can be enhanced further by augmenting other vehicle
features such as vehicle weight and operational patterns. Moreover, a practitioner may
combine such new data with the dataset of this study to improve forecasting.

With the new feature data, decision-makers can adopt one of the prediction models
presented in this study. When faced with different data scenarios, decision-makers can
choose appropriate modeling techniques to optimize the predictive performance. For
example, the GAMs in this study can be used with additional features to improve accuracy.
Feature selection techniques can still be used to examine for the best choice among the
linear and non-linear prediction models.

The results also suggest that in practice highly non-linear models should be used with
caution and the degrees of freedom should increase sparingly. In particular, a model with a
high degree of freedom and limited data points can distort the analysis, as demonstrated by
the high number of gear ratios in sports cars. More gear steps in transmissions are typically
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beneficial for reduced CO2 emissions, but this was not the case for sports cars. Therefore,
nonlinear models could be prone to being biased. The limited data points should also be
examined owing to their unique characteristics.

The findings also demonstrate that the choice between linear and nonlinear models
depends on the trade-off between interpretability and complexity as well as the specific
prediction task. In practice, linear models are suitable for many applications, unless
highly precise predictions require the flexibility of non-linear approaches. Linear models,
especially those with subset selection, deliver reasonable results with high interpretability.
However, their simplicity may limit their ability to capture intricate non-linear patterns. In
contrast, nonlinear models such as GAMs offer greater flexibility but may pose challenges
in interpretation owing to their increased complexity.

The prediction methods used in this study can be applied to a variety of areas. For
example, forecasting can be used for roughly estimating CO2 emissions during the initial
design stages of vehicle development. Optimizing the engine design of a car can contribute
to fuel consumption and CO2 emission reduction. The prediction methods can also play a
key role in estimating the GHG emissions in the value chain of any organization. Accurate
prediction is necessary for emission measurement and reporting direct Scope 1 and indirect
Scope 3 (upstream and downstream in a supply chain) emissions. Accurate forecasting
can also provide key data for planning effective emission reduction. These efforts can help
governments and manufacturers to satisfy the total emission limits set by the increasingly
stringent regulations worldwide.

5. Summary and Conclusions

This study conducted comprehensive analysis on the data of the CO2 emissions and
fuel consumption from light-duty vehicles (LDVs) and investigated important charac-
teristics of linear and non-linear prediction models. First, this study characterized the
LDVs’ emission data and identified the key relations among vehicle features and emissions.
Second, the study evaluated the performance of linear and non-linear models in forecasting
CO2 emissions from LDVs. Prediction accuracy and consistency were compared. Third,
this research analyzed the characteristics of these prediction models. Complexity and
interpretability were assessed for the models with feature selection.

The exploratory analysis of the LDV emission data revealed several distinctive char-
acteristics. First, the analysis showed various levels of correlation between the emission
value and each vehicle attribute. This suggests that the emission can be forecasted by a
proper combination of the vehicle characteristics and appropriate feature selection. The
analysis also showed strong correlations among some vehicle attributes. This also implies
the possibility of effective feature selection by selecting only some variables. Second, the
data analysis isolated a few data points with special vehicle characteristics. The existence
of these outliers suggests that highly nonlinear models may suffer from overfitting. These
implications from the exploratory data analysis have been used in building prediction
models, and the results and model performance have demonstrated the suitability of
these approaches.

The analysis showed that linear models predicted fuel consumption or emission values
accurately and effectively with advantages in interpretability and reliability. By applying
subset selection methods, linear models with fewer variables were able to enhance inter-
pretability with minimal reduction in predictive accuracy. The feature selection analysis
revealed the different impact of vehicle features in predicting CO2 emission. Among pow-
ertrain features, engine size was proven the most influential in prediction models. On the
contrary, the impact of the fuel-type feature was found to be relatively weak. The results
also verified that a linear model with only gear and engine size could make satisfactory pre-
dictions (R2 above 0.7) with sustained interpretability. The findings highlight the potential
for accurate emission estimation using only vehicle specifications. This opens the possi-
bility for forecasting emissions of future vehicles when information on fuel consumption
is unavailable.
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The analysis of nonlinear models (GAMs) revealed their effectiveness, but also showed
the possibility of large performance variations depending on models and parameter set-
tings. The results demonstrated that GAMs were able to accommodate non-linear variable
associations and improve accuracy without fuel consumption data. Despite these strengths,
straightforward highly nonlinear GAMs exhibited the risk of overfitting with a high degree
of freedom and limited data points, as seen in the case of sports cars. A more controlled
GAM-CV enhanced generalization ability through the optimal degree of freedom for more
reliable predictions on new data. The results from GAMs provide insights that nonlin-
ear models are subtle in CO2 emission prediction and should be utilized with caution
and optimization.

