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Abstract: In this paper, we study the combinatorial relations between the cokernels cok(An + pxi In) (1 ≤ i ≤ m),
where An is an n × nmatrix over the ring of p-adic integersℤp , In is the n × n identitymatrix and x1 , . . . , xm are
elements ofℤp whose reductions modulo p are distinct. For a positive integerm ≤ 4 and given x1 , . . . , xm ∈ ℤp ,
we determine the set of m-tuples of finitely generated ℤp-modules (H1 , . . . , Hm) for which

(cok(An + px1In), . . . , cok(An + pxm In)) = (H1 , . . . , Hm)

for somematrix An . We also prove that if An is an n × nHaar randommatrix overℤp for each positive integer n,
then the joint distribution of cok(An + pxi In) (1 ≤ i ≤ m) converges as n →∞.
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1 Introduction

Friedman and Washington [4] computed the distribution of the cokernel of a random matrix over the ring
of p-adic integers ℤp . They proved that if An ∈ Mn(ℤp) is a Haar random matrix (equidistributed with respect
to the Haar measure) for each positive integer n and H is a finite abelian p-group, then

lim
n→∞
ℙ(cok(An) ≅ H) =

∏∞k=1(1 − p−k)
|Aut(H)| . (1.1)

HereMm×n(R) denotes the set ofm × nmatrices over a commutative ring R, Mn(R) := Mn×n(R) andℙ( ⋅ ) denotes
the probability of an event. The study of the distributions of the cokernels for much larger classes of random
p-adic matrices was initiated by the work ofWood [12] which proved universality for random symmetric matri-
ces over ℤp . Precisely, Wood proved that if An ∈ Mn(ℤp) is an ε-balanced random symmetric matrix for each
positive integer n, then the distribution of cok(An) always converges to the same distribution as n →∞.

Definition 1.1. For a real number 0 < ε < 1, a random variable x ∈ ℤp is ε-balanced if ℙ(x ≡ r (mod p)) ≤ 1 − ε
for every r ∈ ℤ/pℤ. A random matrix A ∈ Mn(ℤp) is ε-balanced if its entries are independent and ε-balanced.
A random symmetric matrix A ∈ Mn(ℤp) is ε-balanced if its upper triangular entries are independent and
ε-balanced.

Theorem 1.2 ([12, Corollary 9.2]). Let 0 < ε < 1 be a real number, H be a finite abelian p-group and An ∈ Mn(ℤp)
be an ε-balanced random symmetric matrix for each n. Then we have

lim
n→∞
ℙ(cok(An) ≅ H) =

#{symmetric, bilinear, perfect ϕ : H × H → ℂ∗}
|H||Aut(H)|

∞

∏
k=1
(1 − p1−2k).
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One of the key ingredients of the proof of Theorem 1.2 is the use of moments for random finitely generated
abelian groups. For a given finite abelian group H, the H-moment of a random finitely generated abelian group
X is defined by the expected value 𝔼(# Sur(X, H)) of the number of surjective homomorphisms from X to H.
If the moments of a random finitely generated abelian group X are not too large, then the distribution of X is
uniquely determined by its moments [12, Theorem 8.3]. Theorem 1.2 follows from this result and a sophisticated
computation of the moments of the cokernels of ε-balanced matrices.

Starting from the work of Wood, several universality results for the cokernels of random p-adic matrices
were proved [3, 6–10, 13, 15]. All of these results were obtained by computing the (mixed) moments of the cok-
ernels and determining the (joint) distribution of the cokernels from the moments. As an example, we provide
a theorem of Nguyen andWood [10] which proves universality for εn-balancedmatrices overℤp , where εn does
not decrease too fast as n →∞.

Theorem 1.3 ([10, Theorem 4.1]). Let u ≥ 0 be an integer, H a finite abelian p-group and (εn)n≥1 a sequence of
real numbers such that 0 < εn < 1 for each n and for every Δ > 0, we have εn ≥ Δ log n

n for sufficiently large n. Let
An ∈ Mn×(n+u)(ℤp) be an εn-balanced random matrix for each n. Then we have

lim
n→∞
ℙ(cok(An) ≅ H) =

∏∞k=1(1 − p−k−u)
|H|u|Aut(H)| . (1.2)

On the other hand, there had been recent progress on generalization of the cokernel condition. Friedman and
Washington [4] proved that ifAn is aHaar randommatrix inGLn(ℤp) for each n andH is a finite abelian p-group,
then

lim
n→∞
ℙ(cok(An − In) ≅ H) =

∏∞k=1(1 − p−k)
|Aut(H)| (1.3)

where In denotes the n × n identity matrix. As a natural generalization of this result, Cheong and Huang [1]
predicted the limiting joint distribution of the cokernels cok(Pi(An)) (1 ≤ i ≤ m) where An ∈ Mn(ℤp) is a Haar
random matrix for each n and P1(t), . . . , Pm(t) ∈ ℤp[t] are monic polynomials whose reductions modulo p
are distinct and irreducible. This conjecture was settled by the second author [5, Theorem 2.1]. (Cheong and
Kaplan [2, Theorem 1.1] independently proved the conjecture under the assumption that deg(Pi) ≤ 2 for each i.)
Recently, Cheong and Yu [3] generalized this to the case that An is ε-balanced for each n.

Theorem 1.4 ([3, Corollary 1.8]). Let 0 < ε < 1 be a real number and An ∈ Mn(ℤp) an ε-balanced matrix for each
n ≥ 1. Let P1(t), . . . , Pm(t) ∈ ℤp[t] be monic polynomials whose reductions modulo p in 𝔽p[t] are distinct and
irreducible. Also let Hi be a finite module over Ri := ℤp[t]/(Pi(t)) for each i. Then we have

lim
n→∞
ℙ(cok(Pi(An)) ≅ Hi for 1 ≤ i ≤ m) =

m
∏
i=1

∏∞k=1(1 − p−k deg(Pi))
|AutRi (Hi)|

. (1.4)

We remark that each Ri is a discrete valuation ring with a finite residue field Ri/pRi ≅ 𝔽pdeg(Pi ) and the cokernel
cok(Pi(An)) has a natural Ri-module structure defined by t ⋅ x := Anx. There are other ways to generalize the
cokernel condition. For example, Van Peski [11, Theorem 1.4] computed the joint distribution of

cok(A1), cok(A2A1), . . . , cok(Ar ⋅ ⋅ ⋅ A1)

for a fixed n ≥ 1 and Haar random matrices A1 , . . . , Ar ∈ Mn(ℤp) by using explicit formulas for certain
skew Hall-Littlewood polynomials. Nguyen and Van Peski [8, Theorem 1.2] generalized this to the case where
A1 , . . . , Ar are ε-balanced.

In Theorem 1.4, the distribution of the cokernels cok(Pi(An)) (1 ≤ i ≤ m) becomes asymptotically indepen-
dent as n →∞. Here the condition that the reductions modulo p of P1(t), . . . , Pm(t) are distinct is essential. If
two polynomials P1(t), P2(t) ∈ ℤp[t] have the same reduction modulo p, then cok(P1(A)) and cok(P2(A)) have
the same p-rank so they cannot be asymptotically independent. (The p-rank of a finite abelian p-group G is given
by rp(G) := rank𝔽p (G/pG).) Nevertheless, we can still consider their joint distribution. In the previous work of
the second author [7], the joint distribution in the simplest case (P1(t) = t and P2(t) = t + p) was computed.
Denote cr(p) := ∏rk=1(1 − p−k) and c∞(p) := ∏

∞
k=1(1 − p−k).
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Theorem 1.5 ([7, Theorem 3.11]). Let (εn)n≥1 be a sequence of real numbers such that for every Δ > 0, we have
εn ≥ Δ log n

n for sufficiently large n. Let An ∈ Mn(ℤp) be an εn-balanced random matrix for each n. Then we have

lim
n→∞
ℙ(cok(An) ≅ H1 and cok(An + pIn) ≅ H2) =

{{
{{
{

0, rp(H1) ̸= rp(H2),

pr2 c∞(p)cr(p)2

|Aut(H1)||Aut(H2)|
, rp(H1) = rp(H2) = r,

for every finite abelian p-groups H1 and H2.

It is very hard to compute the joint distribution of the cokernels cok(Pi(A)) (1 ≤ i ≤ m) in general, even in the
case that each An is equidistributed. Thus we propose the following easier problem.

Problem 1.6. Let P1(t), . . . , Pm(t) ∈ ℤp[t] be monic polynomials whose reductions modulo p are irreducible,
let Ri = ℤp[t]/(Pi(t)), let MRi be the set of finitely generated Ri-modules and let M = ∏mi=1MRi . For a given
(H1 , . . . , Hm) ∈M, determine whether there exists a matrix An ∈ Mn(ℤp) such that cok(Pi(An)) ≅ Hi for each i.
In other words, determine the set

C(P1 , . . . , Pm) := {(H1 , . . . , Hm) ∈M : there exists An ∈ Mn(ℤp) for some n
such that cok(Pi(An)) ≅ Hi for each 1 ≤ i ≤ m}.

Remark 1.7. (1) For A ∈ Mn(ℤp) and B ∈ Mn󸀠 (ℤp), we have

cok(Pi (
A O
O B
)) ≅ cok(Pi(A)) × cok(Pi(B))

so the set C(P1 , . . . , Pm) is closed under componentwise finite direct product.
(2) In the above problem, we allow the case that cok(Pi(An)) have a free part (i.e. det(Pi(An)) = 0), contrary

to Theorem 1.4. The probability that det(Pi(An)) = 0 for some i is always zero, but it does not mean that this
event cannot happen.

