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Abstract: Ternary Content-Addressable Memory (TCAM) is used for storing the flow tables in
software-defined networking (SDN)-based OpenFlow switches. However, the TCAM can store only a
certain number of flow tables (8000). Moreover, when the switch flow tables need to be updated due
to the link failure in the SDN, further updates may be lost due to the flow tables limit of the TCAM
space. Hence, to resolve this issue, other memories need to be used in conjunction with TCAM to
enhance the memory operations of TCAM. When considering which flash memory technology is to
be used in conjunction with TCAM, we need to balance several factors to ensure optimal performance,
speed, endurance, reliability, integration complexity, and cost-effectiveness. Hence, it leads to a
multi-criteria decision-making problem regarding the selection of other memory technologies such
as 3D XPoint, Magnetoresistive RAM, Resistive RAM, and Ferroelectric RAM. In this paper, we use
the analytical network process (ANP) method to select the suitable technology in conjunction with
TCAM, considering the features of the memory technologies for Software-Defined Internet-of-Things
(SD-IoT). We provide a comprehensive numerical model leveraging the ANP to rank the memory
technologies regarding their weights. The highest weights identify the most suitable technology for
TCAM. We perform simulations to show the effectiveness of the mathematical model utilizing the
ANP. The results show that the suggested methodology reduces the recovery delay, improves the
packets received ratio (PRR), decreases the jitter, and increases the throughput.

Keywords: TCAM; SDN; ANP; NAND; memory management

1. Introduction

TCAM (Ternary Content-Addressable Memory) is a type of memory used in digital
circuits and network devices for high-speed data searches. TCAM is designed to perform
content-based addressing, allowing for rapid and parallel searching of data. TCAM cells
are made up of three states, often represented as “0”, “1”, and “X” (don’t care). Unlike
traditional binary memories where each cell can only store a “0” or a “1”, TCAM cells
can also hold the “X” value, which signifies that the corresponding bit does not matter
for the search operation. Each TCAM cell typically consists of multiple storage elements,
comparators, and associated control circuitry to facilitate content-based searches. When
a search operation is performed, the TCAM compares the input search key to the stored
values in parallel across all cells. The “X” values in TCAM cells allow for more flexible
matching criteria, making it well-suited for applications where wildcard or range-based
searches are common, such as in network routing and firewall rules. TCAM is commonly
used in networking devices like routers and switches to quickly identify and route pack-
ets based on their content. However, TCAM is relatively expensive and power-hungry
compared to traditional binary memories like SRAM (Static Random-Access Memory) or
DRAM (Dynamic Random-Access Memory), which limits its use to applications where
high-speed content-based searches are essential [1,2].
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TCAM is used in software-defined networking (SDN) OpenFlow switches for the stor-
age of flow tables. In each flow table, flow entries are stored, which determines the actions
to be taken upon the incoming packets to the switches. The literature [3,4] suggests that
there can be up to 8000 flow tables due to TCAM space limitations. Moreover, if the number
of flow tables required increases more than the specified number, then alternative memory
technologies such as NAND, Optane memory, MRAM (Magnetoresistive RAM), ReRAM
(Resistive RAM), and FRAM (Ferroelectric RAM) can be combined with TCAM [5,6].

Optimizing TCAM using a hybrid mechanism with other flash memory technologies
requires careful consideration of the specific requirements and characteristics of both TCAM
and the chosen flash memory. When considering which flash memory technology to use
in conjunction with TCAM, you will need to balance several factors to ensure optimal
performance, speed, endurance, and cost-effectiveness. While there is not a one-size-fits-all
answer, certain non-volatile memory technologies might be more suitable for hybridization
with TCAM. Keep in mind that the availability and suitability of these technologies can
change over time due to advancements in the field. According to the literature, here are a
few options to consider: (1) 3D XPoint is a relatively new non-volatile memory technology
developed by Intel and Micron. It offers higher performance and endurance compared to
traditional NAND flash while maintaining lower latency. 3D XPoint memory could be used
as a cache or secondary storage layer to accelerate TCAM access; (2) MRAM is a non-volatile
memory technology that uses magnetic elements to store data. It has fast read and write
speeds, low latency, and high endurance. MRAM could be integrated as a hybrid storage
layer for TCAM, providing both speed and durability; (3) ReRAM is another emerging
non-volatile memory technology that offers fast read and write speeds and relatively high
endurance. It can be a candidate for use alongside TCAM to enhance performance and
endurance. In addition to it, (4) FRAM is a non-volatile memory technology that combines
the best attributes of RAM (fast read and write speeds) with non-volatile storage. While
it may not offer the same capacity as other flash memory types, it can provide fast and
reliable storage for frequently accessed TCAM data [5,6].