This paper makes several contributions in theory and for practice. The results of
dataset analysis reveal the key relationships between vehicle features in predicting CO2
emissions and fuel consumption of LDVs. The prediction results demonstrate that both
linear and non-linear models are effective in predicting LDV CO2 emissions and they
are also reliable. This study shows that models lacking fuel consumption information
still achieve consistently high accuracy with low uncertainty. In addition, the results
validate that a linear model with appropriate subset selection can perform comparably
to non-linear GAMs. These findings can help strike a clear trade-off between model
flexibility and interpretability. In addition, the models and results reveal that the powertrain
features are crucial in forecasting CO2 emissions. The feature relationships revealed in
this research can aid researchers and policymakers in selecting suitable predictive models
for improving emission estimation. This facilitates more informed decision-making in
sustainable transportation planning and advances efforts to mitigate the environmental
impact of vehicular emissions.

The limitations of this study stem from its focus on new LDVs within a specific
timeframe of the last 10 years (2014–2023). The dataset mainly covers various LDV types
available in North America and does not include electric vehicles. Additionally, the
study acknowledges a limitation regarding the testing coverage, as not all vehicle types
underwent testing from the dataset. For instance, SUVs and passenger vans with a gross
vehicle weight rating of more than 10,000 pounds are not included in the dataset. These
large vehicles may have different fuel consumption and emission characteristics, and they
deserve further study.

In a future study, the research can be extended to several directions, including further
exploration of advanced modeling techniques and the integration of more vehicle charac-
teristics. Data from different operating conditions and locations can also be studied in the
future. Unlike the standard fuel consumption testing, actual fuel consumption metering
would provide new emission characteristics and associated prediction models. This can
offer opportunities to refine and enhance predictive accuracy. This potential could accel-
erate the efforts to create a more sustainable and environmentally responsible future in
transportation. This aligns with global efforts to combat climate change and reduce energy
use and carbon emissions.
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Abbreviations

Symbols in the dataset

Transmission

A Automatic
M Manual
AM Automated manual
AS Automatic with select shift
AV Continuously variable
3–10 Number of gears

Fuel
type

N Natural gas
D Diesel
E Ethanol (E85)
X Regular gasoline
Z Premium gasoline

Feature names
Make Vehicle manufacturer
Class Vehicle classification based on their utility, capacity, and weight
CO2 emissions in grams per km driven (g/km)
Consp.City Urban fuel consumption (L/100 km)
Consp.Comb Combined fuel consumption (55% city, 45% highway)(L/100 km)
Consp.Hwy Highway fuel consumption (L/100 km)
Cylinders Cylinder count
Engine Engine displacement (measured in liters)
Fuel Fuel type
Model Vehicle model
Transmission Transmission configuration and gear boxes

Acronyms
AIC Akaike information criterion
BIC Bayesian information criterion
CVT Continuously variable transmissions
EDA Exploratory data analysis
EPA Environmental Protection Agency
GAMs Generalized additive models
GAM-CV Generalized additive model using cross-validation
LDVs Light-duty vehicles
LOOCV Leave-one-out cross-validation
LR Linear regression
LR-SE Linear regression with subset selection
MCCV Monte Carlo cross-validation
MSE Mean squared error (g²/km² of CO2 emissions)
NEDC New European Driving Cycle
R2 Coefficient of determination
RMSE Root mean squared error (g/km of CO2 emissions)
SD Standard deviation
SE Standard error
SUVs Sport utility vehicles
VECTO Vehicle Energy Consumption Calculation Tool
WLTP World Harmonized Light Vehicles Test Procedure

Mathematical Symbols
n Number of observations
xij ith input value of feature j
yi True outcome values for CO2 emission
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ŷi Prediction for CO2 emission based on the ith variables value (i = 1, . . ., n)
y Sample mean (= 1

n ∑n
i=1 yi)

m Predictor subset size
p Number of features
β0 Model intercept
ϵ Random error term
fj Function for each feature j, (j = 1, . . ., p)
df Degrees of freedom
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