In this paper, we analyze the case where Pi(t) = t + pxi for some x1 , . . . , xm ∈ ℤp whose reductions modulo p
are distinct. Let Xm := {x1 , . . . , xm}be afinite ordered subset ofℤp of sizemwhose elements have distinct reduc-
tions modulo p and denote CXm := C(t + px1 , . . . , t + pxm) ⊂Mm

ℤp . The main result of the paper is the following
theorem, which determines the set CXm for m ≤ 4. Note that in each case, the set CXm does not depend on the
choice of Xm .

Theorem 1.8. For (H1 , . . . , Hm) ∈Mm
ℤp , write

Hi ≅ ℤ
d∞,i
p ×

∞

∏
r=1
(ℤ/prℤ)dr,i

and

Dr :=
m
∑
i=1
dr,i , si := rank𝔽p (Hi/pHi) =

∞

∑
r=1

dr,i + d∞,i for each i.

We have:
(1) CX1 =Mℤp ,
(2) CX2 = {(H1 , H2) ∈M2

ℤp : s1 = s2},
(3) CX3 = {(H1 , H2 , H3) ∈M3

ℤp : s1 = s2 = s3 and 2d1,i ≤ D1 (1 ≤ i ≤ 3)},
(4) CX4 = {(H1 ,H2 ,H3 ,H4) ∈M4

ℤp : s1 = s2 = s3 = s4 , 3d1,i ≤ D1 (1 ≤ i ≤ 4) and d1,i + 2(d1,j + d2,j) ≤ D1 + D2 (1 ≤
i, j ≤ 4)}.

If (H1 , . . . , Hm) ∈ CXm , then there exists An ∈ Mn(ℤp) such that cok(An + pxi In) ≅ Hi for each i. In this case,
we have (ℤ/pℤ)si ≅ Hi/pHi ≅ cok𝔽p (An) where An ∈ Mn(𝔽p) is the reduction modulo p of An , which implies
that s1 = s2 = ⋅ ⋅ ⋅ = sm . When m = 2, this is the only condition we need for elements of CXm . We need some
additional relations between the numbers dr,i for larger m. It is natural to suggest the following conjecture
from Theorem 1.8.
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Conjecture 1.9. Let dr,i , Dr and si be as in Theorem 1.8. For every integer m ≥ 1, we have (H1 , . . . , Hm) ∈ CXm
if and only if s1 = ⋅ ⋅ ⋅ = sm and

r−1
∑
k=1
(

k
∑
l=1
dl,ik) + (m − r)

r
∑
l=1
dl,ir ≤ D1 + ⋅ ⋅ ⋅ + Dr

for every 1 ≤ r ≤ m − 2 and 1 ≤ i1 , . . . , ir ≤ m.

The paper is organized as follows. In Section 2.1, we provide basic notations and provide some basic properties
of the sets CXm ,l,k (see Problem 2.2) which are helpful to understand the set CXm . We prove the main result of the
paper (Theorem 1.8) for the casem ≤ 3 in Section 2.2. The technical heart of the paper is a reduction procedure,
which is explained in Section 3.1. Using this reduction procedure and explicit linear-algebraic computations on
matrices overℤp , we prove the necessary condition of Theorem 1.8 form = 4 in Section 3.2. After that, we prove
the sufficient condition of Theorem 1.8 for m = 4 in Section 3.3 based on a zone theory.

The last section is devoted to the joint distribution of the cokernels cok(An + pxi In) (1 ≤ i ≤ m). In Sec-
tion 4.1, we prove that if each An is a Haar random matrix, then the joint distribution of the cokernels
cok(An + pxi In) (1 ≤ i ≤ m) converges as n →∞. In fact, we prove the following more general result. Note
that our proof does not provide the limiting joint distribution.

Theorem 1.10 (Theorem 4.1). Let An ∈ Mn(ℤp) be a Haar random matrix for each n ≥ 1, y1 , . . . , ym be distinct
elements of ℤp and H1 , . . . , Hm be finite abelian p-groups. Then the limit

lim
n→∞
ℙ(cok(An + yi In) ≅ Hi for 1 ≤ i ≤ m)

converges.

In Section 4.2, we compute the mixed moments of the cokernels cok(An + pxi In) (1 ≤ i ≤ m), where each
matrix An ∈ Mn(ℤp) is given as in Theorem 1.5. Then it is natural to follow the proof of Theorem 1.5 given
in [7], where the second author determined the unique joint distribution of cok(An) and cok(An + pIn) from
their mixed moments. However, it turns out that for m ≥ 3, we cannot determine a unique joint distribution
of cok(An + pxi In) (1 ≤ i ≤ m) from their mixed moments using existing methods (see Example 4.6).

Let Y be a randomm-tuple of finite abelian p-groups (or a randomm-tuple of finitely generatedℤp-modules
in general). When Y is supported on a smaller set ofm-tuples of finite abelian p-groups, it is more likely that the
distribution of Y is uniquely determined by its mixed moments. Therefore the information on the support of Y
would be helpful for determining its distribution. This is one of our motivations for concerning Problem 1.6 in
this paper. In the future work, we hope to determine the joint distribution of cok(An + pxi In) (1 ≤ i ≤ m) from
their mixed moments, together with combinatorial relations between the cokernels provided in Theorem 1.8
and Conjecture 1.9.

2 Preliminaries

The following notations will be used throughout the paper.
∙ For a prime p, let Gp be the set of isomorphism classes of finite abelian p-groups and letMℤp be the set of

isomorphism classes of finitely generated ℤp-modules.
∙ Set ℤ := ℤ ∪ {∞}, ℤ≥c := {x ∈ ℤ : x ≥ c} and ℤ≥c := ℤ≥c ∪ {∞} for c ∈ ℤ.
∙ Let m be a positive integer and let Xm = {x1 , . . . , xm} be a finite ordered subset ofℤp whose elements have

distinct reductions modulo p.
∙ For A ∈ Mn(ℤp), write

cok(A) ≅ ∏
r∈ℤ≥1

(ℤp/prℤp)dr,A

(we use the convention that p∞ = 0 and thus ℤp/p∞ℤp = ℤp) and

d0,A := n − ∑
r∈ℤ≥1

dr,A .
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In this case, the Smith normal form of A is given by

diag(
d0,A⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞1, . . . , 1,

d1,A⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞p, . . . , p, . . . ,
d∞,A⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞0, . . . , 0).

∙ For A ∈ Mn(ℤp) and k ∈ ℤ≥1, cokℤp/pkℤp (A) denotes the cokernel of A/pkA as aℤp/pkℤp-module. It is given
as

cokℤp/pkℤp (A) ≅
k−1
∏
r=1
(ℤp/prℤp)dr,A × (ℤp/pkℤp)

∑r∈ℤ≥k
dr,A .

Let A := A/pA ∈ Mn(𝔽p) be the reduction modulo p of A.
∙ For A ∈ Mn×n󸀠 (ℤp) and k ≥ 1, denote pk | A if each entry of A is divisible by pk and pk ∤ A otherwise.
∙ Denote

Bm := {(n;H1 , . . . , Hm) ∈ ℤ≥0 ×Mm
ℤp : n ≥ rank𝔽p (Hi/pHi) for every 1 ≤ i ≤ m}.

For an element (n;H1 , . . . , Hm) ∈ Bm , write Hi ≅ ∏r∈ℤ≥1 (ℤp/p
rℤp)dr,i and d0,i := n − ∑r∈ℤ≥1 dr,i for each i.

If a polynomial P(t) ∈ Mn(ℤp)[t] satisfies cok(P(xi)) ≅ Hi for each i, then we have dr,P(xi) = dr,i for every
r ∈ ℤ≥0 and 1 ≤ i ≤ m.

∙ The sum of two elements inBm is defined by the operation

(n;H1 , . . . , Hm) + (n󸀠;H󸀠1 , . . . , H
󸀠
m) := (n + n󸀠;H1 × H󸀠1 , . . . , Hm × H󸀠m). (2.1)

2.1 The sets CXm ,l,k

For A ∈ Mn(ℤp) with n1 = n − d0,A , the Smith normal form of A gives U, V ∈ GLn(ℤp) such that

UAV = (pA
󸀠 O

O In−n1
)

for some A󸀠 ∈ Mn1 (ℤp). For x ∈ ℤp and UV = (
B1 B2
B3 B4 ) ∈ GLn1+(n−n1)(ℤp), we have

cok(A + pxI) ≅ cok(UAV + pxUV)

= cok((pA
󸀠 + pxB1 pxB2
pxB3 In−n1 + pxB4

))

≅ cok(p(A󸀠 + xB1) − (pxB2)(In−n1 + pxB4)−1(pxB3))

= cok(p(A󸀠 + xB1 −
∞

∑
d=0

pd+1xd+2B2(−B4)dB3)).

For A0 = A󸀠, A1 = B1 and Ar = −B2(−B4)r−2B3 (r ≥ 2), we have

cok(A + pxI) ≅ cok(pP(1)A0 ,A1 ,...(x)) := cok(p(A0 +
∞

∑
d=1

pd−1xdAd)).

In this case, we have
dr,A+pxI = dr−1,P(1)A0 ,A1 ,...(x)

(2.2)

for every r ∈ ℤ≥1. Thus if an inequality holds for the numbers dr−1, P(1)A0 ,A1 ,...(x) for any A0 , A1 , . . . ∈ Mn1 (ℤp), then
the same inequality holds for the numbers dr,A+pxI . This observation motivates us to introduce the following
variant of Problem 1.6.