Furthermore, when selecting a flash memory technology to use in conjunction with
TCAM, consider factors such as speed: choose a technology with low latency and fast
read and write speeds to complement TCAM’s high-speed search operations. In addition
to speed, look for memory with high endurance, as TCAM operations involve frequent
write operations. Moreover, prioritize memory technologies with strong data retention and
reliability characteristics. Further, evaluate the cost-effectiveness of the chosen memory
technology for your specific use case. Finally, consider the feasibility and complexity of
integrating the chosen memory technology into your TCAM architecture. Hence, it is
important to collaborate with experts in both TCAM design and the chosen flash memory
technology to ensure compatibility, performance, and longevity in your hybrid TCAM
solution. Since technology landscapes evolve, it is advisable to consult the latest industry
developments and research before making a decision.

Our previous works [7,8] discuss flash memory technologies, enumerate the benefits
of flash storage devices and their usage in various markets such as mobile devices, IoT,
laptop computers, etc., and discuss the recovery techniques of flash memory with the flash
translation layer. Moreover, the works presented in [8] illustrate an effective strategy of
recovery for flash memory utilizing shadow paging. Various metrics are evaluated and
compared with other schemes considering their memory type.

High-speed searching and accessing of data are primary tasks of any device to have a
faster look-up operation. But it becomes critical for the operation to search more information
at different instants with far-fetched throughput for various network algorithms, especially
in SDN OpenFlow switches with TCAM limitations for the OpenFlow tables. The OpenFlow
tables in switches are stored in TCAM. The works in [9–13] show different schemes for
the efficiency and fast searching of TCAM. Moreover, they also show the cost and energy
efficiency of the TCAM employing different strategies for efficiency of the TCAM.
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The authors in [14,15] focused on the SDN problems regarding the location selection
for controllers in SD-IoT or on the controller’s selection. However, none of these works
consider TCAM enhancement in combination with other memory technologies. To the best
of our knowledge, these are pioneering works regarding increasing the effectiveness of
TCAM through a selection of state-of-the-art memory technologies in conjunction with
TCAM for SDN. The main contributions of our work are as follows.

• First, we identify the state-of-the-art and compatible memory technologies with TCAM
along with their features.

• We formulate the problem for TCAM alternative technologies selection and ranking
with ANP.

• Further, we make a mathematical model and pictorial diagram of TCAM technologies
and their features leveraging ANP.

• Then, we apply a step-by-step method utilizing the ANP mathematical model to rank
the memory technologies.

• Finally, we compare the results from the switches with memory technology and rank
our proposed ANP model higher than another mathematical model, the AHP [16].

• To validate the results’ effectiveness, we evaluate several metrics such as recovery
delay, jitter, packets received ratio, and throughput, and compare them with the
AHP model.

The rest of our paper is organized as follows. In Section 2, we formulate the problem
of memory technologies selection for TCAM with ANP. In Section 3, the detailed mathe-
matical model and step-by-step process of ANP with respect to the TCAM technologies
are explained. Experiments are conducted and results are discussed in Section 4. Section 5
concludes the paper.

2. Problem Formulation

There are several memory technologies with distinct criteria and features. Hence,
in this paper, we solve the problem of memory technology selection for TCAM with an
analytical network process-based decision-making scheme. We represent the problem with
a mathematical model and pictorial diagram, leveraging the ANP model. Then we rank
the memory technologies according to their weights returned by the ANP model. The
memory technologies and their characteristics as well as analysis are shown in Table 1
and the features associated with each one as well as the explanation of features regarding
these memory technologies are denoted in Table 2. We have evaluated and surveyed
the literature [5,6], and [9–15] the memory technologies and their features for TCAM
improvement. Figure 1 shows the ANP alternatives and features.

Table 1. Alternatives (memory technologies for TCAM).

Serial# Name Terminology Analysis of Memory Technology

1 NAND MT1
Non-volatile, a choice for portable devices, a cache layer
for TCAM access

2 Optane MT2

Non-volatile, higher performance and durability
compared with traditional NAND flash, lower in latency,
cache layer to accelerate TCAM access

3 MRAM MT3
Non-volatile, fast read/write speeds, low latency, high
endurance, a hybrid storage layer for TCAM

5 FRAM MT5

Non-volatile that combines the finest qualities of RAM,
while it may not offer the same ability as other types of
flash memory, it can provide fast and consistent storage
for frequently accessed data of TCAM
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Table 2. Criteria/Features of each memory technology.

Serial# Name Explanation Terminology

1 Speed

Analysis of the memory technologies with low
latency, read and write speeds comparison to
balance TCAM’s high-speed operations while
searching and inserting flow operations in the
network (SDN) switches.

FR1

2 Endurance

Comparison of memory technologies with high
endurance. In SDN switches, TCAM operations
required frequent write operations when there was a
flow modification required.

FR2

3 Reliability Enlisting memory technologies with robust data
retention as well as reliability features. FR3

4 Cost

Evaluate the cost-effectiveness of the memory
technologies for your use cases in SDN switches
while there is link failure and insertion of flow
operations in SDN switches.

FR4

5 Integration Complexity
Evaluation of feasibility as well as complexity of
integrating the memory technology into TCAM
architecture of SDN switches.

FR5
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3. ANP Mathematical Model for Ranking the TCAM Alternatives

Herein, we model the problem of memory technology ranking and selection with ANP.
The features of memory technologies are shown in Equation (1), while the technologies to
be combined with TCAM are denoted in Equation (2). The details of these are given below.

FR = {FR1, FR2, FR3, . . . , FRN} (1)

MT = {MT1, MT2, MT3, . . . , MTN} (2)

Alternative Memory Technologies:
NAND: NAND is the non-volatile memory, i.e., it can hold the information even

without the connectivity of power. The performance of NAND is comparatively lower
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than the 3D Xpoint. Hence, the ability of it to retain data without power makes it a great
alternative for external as well as internal portable devices. Moreover, it can be utilized as a
cache layer with TCAM access.

3D XPoint (Optane Memory):

3D XPoint is a relatively new non-volatile memory technology developed by Intel and
Micron. It offers higher performance and endurance compared to traditional NAND flash
while maintaining lower latency. 3D XPoint memory could be used as a cache or secondary
storage layer to accelerate TCAM access.

MRAM (Magnetoresistive RAM):

MRAM is a non-volatile memory technology that uses magnetic elements to store
data. It has fast read and write speeds, low latency, and high endurance. MRAM could be
integrated as a hybrid storage layer for TCAM, providing both speed and durability.

ReRAM (Resistive RAM):

ReRAM is another emerging non-volatile memory technology that offers fast read and
write speeds and relatively high endurance. It can be a candidate for use alongside TCAM
to enhance performance and endurance.

FRAM (Ferroelectric RAM):

FRAM is a non-volatile memory technology that combines the best attributes of RAM
(fast read and write speeds) with non-volatile storage. While it may not offer the same
capacity as other flash memory types, it can provide fast and reliable storage for frequently
accessed TCAM data.

When selecting a flash memory technology to use in conjunction with TCAM, consider
these factors:

Criteria for choosing a suitable memory technology:

Speed: Choose technology with low latency and fast read and write speeds to comple-
ment TCAM’s high-speed search operations.

Endurance: Look for memory with high endurance, as TCAM operations involve
frequent write operations.

Reliability: Prioritize memory technologies with strong data retention and reliability
characteristics.

Cost: Evaluate the cost-effectiveness of the chosen memory technology for your
specific use case.

Integration Complexity: Consider the feasibility and complexity of integrating the
chosen memory technology into your TCAM architecture.