Definition 2.1. A polynomial in Mn(ℤp)[t] is called an l-th integral of ascending polynomial, or just an l-th
integral if it is of the form

A0 + tA1 + ⋅ ⋅ ⋅ + tlAl + ptl+1Al+1 + ⋅ ⋅ ⋅ + pr tl+rAl+r

for some r ∈ ℤ≥0 and A0 , . . . , Al+r ∈ Mn(ℤp). For l = ∞, every polynomial in Mn(ℤp)[t] is an∞-th integral.



1124  J. Jung and J. Lee, Joint distribution of random p-adic matrices II

Problem 2.2. For given Xm and l, k ∈ ℤ≥0, determine the set

CXm ,l,k := {(n;H1 , . . . , Hm) ∈ Bm : there exists an l-th integral P(t) ∈ Mn(ℤp)[t]
such that cokℤp/pkℤp (P(xi)) ≅ Hi/pkHi for each 1 ≤ i ≤ m}.

Now we provide basic properties of the sets CXm ,l,k . For H ∈Mℤp , denote s(H) := rank𝔽p (H/pH). Then we have
s(Hi) = ∑r∈ℤ≥1 dr,i = n − d0,i for (n;H1 , . . . , Hm) ∈ Bm .

Proposition 2.3. The following statements hold:
(1) The set CXm ,l,k is closed under the sum inBm . In particular, CXm ,l,k is a monoid under the operation (2.1) with

an identity (0; 1, . . . , 1).
(2) For l, l󸀠 , k, k󸀠 ∈ ℤ≥0 and x0 ∈ ℤp , we have the followings:

(a) CXm ,l,k ⊂ CXm ,l󸀠 ,k󸀠 for l ≤ l󸀠 and k ≥ k󸀠,
(b) CXm ,l,∞ = CXm ,l,m−l−1 for l < m,
(c) CXm ,l,k = CXm−x0 ,l,k for Xm − x0 := {x − x0 : x ∈ Xm}.

(3) We have

CXm = {(H1 , . . . , Hm) ∈Mm
ℤp : there exists n ∈ ℤ≥1such that (n;H1 , . . . , Hm) ∈ CXm ,0,∞}

= {(H1 , . . . , Hm) ∈Mm
ℤp : s(H1) = ⋅ ⋅ ⋅ = s(Hm) = s and (s; pH1 , . . . , pHm) ∈ CXm ,1,∞}.

(4) For every l < m, the map

φl,k : {(n;H1 , . . . , Hm) ∈ CXm ,l,k+1 : d0,1 = ⋅ ⋅ ⋅ = d0,m = 0} → CXm ,l+1,k

given by
(n;H1 , . . . , Hm) 󳨃→ (n; pH1 , . . . , pHm)

is well-defined and a bijection.

Proof. (1) For every (n;H1 , . . . , Hm), (n󸀠;H󸀠1 , . . . , H󸀠m) ∈ CXm ,l,k , there are l-th integrals P(t) ∈ Mn(ℤp)[t] and
P󸀠(t) ∈ Mn󸀠 (ℤp)[t] such that cokℤp/pkℤp (P(xi)) ≅ Hi and cokℤp/pkℤp (P󸀠(xi)) ≅ H

󸀠
i for each i. Then the concate-

nation of P(t) and P󸀠(t) given by

Q(t) := (P(t) O
O P󸀠(t)

) ∈ Mn+n󸀠 (ℤp)[t]

is also an l-th integral and cokℤp/pkℤp (Q(xi)) ≅ Hi × H󸀠i for each i. Thus we have

(n + n󸀠;H1 × H󸀠1 , . . . , Hm × H󸀠m) ∈ CXm ,l,k .

(2a) It follows from the facts that an l-th integral is also an l󸀠-th integral and

cokℤp/pk󸀠ℤp (A) ≅ cokℤp/pkℤp (A)/p
k󸀠cokℤp/pkℤp (A).

(2b) The inclusion ⊂ holds by (a). Now suppose that (n;H1 , . . . , Hm) ∈ CXm ,l,m−l−1. Then there exists an l-th
integral P(t) ∈ Mn(ℤp) such that cokℤp/pm−l−1ℤp (P(xi)) ≅ Hi/pm−l−1Hi for each i. The Smith normal form of P(xi)
gives Ui , Vi ∈ GLn(ℤp) such that

P(xi) = Ui diag(
d0,P(xi )⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞1, . . . , 1, . . . ,

dm−l−1,P(xi )⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
pm−l−1 , . . . , pm−l−1 ,

dm−l,P(xi )⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
pm−l , . . . , pm−l , . . . ,

d∞,P(xi )⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞0, . . . , 0)Vi .

Define Lm,i(t) := ∏1≤j≤m,j ̸=i
t−xj
xi−xj ∈ ℤp[t], Dm−l−1,i := ∑r∈ℤ≥m−l−1

dr,P(xi) and

Q(t) := P(t) +
m
∑
i=1
Lm,i(t)Ui diag(

n−Dm−l−1,i⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞0, . . . , 0 , pai,1 − bi,1 , . . . , pai,Dm−l−1,i − bi,Dm−l−1,i )Vi ,

where

(bi,1 , . . . , bi,Dm−l−1,i ) := (
dm−l−1,P(xi )⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

pm−l−1 , . . . , pm−l−1 , . . . ,
d∞,P(xi )⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞0, . . . , 0)
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and ai,j ∈ ℤ≥m−l−1 for 1 ≤ i ≤ m and 1 ≤ j ≤ Dm−l−1,i . Then Q(t) is also an l-th integral as pm−l−1 | pai,j − bi,j for
each i, j and Lm,i(t) is of degree m − 1, while

Q(xi) = P(xi) + Ui diag(
n−Dm−l−1,i⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞0, . . . , 0 , pai,1 − bi,1 , . . . , pai,Dm−l−1,i − bi,Dm−l−1,i )Vi

= Ui diag(
d0,P(xi )⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞1, . . . , 1, . . . ,

dm−l−2,P(xi )⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
pm−l−2 , . . . , pm−l−2 , pai,1 , . . . , pai,Dm−l−1,i )Vi

for each i. Now we can choose ai,j ∈ ℤ≥m−l−1 (1 ≤ i ≤ m, 1 ≤ j ≤ Dm−l−1,i) such that cok(Q(xi)) ≅ Hi for each i,
which implies that (n;H1 , . . . , Hm) ∈ CXm ,l,∞.

(2c) It holds that P(t) ∈ Mn(ℤp)[t] is an l-th polynomial if and only if P1(t) := P(t + x0) ∈ Mn(ℤp)[t] is an
l-th polynomial and cokℤp/pkℤp (P(xi)) ≅ cokℤp/pkℤp (P1(xi − x0)) so we have CXm ,l,k = CXm−x0 ,l,k .

(3) Consider the sets

S1 := {(H1 , . . . , Hm) ∈Mm
ℤp : there exists n ∈ ℤ≥1 such that (n;H1 , . . . , Hm) ∈ CXm ,0,∞},

S2 := {(H1 , . . . , Hm) ∈Mm
ℤp : s(H1) = ⋅ ⋅ ⋅ = s(Hm) = s and (s; pH1 , . . . , pHm) ∈ CXm ,1,∞}.

We have:
∙ (CXm = S1) The inclusion ⊂ follows from the definition. Suppose that (n;H1 , . . . , Hm) ∈ CXm ,0,∞ so that there

exists a zeroth integral P(t) ∈ Mn(ℤp)[t] such that cok(P(xi)) ≅ Hi for each i. Let

Q(t) := P(t) + pd+m td(t − x1) ⋅ ⋅ ⋅ (t − xm)In = A0 + ptA1 + ⋅ ⋅ ⋅ + pd+m−1td+m−1Ad+m−1 + pd+m td+m In

for d = deg(P) and A0 , . . . , Ad+m−1 ∈ Mn(ℤp). The rational canonical form of Q(t), i.e.

A :=(

A0
−In A1

. . .
...

−In Ad+m−1

) ∈ M(d+m)n(ℤp)

satisfies cok(A + pxi I) ≅ cok(Q(xi)) ≅ cok(P(xi)) ≅ Hi for each i so we have (H1 , . . . , Hm) ∈ CXm .
∙ (CXm ⊂ S2) Suppose that (H1 , . . . , Hm) ∈ CXm so that there exists A ∈ Mn(ℤp) for some n ≥ 1 such that

cok(A + pxi I) ≅ Hi for each i. Then

s(Hi) = rank𝔽p (Hi/pHi) = rank𝔽p (cok(A))

so we have s(H1) = ⋅ ⋅ ⋅ = s(Hm) = s. By equation (2.2), there exists a first integral P(t) ∈ Ms(ℤp)[t] such that
cok(P(xi)) ≅ pHi for each i, which implies that (s; pH1 , . . . , pHm) ∈ CXm ,1,∞.

∙ (S2 ⊂ S1) Suppose that (H1 , . . . , Hm) ∈ S2 so that s(H1) = ⋅ ⋅ ⋅ = s(Hm) = s and (s; pH1 , . . . , pHm) ∈ CXm ,1,∞.
Let P(t) ∈ Ms(ℤp)[t] be a first integral such that cok(P(xi)) ≅ pHi for each i. Since pP(t) is a zeroth integral
and cok(pP(xi)) ≅ Hi for each i, we have (s;H1 , . . . , Hm) ∈ CXm ,0,∞.
(4) Assume that (n;H1 , . . . , Hm) ∈ CXm ,l,k+1 with d0,1 = ⋅ ⋅ ⋅ = d0,m = 0. Then there exists an l-th integral

P(t) ∈ Mn(ℤp)[t] such that cokℤp/pk+1ℤp (P(xi)) ≅ Hi/pk+1Hi and d0,P(xi) = 0 (so p | P(xi)) for each i. This implies
that

P(t) = (t − x1) ⋅ ⋅ ⋅ (t − xm)Q(t) + pP1(t)

for some Q(t), P1(t) ∈ Mn(ℤp)[t] such that deg((t − x1) ⋅ ⋅ ⋅ (t − xm)Q(t)) ≤ l and P1(t) is an (l + 1)-th integral.
Since we have P(xi) = pP1(xi) for each i, we have dr,P1(t) = dr+1,P(t) for every r ∈ ℤ≥1 so

cokℤp/pkℤp (P1(xi)) = pHi/pk+1Hi

for each i. Thus the map φl,k is well-defined.
Now assume that (n;H1 , . . . , Hm) ∈ CXm ,l+1,k . Then there exists an (l + 1)-th integral P(t) ∈ Mn(ℤp)[t]

such that cokℤp/pkℤp (P(xi)) ≅ Hi/pkHi for each i. Since pP(t) is an l-th integral which satisfies d0,pP(t) = 0
and dr,P(t) = dr+1,pP(t) for every r ∈ ℤ≥0, the map

ψl,k : CXm ,l+1,k → {(n;H1 , . . . , Hm) ∈ CXm ,l,k+1 : d0,1 = ⋅ ⋅ ⋅ = d0,m = 0}

given by (n;H1 , . . . , Hm) 󳨃→ (n; cok(pP(x1)), . . . , cok(pP(xm))) is the inverse of φl,k .
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As an example, we determine the elements of the set CXm ,l,∞ which are of the form (1;H1 , . . . , Hm). This
result will be frequently used in the proof of Theorem 1.8. We note that if (n;H1 , . . . , Hm) ∈ CXm ,l,k , then
(n;Hσ(1) , . . . , Hσ(m)) ∈ CXm ,l,k for any permutation σ ∈ Sm .

Example 2.4. For an element (1;H1 , . . . , Hm) ∈ CXm ,l,∞, there exists an l-th integral P(t) ∈ ℤp[t] such that
ℤp/P(xi)ℤp ≅ Hi for each i. If P(t) = 0, then H1 = ⋅ ⋅ ⋅ = Hm = ℤp . If P(t) is not identically zero, then there
uniquely exists r ∈ ℤ≥0 such that P(t) = prQ(t) for some (l + r)-th integral Q(t) ∈ ℤp[t] whose reduction mod-
ulo p is not identically zero in 𝔽p[t]. Since Q(t) ≡ 0 (mod p) has at most l + r roots modulo p, the number
of 1 ≤ i ≤ m such that Hi = ℤp/prℤp is at least m − (l + r). Conversely, for every integer 0 ≤ r ≤ m − l and
b1 , . . . , br󸀠 ∈ ℤ≥r+1 with r󸀠 ≤ l + r, an l-th integral

P(t) = pr
r󸀠

∏
i=1
(t − xi) +

r󸀠

∑
i=1
pbiLr󸀠 ,i(t) ∈ ℤp[t]

satisfies ℤp/P(xi)ℤp ≅ ℤp/pbiℤp for 1 ≤ i ≤ r󸀠 and ℤp/P(xi)ℤp ≅ ℤp/prℤp for i > l + r. (The polynomials
Lm,i(t) are defined as in the proof of Proposition 2.3 (b).)

Now we deduce that (1;H1 , . . . , Hm) ∈ CXm ,l,∞ if and only if (H1 , . . . , Hm) is a permutation of

(ℤp/pb1ℤp , . . . ,ℤp/pbr+lℤp ,
m−r−l⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

ℤp/prℤp , . . . ,ℤp/prℤp)

for some 0 ≤ r ≤ m − l and b1 , . . . , br+l ∈ ℤ≥r . In particular, we have

(ℤp/pb1ℤp , . . . ,ℤp/pbrℤp ,
m−r⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

ℤp/prℤp , . . . ,ℤp/prℤp) ∈ CXm

for every 0 ≤ r ≤ m and b1 , . . . , br ∈ ℤ≥r by Proposition 2.3 (3).

2.2 Proof of Theorem 1.8: The case m ≤ 3
The case m = 1 is trivial. When m = 2, we have CX2 ⊂ {(H1 , H2) ∈M2

ℤp : s1 = s2} (see the paragraph after Theo-
rem 1.8). Conversely, every element (H1 , H2) ∈M2

ℤp such that s1 = s2 = s is of the form

(
s
∏
j=1
ℤp/pajℤp ,

s
∏
j=1
ℤp/pbjℤp) (aj , bj ∈ ℤ≥1).

Since the set CX2 is closed under finite direct product, to prove Theorem 1.8 for m = 2 it is enough to show that
(ℤp/paℤp ,ℤp/pbℤp) ∈ CX2 for every a, b ∈ ℤ≥1. We already proved this in Example 2.4.

Nowwe consider the casem = 3. Firstwe prove that every element (H1 , H2 , H3) ∈ CX3 satisfies the condition
2d1,i ≤ D1. By equation (2.2), it is enough to show that the numbers d0,P(1)A0 ,A1 ,...(xi) (1 ≤ i ≤ 3) satisfy the triangle
inequality for every A0 , A1 , . . . ∈ Mn1 (ℤp). The congruence P

(1)
A0 ,A1 ,...(xi) ≡ A0 + xiA1 (mod p) implies that

d0,P(1)A0 ,A1 ,...(xi)
= d0,A0+xiA1 = dim𝔽p N(A0 + xiA1),

where N(A0 + xiA1) denotes the null space of A0 + xiA1 ∈ Mn(𝔽p). By the relation

(x2 − x3)(A0 + x1A1) + (x3 − x1)(A0 + x2A1) + (x1 − x2)(A0 + x3A1) = O,

the numbers dim𝔽p N(A0 + xiA1) (1 ≤ i ≤ 3) satisfy the triangle inequality. We conclude that

CX3 ⊂ {(H1 , H2 , H3) ∈M3
ℤp : s1 = s2 = s3 and 2d1,i ≤ D1 (1 ≤ i ≤ 3)}.

It remains to show that every (H1 , H2 , H3) ∈M3
ℤp satisfying the conditions s1 = s2 = s3 = s and 2d1,i ≤ D1

(1 ≤ i ≤ 3) is an element of CX3 . For each i, let ci := d1,i and

Hi ≅ (ℤp/pℤp)ci ×
s
∏
j=ci+1
ℤp/pbi,jℤp
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for some bi,ci+1 , . . . , bi,s ∈ ℤ≥2. We may assume that c1 = max1≤i≤3 ci . Then c2 + c3 − c1 ≥ 0 and

(H1 , H2 , H3) ≅ (ℤp/pℤp ,ℤp/pℤp ,ℤp/pℤp)c2+c3−c1
c1−c3
∏
j=1
(ℤp/pℤp ,ℤp/pℤp ,ℤp/pb3,j+c3ℤp)

×
c1−c2
∏
j=1
(ℤp/pℤp ,ℤp/pb2,j+c2ℤp ,ℤp/pℤp)

s
∏
j=c1+1
(ℤp/pb1,jℤp ,ℤp/pb2,jℤp ,ℤp/pb3,jℤp).

(2.3)

Each term on the right-hand side of equation (2.3) is contained in CX3 by Example 2.4 and the set CX3 is closed
under finite direct product, we conclude that (H1 , H2 , H3) ∈ CX3 . This finishes the proof of Theorem 1.8 form ≤ 3.

3 Proof of Theorem 1.8 for m = 4
In this section, we prove Theorem 1.8 for m = 4. First we prove a necessary condition for an element of CX4
using a reduction procedure. The purpose of a reduction procedure is to reduce the size of a matrix n without
information loss of (H1 , . . . , Hm) and to extract inequalities using Proposition 2.3. After that, we prove that the
same condition is also a sufficient condition for an element of CX4 using zone theory. Throughout this section,
we assume that x1 = 0. (We may assume this by Proposition 2.3 (c)).

3.1 A reduction procedure

We begin by clarifying the relation between zeroth and first integrals. Recall that if (n;H1 , . . . , Hm) ∈ CXm ,0,k for
k ∈ ℤ≥1, then d0,1 = ⋅ ⋅ ⋅ = d0,m where d0,i = n − ∑r∈ℤ≥1 dr,i for each i.

Proposition 3.1. If (n;H1 , . . . , Hm) ∈ CXm ,0,k and d0,1 = ⋅ ⋅ ⋅ = d0,m > 0, then (n − 1;H1 , . . . , Hm) ∈ CXm ,0,k .