It is important to collaborate with experts in both TCAM design and the chosen flash
memory technology to ensure compatibility, performance, and longevity in your hybrid
TCAM solution. Since technology landscapes evolve, it is advisable to consult the latest
industry developments and research before making a decision. The overall step-by-step
illustration of the ANP model is shown in Figure 2. First of all, the memory technologies
and their features are shown in the top left boxes. Then below these two boxes is a pairwise
comparison box which shows that the alternatives (memory technologies as indicated in
Table 1) are compared in a matrix form with respect to their features (shown in Table 2).
The box with a consistency ratio (CR) is shown in Figure 2, which is for the purpose of
computation of the consistency among the pairwise comparison values. In simple words,
while comparing the memory technologies regarding their features, we should assign
accurate values. These values are shown in upcoming paragraphs with equations (i.e., CR).
From the Consistency Index, the Consistency Index (CI) values are calculated and if these
values are less than or equal to 0.1, then the judgments made in the comparison matrix are
regarded as precise and accurate. If the judgments are not accurate, then they are calculated.
Figure 2 shows that the next two steps are the calculations of the unweighted and weighted
supermatrices. These matrices show the final weights for the memory technologies. A
memory technology with a high weight will be considered as the most favorable to be used
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with TCAM. More details for these matrices are given in the next subsections. Herein, we
provide a brief overview of the steps in the ANP. In the next subsections, more explanation
is provided with the support of expressions and equations.
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3.1. TCAM (Alternatives) and Features Pairwise Comparison

The pairwise comparison matrix, in the context of the Analytical Network Process
(ANP) decision-making method, is a fundamental component used to systematically assess
and quantify the relative importance or preference of one criterion or element over another
within a given decision-making framework. The ANP is an extension of the Analytic Hierar-
chy Process (AHP) designed to handle complex decision problems with interdependencies
and feedback loops among criteria and elements.

In the ANP, decision-makers or experts are asked to provide pairwise comparisons
between elements, which can be criteria, sub-criteria, or alternatives, depending on the
specific decision problem. These pairwise comparisons are used to construct a square matrix
known as the pairwise comparison matrix. The dimensions of the matrix correspond to the
number of elements being compared.

The entries in the pairwise comparison matrix represent the strength of preference
or importance of one element relative to another. The scale used for these comparisons
often ranges from, for example, 1 (indicating equal importance) to 9 (indicating extremely
stronger importance). The elements on the diagonal of the matrix typically have a value of
1, indicating that an element is equally important or preferable to itself.

Once the pairwise comparison matrix is completed, mathematical operations such
as the Eigenvector method or the Saaty scale are applied to derive the weights or priority
values for each element. These weights represent the relative importance of each element
within the decision hierarchy.

The pairwise comparison matrix serves as a quantification of subjective judgments
and allows decision-makers to incorporate their preferences and expertise into the decision
model. The ANP then extends this process to account for the complex relationships
and interdependencies between elements within a network structure, providing a more
comprehensive and realistic approach to multi-criteria decision-making.

A =



MT1 MT2 MT3 · · · MTn
MT1 1 A12 A13 · · · A1n
MT2

1
A12

1 A23 · · · A2n

MT3
1

A13
1

A23
1 · · · A3n

: : : : 1 :
MTn

1
A1n

1
A2n

1
A3n

· · · 1


(3)
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A =



MT1 MT2 MT3 · · · MTn
MT1 1 9 3 · · · 6
MT2

1
9 1 3 · · · 7

MT3
1
3

1
3 1 · · · 1

: : : : 1 :
MTn

1
9

1
7 1 · · · 1

 (4)

The Analytical Network Process (ANP), assessing the consistency of pairwise com-
parison matrices is essential to ensure the reliability of the decision-making process. The
consistency ratio (CR) is used to measure the degree of inconsistency in a pairwise compar-
ison matrix. To calculate the consistency ratio, we follow the following steps:

Pairwise Comparison Matrix (A):
First, you should have a pairwise comparison matrix (A), where each element Aij

represents the relative importance of element i compared to element j. This matrix is
typically derived through expert judgment or surveys. The pairwise comparison matrix is
indicated in (3). An example with filled values is shown in (4). In (4), the values are filled
from a table of scale that shows the significance of one feature in comparison with other
features in a memory technology. It is a nine-level scale, which is shown in Table 3.

Table 3. A scale of 9 levels indicating the importance of a memory technology feature in a memory
technology.

Levels Explanation of a Level Showing the Importance of a Feature

1 Both features have equal importance

2 Moderately important from another feature in another memory technology

3 It indicates a higher importance from the moderate significance of level 2

4 It shows a higher significance from moderate importance in level 3

5 This level reveals significant importance compared to level 4

6 Level 6 shows remarkably higher importance than level 5

7 Level 7 shows higher significance as compared with level 6

8 Level 8 shows excessive importance of a memory feature from another in a memory technology

9 Level 9 indicates excessive importance

Calculate the Weighted Sum (W): Calculate the weighted sum of each column in matrix
A. To do this, multiply each element of the matrix by the corresponding weight for the
column and then sum the products. Let us denote the weights as w1, w2, . . ., wn, and
matrix A as A. The weighted sum for each column (Sj) is calculated as follows:

Sj = Σ (Aij × wi) for i = 1 to n

where Sj is the weighted sum for column j. Aij is the element in the i-th row and j-th column
of matrix A. wi is the weight assigned to the i-th criterion or alternative. n is the number of
criteria or alternatives.

Calculate the Consistency Index (CI): The Consistency Index (CI) is a measure of how
consistent the pairwise comparison matrix is. It is calculated using the following formula:

CI = (λmax − n)/(n − 1)

where λmax is the maximum eigenvalue of matrix A. n is the number of criteria or alterna-
tives. To find the maximum eigenvalue, you can use mathematical software or calculators
designed for this purpose.

Calculate the Random Index (RI): The Random Index (RI) is a reference value used
to determine the level of consistency expected by chance. The RI depends on the order of
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the matrix (n), and you can find the corresponding RI values in pre-defined tables. For
example, here are some common RI values for different matrix sizes, as shown in Table 4.

Table 4. The standard values for RI.

Number of Features with RI Value

n = 1: RI = 0 n = 2: RI = 0

n = 3: RI = 0.58 n = 4: RI = 0.90

n = 5: RI = 1.12 n = 6: RI = 1.24

n = 7: RI = 1.32 n = 8: RI = 1.41

n = 9: RI = 1.45 n = 10: RI = 1.49

We can use these RI values or refer to tables for larger matrices.
Calculate the consistency ratio (CR):
The consistency ratio (CR) is calculated by dividing the Consistency Index (CI) by the

Random Index (RI):
CR = CI/RI

If CR is less than or equal to 0.10 (some sources may use 0.15 as the threshold), it is
generally considered acceptable, indicating an acceptable level of consistency in the pair-
wise comparison matrix. If CR exceeds this threshold, it suggests a need for reconsidering
the judgments and making adjustments to improve consistency.

In summary, the consistency ratio (CR) in the Analytical Network Process (ANP) is a
measure of the consistency of a pairwise comparison matrix. It is calculated by comparing
the Consistency Index (CI) to a reference value known as the Random Index (RI). A CR
below a certain threshold indicates an acceptable level of consistency in the matrix. If the
CR exceeds the threshold, it suggests that the judgments may be inconsistent, and revisions
may be needed.

3.2. Weighted Supermatrix

The weighted supermatrix is a crucial component in the ANP that captures the relative
importance or weight of each criterion and sub-criterion in a decision-making hierarchy. To
illustrate this concept as a scholar, let us consider an example of a project selection process
for a construction company.

Imagine you are tasked with evaluating different construction projects for your com-
pany, and you have identified various criteria such as cost, timeline, environmental impact,
and safety. Each of these criteria is further divided into sub-criteria. The weighted super-
matrix represents the pairwise comparisons and weights assigned to these criteria and
sub-criteria.

In mathematical terms, the weighted supermatrix W is a square matrix where each
element Wij represents the relative importance or weight assigned to criterion i compared
to criterion j. These weights are typically obtained through expert judgment or surveys.
The matrix is consistent when the sum of its elements in each column is equal to 1.

3.3. Limit Supermatrix

The limit supermatrix in the ANP is used to capture the overall influence and interde-
pendence of elements within the decision-making hierarchy. It takes into account both the
direct and indirect influences among criteria, sub-criteria, and alternatives.

Continuing with the construction project example, imagine that the cost criterion
directly influences the selection of materials, which in turn affects the project timeline and
environmental impact. The limit supermatrix represents these complex interactions.