Proof. SinceCXm ,0,∞ = CXm ,0,m−1, wemay assume that k is finite. Let P(t) ∈ Mn(ℤp)[t] be a zeroth integral which
satisfies cokℤp/pkℤp (P(xi)) ≅ Hi/pkHi for each i. The constant termof P(t) satisfies rank𝔽p (P(0)) = d0,1 > 0. Using
the Smith normal form of P(0), we may assume that

P(t) = (A0 O
O 1
) + ptA1 + ⋅ ⋅ ⋅ + pr trAr =: (

P1(t) ptf(t)
ptg(t) 1 + pth(t)

) ∈ M(n−1)+1(ℤp)[t]

for some r ∈ ℤ≥0 and zeroth integrals f(t), g(t), h(t), P1(t). Then we have

cokℤp/pkℤp (P(t)) = cokℤp/pkℤp((
P1(t) ptf(t)
ptg(t) 1 + pth(t)

))

≅ cokℤp/pkℤp((
P1(t) − p2t2(1 + pth(t))−1f(t)g(t) O

O 1 + pth(t)
))

≅ cokℤp/pkℤp (Q(t)),

where Q(t) := P1(t) − p2t2(∑k−1j=0 (−1)jpj tjh(t)j)f(t)g(t) ∈ Mn−1(ℤp)[t] is a zeroth integral as the set of zeroth inte-
grals is closed under sum and product. This implies that (n − 1;H1 , . . . , Hm) ∈ CXm ,0,k .

Recall that the set CXm ,l,k has a monoid structure by Proposition 2.3 (1). For S ⊂ CXm ,l,k , let ⟨S⟩ be the submonoid
of CXm ,l,k generated by the elements of S.

Corollary 3.2. For every k ∈ ℤ≥0, we have CXm ,0,k+1 = ⟨{(1; 1, . . . , 1)} ∪ φ−10,k(CXm ,1,k)⟩.

Proof. The inclusion ⊃ is clear since a zeroth integral P(t) = 1 gives (1; 1, . . . , 1) ∈ CXm ,0,k+1. Conversely, every
element (n;H1 , . . . , Hm) ∈ CXm ,0,k+1 satisfies n ≥ s = s(H1) = ⋅ ⋅ ⋅ = s(Hm) so

(n;H1 , . . . , Hm) = (n − s)(1; 1, . . . , 1) + (s;H1 , . . . , Hm) ∈ ⟨{(1; 1, . . . , 1)} ∪ φ−10,k(CXm ,1,k)⟩

by Proposition 3.1 and Proposition 2.3 (4).
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By Proposition 2.3 (b) and Proposition 2.3 (3), the set CXm is determined by the set CXm ,0,m−1, which is determined
by the set CXm ,1,m−2 by Corollary 3.2. Since we have CXm ,1,m−2 ⊂ CXm ,1,1 for every m ≥ 3, an inequality which
holds for elements of CXm ,1,1 also holds for elements of CXm ,1,m−2.

Lemma 3.3. If (n;H1 , . . . , Hm) ∈ CXm ,1,1, then

m
∑
i=1
d0,i − (m − 1)α0 ≥ 0

for some non-negative integer α0 ≥ max1≤i≤m d0,i .

Proof. It suffices to show that ∑mi=1 d0,i ≥ (m − 1)max1≤i≤m d0,i . We phrased the result in this way to make it
consistent with Theorem 3.7.

We use induction on n. The case n = 1 follows from Example 2.4. Now assume that n > 1 and the theorem
holds for every n󸀠 < n. Suppose that there exists (n;H1 , . . . , Hm) ∈ CXm ,1,1 such that

m
∑
i=1
d0,i < (m − 1) max

1≤i≤m
d0,i .

Let P(t) ∈ Mn(ℤp)[t] be a first integral such that cokℤp/pℤp (P(xi)) ≅ Hi/pHi for each i. Applying the Smith nor-
mal form of the constant term of P(t), we may assume that

P(t) = (pA O
O Id0,1

) + tB + pQ(t)

for some A ∈ Mn−d0,1 (ℤp), B ∈ Mn(ℤp) and Q(t) ∈ Mn(ℤp)[t]. Moreover,

P1(t) := (
O O
O Id0,1

) + tB

satisfies d0,P(xi) = d0,P1(xi) for each i so we may assume that

P(t) = (O O
O Id0,1

) + t(B1 B2
B3 B4
) .

Case 1: p ∤ B1. The Smith normal form of B1 gives U, V ∈ GLn−d0,1 (ℤp) such that UB1V = (
1 O
O B󸀠1
) for some

B󸀠1 ∈ Mn−d0,1−1(ℤp). For every non-zero x ∈ Xm , we have

cokℤp/pℤp (P(x)) ≅ cokℤp/pℤp((
U O
O Id0,1

) P(x) (V O
O Id0,1

))

= cokℤp/pℤp((
x O
O xB󸀠1

xUB2

xB3V Id0,1 + xB4
))

≅ cokℤp/pℤp((
x O
O Q(x)

))

for a first integral

Q(t) := (O O
O Id0,1

) + t(B
󸀠
1 B󸀠2
B󸀠3 B󸀠4
) ∈ Mn−1(ℤp)[t].

Then we have d0,Q(x1) = d0,1, d0,Q(xi) = d0,i − 1 for 2 ≤ i ≤ m and (n − 1; cok(Q(x1)), . . . , cok(Q(xm))) contradicts
the induction hypothesis since

m
∑
i=1
d0,Q(xi) − (m − 1) max1≤i≤m

d0,Q(xi) =
m
∑
i=1
d0,i − (m − 1)(max

1≤i≤m
d0,Q(xi) + 1)

≤
m
∑
i=1
d0,i − (m − 1) max

1≤i≤m
d0,i < 0.
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Case 2: p | B1 and [p ∤ B2 or p ∤ B3]. We may assume that p ∤ B2. Choose invertible matrices U and V such that
UB2V = ( 1 O

O B󸀠
2
). For every non-zero x ∈ Xm , we have

cokℤp/pℤp (P(x)) ≅ cokℤp/pℤp((
U O
O V−1

) P(x) (Id1,1 O
O V
))

= cokℤp/pℤp((
O x O

O xB󸀠2
xV−1B3 Id0,1 + xV−1B4V

))

≅ cokℤp/pℤp((
x O
O Q(x)

))

for a first integral

Q(t) := (O O
O Id0,1−1

) + t(O B󸀠2
B󸀠3 B󸀠4
) ∈ Mn−1(ℤp)[t].

Then d0,Q(xi) = d0,i − 1 for 1 ≤ i ≤ m and (n − 1; cok(Q(x1)), . . . , cok(Q(xm))) contradicts the induction hypo-
thesis since

m
∑
i=1
d0,Q(xi) − (m − 1) max1≤i≤m

d0,Q(xi) =
m
∑
i=1
d0,i − (m − 1) max

1≤i≤m
d0,i − 1 < 0.

In the remaining cases, we have p | B1 , B2 , B3 so that d0,1 = max1≤i≤m d0,i . By the same reason, we obtain that
d0,1 = ⋅ ⋅ ⋅ = d0,m . Then we have ∑mi=1 d0,i − (m − 1)max1≤i≤m d0,i = d0,1 ≥ 0, a contradiction.

We need some work to find the conditions for elements of CXm ,1,2.

Lemma 3.4. Assume that J ∈ Mn(ℤp) has a single non-zero row or column. For every r ∈ ℤ≥1, x ∈ ℤp and
A ∈ Mn(ℤp), there exists x0 ∈ ℤp and d ∈ ℤ≥0 such that

di,A = di,A+prxJ for i < r and dr,A+prxJ =
{
{
{

d − 1 or d, x ≡ x0 (mod p),
d, x ̸≡ x0 (mod p).

The matrix J is called singular of order r at x0 over A if dr,A+prx0 J = d − 1.

Proof. Wemay assume J = (J1 On×(n−1)). The isomorphism cokℤp/prℤp (A) ≅ cokℤp/prℤp (A + prxJ) implies that
di,A = di,A+prxJ for each i < r. Let Aj be the j-th column of A for each j and As1 , . . . , AsD (2 ≤ sj ≤ m) any maxi-
mal subset of {A2 , . . . , Am}whose elements are linearly independentmodulo pr+1, i.e.∑Dj=1 cjAsj ≡ 0 (mod pr+1)
implies that c1 , . . . , cD ≡ 0 (mod p). (For example, (1, 1), (1, p + 1) ∈ ℤ2p are not linearly independent modulo p
but are linearly independent modulo p2.) Define

S := {v ∈ ℤnp : there exist c0 , . . . , cD ∈ ℤp such that p ∤ cj for some 0 ≤ j ≤ D
and c0v + c1As1 + ⋅ ⋅ ⋅ + cDAsD ≡ 0 (mod pr+1)}.

Since the number ∑ri=0 di,A is the maximum number of linearly independent columns of A modulo pr+1, we
have

Dx :=
r
∑
i=0
di,A+prxJ =

{
{
{

D if A1 + prxJ1 ∈ S,
D + 1 otherwise.

If we have Dx = D + 1 for every x ∈ ℤp , then the lemma holds for d = dr,A + 1 and any x0 ∈ ℤp . Now assume
that Dx0 = D for some x0 ∈ ℤp . Then there exist c0 , . . . , cD ∈ ℤp such that p ∤ cj for some j and

c0(A1 + prx0J1) + c1As1 + ⋅ ⋅ ⋅ + cDAsD ≡ 0 (mod pr+1).

If p | c0, then c0(A1 + prx0J1) ≡ c0(A1 + prxJ1) (mod pr+1) for every x ∈ ℤp sowe have Dx = D for every x ∈ ℤp .
If p ∤ c0, then A1 + prx0J1 is aℤp-linear combination of As1 , . . . , AsD modulo pr+1. If there exists x1 ̸≡ x0 (mod p)
such that A1 + prx1J1 is a ℤp-linear combination of As1 , . . . , AsD modulo pr+1, then

(A1 + prx0J1) − (A1 + prx1J1)
x0 − x1

= pr J1

is also a ℤp-linear combination of As1 , . . . , AsD modulo pr+1 so we have Dx = D for every x ∈ ℤp . If there is no
such x1, then Dx = D + 1 if and only if x ̸≡ x0 (mod p).
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The following lemma is the most technical part of this paper.

Lemma 3.5. Let P(t) ∈ Mn(ℤp)[t] be a first integral. Then either one of the following holds:
(1) There exists a first integral Q(t) ∈ Mn−1(ℤp)[t] satisfies, for at most one 1 ≤ r ≤ m,

(a) either
{
{
{

d0,Q(xi) = d0,P(xi) − 1 for every 1 ≤ i ≤ m,
d1,Q(xi) ∈ {d1,P(xi) , d1,P(xi) + 1} for i = r and d1,Q(xi) = d1,P(xi) otherwise,

(b) or
{
{
{

d0,Q(xi) = d0,P(xi) for i = r and d0,Q(xi) = d0,P(xi) − 1 otherwise,
d1,Q(xi) ∈ {d1,P(xi) − 1, d1,P(xi) − 2} for i = r and d1,Q(xi) = d1,P(xi) otherwise,

(c) or
{
{
{

d0,Q(xi) = d0,P(xi) for i = r and d0,Q(xi) = d0,P(xi) − 1 otherwise,
d1,Q(xi) = d1,P(xi) for every 1 ≤ i ≤ m.

(2) The number d0,P(xi) is constant for every 1 ≤ i ≤ m and there exists a first integral Q(t) ∈ Mn−d0,P(xi ) (ℤp)[t]
satisfying d0,Q(xi) = 0 and d1,Q(xi) = d1,P(xi) for each i.

Proof. As in the proof of Lemma 3.3, we may assume that

P(t) := (
O O O
O pId1,1 O
O O Id0,1

)+ t(
B11 B12 B13
B21 B22 B23
B31 B32 B33

)+ pt2C ∈ M(n−d0,1−d1,1)+d1,1+d0,1 (ℤp).

Denote d󸀠2,1 := ∑r∈ℤ≥2 dr,1 = n − (d0,1 + d1,1) for simplicity.

Case 1: p ∤ B11. The Smith normal form of B11 gives U, V ∈ GLd󸀠2,1 (ℤp) such that UB11V = ( 1 O
O Brd11
) for some

Brd11 ∈ Md󸀠2,1−1(ℤp). Then for every non-zero x ∈ Xm , we have

cokℤp/p2ℤp (P(x)) ≅ cokℤp/p2ℤp ((
U O
O Id0,1+d1,1

) P(x) (V O
O Id0,1+d1,1

))

= cokℤp/p2ℤp((

x O
O xBrd11

xUB12 xUB13

xB21V pId1,1 + xB22 xB23
xB31V xB32 Id0,1 + xB33

)+ px2C1)

= cokℤp/p2ℤp((

x O xBu12 xBu13
O xBrd11 xBd12 xBd13
xBl21 xBr21 pId1,1 + xB22 xB23
xBl31 xBr31 xB32 Id0,1 + xB33

)+ px2C1)

≅ cokℤp/p2ℤp((

x O O O
O xBrd11 xBd12 xBd13
O xBr21 pId1,1 + xB󸀠22 xB󸀠23
O xBr31 xB󸀠32 Id0,1 + xB󸀠33

)+ px2 ( c Cru
Cld Crd

))

≅ cokℤp/p2ℤp (Q(x))

for

Q(t) := (
O O O
O pId1,1 O
O O Id0,1

)+ t(
Brd11 Bd12 Bd13
Br21 B󸀠22 B󸀠23
Br31 B󸀠32 B󸀠33

)+ pt2Crd ∈ Mn−1(ℤp)[t].

Here the last isomorphism is due to the relation

cokℤp/p2ℤp ((
x + pcx2 pf1(x)
pf2(x) Q(x)

)) ≅ cokℤp/p2ℤp ((
x + pcx2 O

O Q(x) − pf2(x)(x + pcx2)−1pf1(x)
))

≅ cokℤp/p2ℤp (Q(x))
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for every x ̸≡ 0 (mod p). Since Q(t) is a first integral with d0,Q(x1) = d0,P(x1), d0,Q(xi) = d0,P(xi) − 1 for every
2 ≤ i ≤ m and d1,Q(xi) = d1,P(xi) for every 1 ≤ i ≤ m, it satisfies condition (c) for r = 1.

Case 2: p | B11 and [p ∤ B12 or p ∤ B21]. We may assume that p ∤ B12. Choose invertible matrices U and V such
that UB12V = ( 1 O

O Brd12
) and write B11 = pB󸀠11. Then for every non-zero x ∈ Xm , we have

cokℤp/p2ℤp (P(x)) ≅ cokℤp/p2ℤp((
U O O
O V−1 O
O O Id0,1

) P(x)(
Id󸀠2,1 O O
O V O
O O Id0,1

))

= cokℤp/p2ℤp((
pxUB󸀠11

x O
O xBrd12

xUB13

xV−1B21 pId1,1 + xV−1B22V xV−1B23
xB31 xB32V Id0,1 + xB33

)+ px2C1)

= cokℤp/p2ℤp((

pxBu11 x O xBu13
pxBd11 O xBrd12 xBd13
xBu21 p + xBlu22 xBru22 xBu23
xBd21 xBld22 pId1,1−1 + xBrd22 xBd23
xB31 xBl32 xBr32 Id0,1 + xB33

)+ px2C1)

≅ cokℤp/p2ℤp(

(

(

(

O x O O
pxBd11 O xBrd12 xBd13
xBu󸀠21 p xBru22 −pBu13 + xB

u󸀠
23

xBd󸀠21 O pId1,1−1 + xBrd22 xBd󸀠23
xB󸀠31 O xBr32 Id0,1 + xB󸀠33

)

)

+ px2C2)

)

≅ cokℤp/p2ℤp((

O x + pcx2 O

xBl + px2Cl O (

O O
O −pBu13

pId1,1−1 O
O Id0,1

)+ xBr + px2Cr
)) .

Then

Q(t) := (

O O O
O O −pBu13
O pId1,1−1 O
O O Id0,1

)+ t (Bl Br) + pt2 (Cl Cr) ∈ Mn−1(ℤp)[t]

satisfies condition (b) for r = 1.

Case 3: [p | B11 , B12 , B21] and [p ∤ B13 or p ∤ B31]. We may assume that p ∤ B13. Choose invertible matrices U
and V such that UB13V = ( 1 O

O Brd13
) and write Bij = pB󸀠ij for (i, j) ∈ {(1, 1), (1, 2)}. Then for every non-zero x ∈ Xm ,

we have

cokℤp/p2ℤp (P(x)) ≅ cokℤp/p2ℤp((
U O O
O Id1,1 O
O O V−1

) P(x)(
Id󸀠2,1 O O
O Id1,1 O
O O V

))

= cokℤp/p2ℤp((
pxUB󸀠11 pxUB󸀠12

x O
O xBrd13

xB21 pId1,1 + xB22 xB23V
xV−1B31 xV−1B32 Id0,1 + xV−1B33V

)+ px2C1)

= cokℤp/p2ℤp((

pxBu11 pxBu12 x O
pxBd11 pxBd12 O xBrd13
xB21 pId1,1 + xB22 xBl23 xBr23
xBu31 xBu32 1 + xBlu33 xBru33
xBd31 xBd32 xBld33 Id0,1−1 + xBrd33

)+ px2C1)
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≅ cokℤp/p2ℤp(

(

(

(

O O x O
pxBd11 pxBd12 O xBrd13
xB󸀠21 pId1,1 + xB󸀠22 O xBr23

−pBu11 + xB
u󸀠
31 −pB

u
12 + xB

u󸀠
32 1 xBru33

xBd󸀠31 xBd󸀠32 O Id0,1−1 + xBrd33

)

)

+ px2C2)

)

≅ cokℤp/p2ℤp((

O x + pcx2 O

(

O O
O pId1,1
−pBu11 −pB

u
12

O O

) + xBl + px2Cl O (
O
O
O

Id0,1−1
) + xBr + px2Cr

)) .

Then

Q(t) := (

O O O
O pId1,1 O
−pBu11 −pB

u
12 O

O O Id0,1−1

)+ t (Bl Br) + pt2 (Cl Cr) ∈ Mn−1(ℤp)[t]

satisfies condition (a) for any r.

Case 4: [p | B11 , B12 , B21 , B13 , B31] and p ∤ B22. Choose invertiblematricesU and V such thatUB22V = ( 1 O
O Brd22
) and

write Bij = pB󸀠ij for (i, j) ∈ {(1, 1), (1, 2), (2, 1)}. Let UV = (
d D1
D2 D3
) ∈ GLd1,1 (ℤp). Then for every non-zero x ∈ Xm ,

we have

cokℤp/p2ℤp (P(x)) ≅ cokℤp/p2ℤp((
Id󸀠2,1 O O
O U O
O O Id0,1

) P(x)(
Id󸀠2,1 O O
O V O
O O Id0,1

))

= cokℤp/p2ℤp((

pxB󸀠11 pxB󸀠12V xB13

pxUB󸀠21
x + pd pD1
pD2 pD3 + xBrd22

xUB23

xB31 xB32V Id0,1 + xB33

)+ px2C1)

= cokℤp/p2ℤp((

pxB󸀠11 pxBl12 pxBr12 xB13
pxBu21 x + pd pD1 xBu23
pxBd21 pD2 pD3 + xBrd22 xBd23
xB31 xBl32 xBr32 Id0,1 + xB33

)+ px2C1)

≅ cokℤp/p2ℤp((

pxB󸀠11 O pxBr12 xB󸀠13
O x + pd pD1 −pdBu23

pxBd21 pD2 pD3 + xBrd22 −pD2Bu23 + xB
d
23

xB󸀠31 −pdB
l
32 −pB

l
32D1 + xB

r
32 Id0,1 − pdBl32B

u
23 + xB

󸀠
33

)+ px2C2)

≅ cokℤp/p2ℤp((
xB󸀠11 + px2Clu O xBru + px2Cru

O x + p(d + cx2) O
xBld + px2Cld O (

pD3 pAru
pAld Id0,1+pArd

) + xBrd + px2Crd
)) .