In mathematical terms, the limit supermatrix L is a square matrix where each element
Lij represents the total influence of element i on element j, considering all direct and indirect
paths. It is obtained by raising the weighted supermatrix W to various powers until it
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converges to a stable state. This process accounts for feedback loops and dependencies
within the decision hierarchy.

In the analytical network process (ANP), the limit supermatrix gives the final weights
of the alternatives or the memory technologies, as in our paper we are making a ranking
of it. In our paper, this ranking is shown in Table 5 from the limit supermatrix. The
weighted supermatrix was computed through raising it to a higher power till it converged
into a matrix containing stable values, i.e., with no further change. The stable matrix is
known as a limit supermatrix. The limit matrix shows the weights of the alternatives
and the criteria, i.e., the final prioritized values. The limit matrix is the resulting matrix
that comprises the final weights measured against each element in the criteria (features of
memory) and alternative (memory technologies) clusters. Consequently, it was obtained
from the weighted supermatrix by raising the values in the matrix to the power of 2k until
we obtained the same values in each row. Herein, k denotes any random number.

Table 5. The effect of high rank memory technology with TCAM.

Memory Technology (MT) Memory Technology with TCAM Weight (Ranking) Weights from Limit Supermatrix

MT1 W3 2

MT2 W1 0.5

MT3 W4 3.5

MT4 W2 1.8

MT5 W5 4

The weighted supermatrix and limit supermatrix are fundamental components of the
Analytical Network Process (ANP). They play a key role in structuring and evaluating com-
plex decision-making problems, allowing decision-makers to consider both the importance
of criteria and the interrelationships among them in a rigorous and systematic manner.
Table 5 indicates the final rank values from the limit supermatrix. It shows that the higher
weight is for memory technology 5 (MT5, W5 with 4) and the lesser weight is indicated for
the memory technology 2 (W1), i.e., MT5 and MT2.

4. Simulations and Results

In this section, we provide the effectiveness of combining the suitable memory tech-
nology with TCAM. In this regard, we assume that the selected technology (W5 associated
with TM5) has less delay in writing the flow operations when the link recovery process
is performed, and the additional flows are to be written in the flow table in TCAM and
its combined memory. To prove our hypothesis, we make an experimental evaluation.
Moreover, we compared it with the AHP. Further, we make a network with Abilene, RedIris,
USNet, DFN, and Interoute topologies in Mininet [17]. Then we make a link failure in the
network. Then we recover that link with the alternate shortest path recovery algorithm
(Dijkstra) [18].

Herein, we calculate the recovery delay for these five topologies in Mininet. The
equation for recovery delay is given below. The recovery delay is a cumulative sum of
the path finding delay, the delay for insertion of flow rules (modified). Figure 3 shows
the recovery delay in five topologies. To calculate the recovery delay, we made a link fail
in each topology, then we used the Dijkstra shortest path algorithm to find an alternative
route for the failed route and calculated this time. Moreover, we also calculated the delay
in inserting the flow entries in the flow table of the switches in the data plan. The total
delay for each topology is calculated using the two kinds of switches that we rank through
the AHP and our proposed methodology. The graphs show that the delay for our proposed
ANP strategy is smaller than the AHP scheme. The effectiveness of the proposed method
is due to the effective selection of suitable memory technology which reduces the flow
insertion time, resulting in the reduction in the total delay. Moreover, the graph also shows
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the delay in Abilene is smaller than other layouts. Abilene has the smallest number of nodes
and links in the topology. Hence, the complexity of the Abilene network is lower than other
topologies, resulting in less delay. In addition, Figure 3 shows the highest recovery delay
for the Interoute Network. The Interoute Network has a greater number of nodes and links
than other topologies such as RedIris, DFN, and USNet. Hence, the recovery delay is also
higher than other networks due to the increased complexity of the Interoute. Equation (5)
in this paper shows the recovery delay in milliseconds (ms). The recovery delay is a sum
of two parameters, Dp and DF. DP shows the path calculation delay, which is for finding
the shortest path for the failed link (the alternative shortest path) and DF shows the flow
insertion delay (which is for pushing the flow rules in the TCAM of the SDN switches).
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Herein, we want to explain further, to clarify the recovery delay more for the reviewer.
Here is a stepwise explanation.

Step 1: In the network topologies (which are used for experiments), we deliberately
made a link fail with the link failure command in the Mininet Emulator.