Then

Q(t) := (
O O O
O pD3 pAru
O pAld Id0,1 + pArd

)+ t(B
󸀠
11 Bru
Bld Brd

) + pt2 (Clu Cru
Cld Crd

) ∈ Mn−1(ℤp)[t]

satisfies condition (b) for r = 1 if rank𝔽p (D3) ∈ {d1,1 − 1, d1,1 − 2}. This is true by the inequality

rank𝔽p (D3) ≥ rank𝔽p (D2 D3) − 1 ≥ rank𝔽p (UV) − 2 = d1,1 − 2.

Case 5: [p | B11 , B12 , B21 , B13 , B31 , B22] and [p ∤ B23 or p ∤ B32]. We may assume that p ∤ B23. Choose invertible
matrices U and V such that UB23V = ( 1 O

O Brd23
) and write

Bij = pB󸀠ij for each i + j ≤ 4.
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Then for every non-zero x ∈ Xm , we have

cokℤp/p2ℤp (P(x))

≅ cokℤp/p2ℤp((
Id󸀠2,1 O O
O U O
O O V−1

) P(x)(
Id󸀠2,1 O O
O U−1 O
O O V

))

= cokℤp/p2ℤp((

pxB󸀠11 pxB󸀠12U−1 pxB󸀠13V

pxUB󸀠21 pId1,1 + pxUB󸀠22U−1
x O
O xBrd23

pxV−1B󸀠31 xV−1B32U−1 Id0,1 + xV−1B33V

)+ px2C1)

= cokℤp/p2ℤp
(((

(

(((

(

pxB󸀠11 pxBl12 pxBr12 pxBl13 pxBr13
pxBu21 p + pxblu22 pxBru22 x O
pxBd21 pxBld22 pId1,1−1 + pxBrd22 O xBrd23
pxBu31 xblu32 xBru32 1 + xblu33 xBru33
pxBd31 xBld32 xBrd32 xBld33 Id0,1−1 + xBrd33

)))

)

+ px2C1
)))

)

≅ cokℤp/p2ℤp
(((

(

(((

(

pxB󸀠11 pxBl12 pxBr12 O pxBr13
O p O x O

pxBd21 pxBld22 pId1,1−1 + pxBrd22 O xBrd23
pA1 + pxBu

󸀠

31 pa2 + xblu
󸀠

32 pA3 + xBru
󸀠

32 1 xBru33
pxBd󸀠31 pA4 + xBld

󸀠

32 xBrd󸀠32 O Id0,1−1 + xBrd33

)))

)

+ px2C2
)))

)

≅ cokℤp/p2ℤp((

∗ ∗ ∗ O ∗
O O O x + pcx2 O
∗ ∗ pId1,1−1 + ∗ O ∗

pA1 + ∗ p(x + pcx2)−1 + pa2 + ∗ pA3 + ∗ O ∗
∗ pA4 + ∗ ∗ O Id0,1−1 + ∗

))

≅ cokℤp/p2ℤp (px
−1J + P1(x)),

where each ∗ is of the form xB + px2C,

J := (

O O O O
O O O O
O −1 O O
O O O O

) ∈ Mn−1(ℤp) (Jn−d0,1 ,d󸀠2,1+1 = −1)

and

P1(t) := (

O O O O
O O pId1,1−1 O
pA1 pa2 pA3 O
O pA4 O Id0,1−1

)+ tB󸀠 + pt2C󸀠 ∈ Mn−1(ℤp)[t].

Now we have d0,P1(xi) = d0,i − 1 and |d1,P1(xi) − d1,i| ≤ 1 by Lemma 3.4. Precisely,

d1,P1(x1) =
{
{
{

d1,1 − 1 if p | A1 and p | a2 ,
d1,1 otherwise,

and for every 2 ≤ i ≤ m,

d1,P1(xi) =
{{{
{{{
{

d1,i + 1 if J is singular of order 1 at x−1i over P1(xi),
d1,i − 1 if J is singular of order 1 at 0 over P1(xi),
d1,i otherwise.

Let P1(t) = (q1(t) ⋅ ⋅ ⋅ qn−1(t)) and qi(t) = ai + tbi + pt2ci for some ai , bi , ci ∈ ℤn−1p .
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Case 5.1: J is singular of order 1 at x−1r over P1(xr) for some 2 ≤ r ≤ m. Let ei be the i-th unit vector in ℤn−1p , so
that the non-zero column of J is −en−d0,1 . The proof of Lemma 3.4 tells us that the (d󸀠2,1 + 1)-th column of P1(xr)
is a ℤp-linear combination of other columns of P1(xr), i.e.

qd󸀠2,1+1(xr) − px
−1
r en−d0,1 ≡ ∑

i ̸=d󸀠2,1+1
ciqi(xr) (mod p2)

for some ci ∈ ℤp (i ̸= d󸀠2,1). Then

(pt−1J + P1(t))

((((((((

(

Id󸀠2,1

−c1
...
−cd󸀠2,1

O

O 1 O

O

−cd󸀠2,1+2
...
−cn−1

Id0,1+d1,1−2

))))))))

)

= (q1(t) ⋅ ⋅ ⋅ qd󸀠2,1 (t) g(t) qd󸀠2,1+2(t) ⋅ ⋅ ⋅ qn−1(t))

and g(xr) ≡ 0 (mod p2) so we have g(t) ≡ (t − xr)f(t) (mod p2) for

f(t) := pt−1x−1r en−d0,1 + a󸀠 + ptb󸀠 (a󸀠 , b󸀠 ∈ ℤn−1p ).

Now
P2(t) := (q1(t) ⋅ ⋅ ⋅ qd󸀠2,1 (t) tf(t) qd󸀠2,1+2(t) ⋅ ⋅ ⋅ qn−1(t)) ∈ Mn−1(ℤp)[t]

satisfies condition (a) or (c) for the same r.
∙ For i ̸∈ {1, r}, we have

cokℤp/p2ℤp (P(xi)) ≅ cokℤp/p2ℤp (px
−1
i J + P1(xi)) ≅ cokℤp/p2ℤp (P2(xi))

so d0,P2(xi) = d0,i − 1 and d1,P2(xi) = d1,i .
∙ For i = 1, we have

P2(0) = (

O O O O
O O pId1,1−1 O
pA1 px−1r pA3 O
O O O Id0,1−1

)

so d0,P2(x1) = d0,1 − 1 and d1,P2(x1) = d1,1.
∙ For i = r, we have

cokℤp/p2ℤp (P(xr)) ≅ cokℤp/p2ℤp (px
−1
r J + P1(xr))

≅ cokℤp/p2ℤp (q1(t) ⋅ ⋅ ⋅ qd󸀠2,1 (t) qd󸀠2,1+2(t) ⋅ ⋅ ⋅ qn−1(t))

so (d0,P2(xr) , d1,P2(xr)) ∈ {(d0,r , d1,r), (d0,r − 1, d1,r), (d0,r − 1, d1,r + 1)}.

Case 5.2: J is not singular of order 1 at x−1r over P1(xr) for all 2 ≤ r ≤ m. Let

Pb(t) := p(a2 + 1 + bt)J + P1(t) ∈ Mn−1(ℤp)[t]

for b ∈ {0, 1, . . . , p − 1}. Then we have

cokℤp/p2ℤp (px
−1
r J + P1(xr)) ≅ cokℤp/p2ℤp (Pb(xr))

unless J is singular of order 1 at a2 + 1 + bxr over P1(xr). Since p > m − 1, one can choose b0 ∈ {0, 1, . . . , p − 1}
such that J is not singular of order 1 at a2 + 1 + b0xr over P1(xr) for every 2 ≤ r ≤ m. Now Pb0 (t) is a first integral
and satisfies condition (a) for r = 1.
∙ For i ̸= 1, we have

cokℤp/p2ℤp (P(xi)) ≅ cokℤp/p2ℤp (px
−1
i J + P1(xi)) ≅ cokℤp/p2ℤp (Pb0 (xi))

so d0,Pb0 (xi) = d0,i − 1 and d1,Pb0 (xi) = d1,i .
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∙ For i = 1,

Pb0 (0) = (

O O O O
O O pId1,1−1 O
pA1 −p pA3 O
O pA4 O Id0,1−1

)

so d0,Pb0 (x1) = d0,1 − 1 and d1,Pb0 (x1) = d1,1.

In the remaining cases, we have Bij ≡ 0 (mod p) except for (i, j) = (3, 3) so that d0,1 = max1≤i≤m d0,i . By the same
reason, we have d0,1 = ⋅ ⋅ ⋅ = d0,m . Then the matrix Id0,1 + xiB33 + px2i C33 is invertible for each i and thus

Q(t) := (O O
O pId1,1

) + t(B11 B12
B21 B22

) + pt2 (C11 C12
C21 C22

)

satisfies condition (2).