Step 2: The SDN controller periodically checks the link failures with the link layer
discovery protocol (LLDP). Consequently, the controller in SDN discovers the failed link
through the LLDP.

Step 3: Then, the controller recovers the link, and we calculate the delay which is
the recovery delay indicated with DR. The DR consists of two parameters, i.e., DP and
DF. DP shows an alternative path for the failed link (original path). Moreover, DF shows
the flow insertion delay, i.e., the flow rules for the modified alternative path. The flow
insertion for the ANP selected memory takes less time, as indicated in Figure 3. We have
cross-calculated the recovery delay in five network topologies to verify that the recovery
delay is less than the AHP selected memory technology.

DR = DP + DF (5)

Figure 4 shows the packets received ratio (PRR). The PRR is calculated using D-ITG
utility [19] in the Mininet Emulator. To calculate the PRR, we opened two graphical
interfaces utilizing Xming server utility between the source and destination hosts. Then,
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we started sending traffic from the sender to the receiver host. Moreover, we made a link
fail, and the Dijkstra algorithm recovered it during this activity. However, some packets
were lost during the activity due to the link failure. Hence, we recorded the total number
of received packets over the total number of sent packets, which we call the PRR. The PRR
is calculated using two kinds of switch memory technologies obtained with the AHP and
the proposed ANP approach. Our proposed approach shows a high PRR as compared to
the AHP. The effectiveness of the proposed method is verified through a high PRR.
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Figure 5 shows the throughput (packets received in 1000 s from sender to receiver
hosts) comparison computer using two kinds of switches, i.e., the one with our proposed
scheme and one with the AHP strategy. The throughput is greater than the AHP approach.
The throughput is calculated using IPERF [20] over a period of 1000 s. The figure shows
the average number of packets received at the receiver for a period of 1000 s. The graph
shows the results for throughput calculated in the five topologies. The throughput through
IPERF is computed by selecting a random pair of sending and receiving hosts attached to
the switches in each topology. Then, we started Xming interfaces, sending and receiving
hosts, and utilized IPERF utility for computing the throughput.

Figure 6 indicates the jitter calculation of the proposed approach, leveraging ANP
with the AHP method. Figure 6 represents that the jitter is less for the proposed approach
than the AHP-based method. The jitter is computed during the recovery of networks
(Abilene, RedIris, USNet, DFN, and Interoute). During the recovery of these networks, the
TCAM was consulted for inserting the flow rules in the switches. Hence, the recovery jitter
(time in milliseconds) for the ANP-based method is less because of the effective memory
used with TCAM as compared with the AHP. It is also observed from Figure 6 that the
jitter is high in layouts or topologies with a higher number of nodes and edges, such as
RedIris, USNet, DFN, and Interoute, as compared to Abilene. From Abilene to Interoute,
the number of nodes and edges increases towards the Interoute topology, which has the
higher jitter compared to Abilene.
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5. Conclusions

In this paper, we developed a scheme for enhancing the capacity of TCAM with state-
of-the-art memory technologies. TCAM is used in OpenFlow switches for storing the flow
tables. Hence, when flows are inserted in OpenFlow switches, the appropriate memory
technology helps in reducing the flow insertion delay, and jitter. Moreover, the proper
selection also increases the throughput and PRR. First, we proposed a method leveraging
the ANP mathematical decision-making model to rank the memory technologies according
to their features. Then, we used two kinds of switches in the experimental evaluation to
validate the effectiveness of the mathematical model, i.e., the one we selected through the
ANP and the other one through the AHP. Furthermore, we evaluated the effectiveness of
suggested methodology through various experiments in five different topologies emulated
in the SDN emulator, i.e., Mininet, where we made a failure in the network (link failure).
Then, the network recovered and inserted the updated flow entries in the underlying
switches with memory technologies selected using the ANP and AHP. More and more, we
have evaluated the recovery delay, jitter, throughput, and PRR through these two kinds
of switches, with memory technologies selected with the ANP as well as the AHP. The
experiments showed that the memory technology selected through the ANP for TCAM in
SDN switches has higher throughput, less delay and jitter, and higher PRR. In a nutshell,
the mathematical model experiments were verified by experimental evaluations.
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