3.2 Necessary condition for an element of CX4

For a given (n;H1 , . . . , Hm) ∈ CXm ,1,∞, there exists a first integral P(t) ∈ Mn(ℤp)[t] such that cok(P(xi)) ≅ Hi
for each i. We will use Lemma 3.5 repeatedly until we obtain (n󸀠;H󸀠1 , . . . , H󸀠m) ∈ CXm ,1,∞ which satisfies
rank𝔽p (H󸀠i /pH

󸀠
i ) = n

󸀠 for each i. For the case m = 4, the elements of (n󸀠;H󸀠1 , . . . , H
󸀠
4) ∈ CX4 ,1,2 which satisfies

rank𝔽p (H󸀠i /pH
󸀠
i ) = n

󸀠 for each i bijectively corresponds to the elements of CX4 ,2,1 by Proposition 2.3 (4). The
following lemma, which provides an information about the set CX4 ,2,1, is a generalization of Lemma 3.3.

Lemma 3.6. If (n;H1 , . . . , Hm) ∈ CXm ,l,1 and l ≤ m, then
m
∑
i=1
d0,i − (m − l)α0 ≥ 0

for some non-negative integer α0 ≥ max1≤i≤m d0,i .

Proof. We use induction on n. The case n = 1 follows from Example 2.4. Now assume that n > 1 and the lemma
holds for every n󸀠 < n. Suppose that there exists (n;H1 , . . . , Hm) ∈ CXm ,l,1 such that

m
∑
i=1
d0,i < (m − l) max

1≤i≤m
d0,i .

As in the proof of Lemma 3.3, we may assume that d0,1 = max1≤i≤m d0,i and there exists an l-th integral

P(t) = (O O
O Id0,1

) + tA1 + ⋅ ⋅ ⋅ + tlAl ∈ Mn(ℤp)[t]

such that cokℤp/pℤp (P(xi)) ≅ Hi/pHi for each i.
Assume that d0,1 < n and let Q(t) ∈ Mn−1(ℤp)[t] be the l-th integral which is obtained by eliminating first

column and row from P(t). Then we have d0,Q(x1) = d0,1 and d0,Q(xi) ≤ d0,i ≤ d0,1 for 2 ≤ i ≤ m. The induction
hypothesis implies that

m
∑
i=1
d0,i − (m − l) max

1≤i≤m
d0,i ≥

m
∑
i=1
d0,Q(xi) − (m − l) max1≤i≤m

d0,Q(xi) ≥ 0,

which is a contradiction. Thus we have d0,1 = n. Now consider the first integral

P1(t) :=((

(

tI A0
−I tI A1

. . . . . .
...

−I tI Al−2
−I Al−1 + tAl

))

)

∈ Mln(ℤp)[t],
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where A0 = P(0) = ( O O
O Id0,1 ). It satisfies cok(P1(t)) ≅ cok(P(t)) so that d0,P1(xi) = d0,i + (l − 1)n for every 1 ≤ i ≤ m

and max1≤i≤m d0,P1(xi) = ln. Then we have
m
∑
i=1
d0,i − (m − l)n =

m
∑
i=1
d0,P1(xi) − (m − 1)ln ≥ 0

by Lemma 3.3, which is a contradiction. This finishes the proof.

Now we prove a necessary condition for an element of CXm ,1,2 using Lemma 3.5 and 3.6.

Theorem 3.7. If (n;H1 , . . . , Hm) ∈ CXm ,1,2, then
m
∑
i=1
d0,i − (m − 1)α0 ≥ 0

and

(
m
∑
i=1
d0,i − (m − 1)α0) + (

m
∑
i=1

min(d1,i , α1) − (m − 2)α1) ≥ 0

for some non-negative integers α0 and α1 such that α0 ≥ max1≤i≤m d0,i and 2α0 + α1 ≥ max1≤i≤m(2d0,i + d1,i).

Proof. We use induction on n. The case n = 1 follows from Example 2.4. Now assume that n > 1 and the theo-
rem holds for every n󸀠 < n. Let P(t) ∈ Mn(ℤp)[t] be a first integral such that cokℤp/p2ℤp (P(xi)) ≅ Hi/p2Hi for
each i. If d0,i = 0 for each i, then we have (n; pH1 , . . . , pHm) ∈ CXm ,2,1 by Proposition 2.3 (4) and d0,pHi = d1,i . By
Lemma 3.6, there exists β0 ≥ max1≤i≤m d0,pHi such that ∑

m
i=1 d0,pHi − (m − 2)β0 ≥ 0. Now (α0 , α1) = (0, β0) satis-

fies the desired properties. Otherwise, choose a first integral Q(t) ∈ Mn󸀠 (ℤp) with n󸀠 < n satisfying one of the
conditions in Lemma 3.5. By the induction hypothesis, we have

m
∑
i=1
d0,Q(xi) − (m − 1)α󸀠0 ≥ 0

and

(
m
∑
i=1
d0,Q(xi) − (m − 1)α󸀠0) + (

m
∑
i=1

min(d1,Q(xi) , α󸀠1) − (m − 2)α
󸀠
1) ≥ 0

for some α󸀠0 , α
󸀠
1 ∈ ℤ≥0 such that α󸀠0 ≥ max1≤i≤m d0,Q(xi) and 2α󸀠0 + α

󸀠
1 ≥ max1≤i≤m(2d0,Q(xi) + d1,Q(xi)). Now we

divide the cases according to the condition of Q(t).

Case 1: Q(t) satisfies condition (1) of Lemma 3.5. Let (α0 , α1) = (α󸀠0 + 1, α
󸀠
1). Then we have

α0 ≥ max
1≤i≤m

d0,Q(xi) + 1 = max1≤i≤m
d0,i ,

2α0 + α1 ≥ max
1≤i≤m
(2(d0,Q(xi) + 1) + d1,Q(xi)) ≥ max1≤i≤m

(2d0,i + d1,i),

m
∑
i=1
d0,i − (m − 1)α0 ≥

m
∑
i=1
d0,Q(xi) − (m − 1)α󸀠0 ≥ 0.

If Q(t) satisfies condition (a), then we have

0 ≤ (
m
∑
i=1
d0,Q(xi) − (m − 1)α󸀠0 + 1) + (

m
∑
i=1

min(d1,Q(xi) , α󸀠1) − (m − 2)α
󸀠
1 − 1)

≤ (
m
∑
i=1
d0,i − (m − 1)α0) + (

m
∑
i=1

min(d1,i , α1) − (m − 2)α1).

If Q(t) satisfies condition (b) or (c), then we have

0 ≤ (
m
∑
i=1
d0,Q(xi) − (m − 1)α󸀠0) + (

m
∑
i=1

min(d1,Q(xi) , α󸀠1) − (m − 2)α
󸀠
1)

≤ (
m
∑
i=1
d0,i − (m − 1)α0) + (

m
∑
i=1

min(d1,i , α1) − (m − 2)α1).
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Case 2: Q(t) satisfies condition (2) of Lemma 3.5. In this case, α󸀠0 = 0 and ∑
m
i=1min(d1,i , α

󸀠
1) − (m − 2)α

󸀠
1 ≥ 0 for

some α󸀠1 ≥ max1≤i≤m d1,i . Let d0 = d0,i for each i and (α0 , α1) = (d0 , α
󸀠
1). Then we have

α0 ≥ max
1≤i≤m

d0,i ,

2α0 + α1 ≥ 2 max
1≤i≤m

d0,i + max
1≤i≤m

d1,i ≥ max
1≤i≤m
(2d0,i + d1,i),

m
∑
i=1
d0,i − (m − 1)α0 = md0 − (m − 1)d0 ≥ 0,

d0 ≤ (
m
∑
i=1
d0,i − (m − 1)α0) + (

m
∑
i=1

min(d1,i , α1) − (m − 2)α1).

As a corollary of Theorem 3.7, we prove one direction of Theorem 1.8 for the case m = 4.

Corollary 3.8. The inclusion

CX4 ⊂ {(H1 , H2 , H3 , H4) ∈M4
ℤp : s1 = s2 = s3 = s4 , 3d1,i ≤ D1 (1 ≤ i ≤ 4) and

d1,i + 2(d1,j + d2,j) ≤ D1 + D2 (1 ≤ i, j ≤ 4)}

holds where si = rank𝔽p (Hi/pHi) (1 ≤ i ≤ 4) and Dr = ∑4i=1 dr,i for r = 1, 2.

Proof. Suppose that (H1 , H2 , H3 , H4) ∈ CX4 . By Proposition 2.3, we have

s1 = s2 = s3 = s4 and (n; pH1 , pH2 , pH3 , pH4) ∈ CX4 ,1,∞ = CX4 ,1,2

for some n ∈ ℤ≥1. Let P(t) ∈ Mn(ℤp)[t] be a first integral which satisfies cokℤp/p2ℤp (P(xi)) ≅ pHi/p3Hi so that
d0,P(xi) = d1,i and d1,P(xi) = d2,i for each i. By Theorem 3.7, there exist α0 , α1 ∈ ℤ≥0 such that

D1 − 3α0 ≥ 0 and (D1 − 3α0) + (
4
∑
i=1

min(d2,i , α1) − 2α1) ≥ 0

with α0 ≥ max1≤i≤4 d1,i and 2α0 + α1 ≥ max1≤i≤4(2d1,i + d2,i).
∙ For every 1 ≤ i ≤ 4, we have 3d1,i ≤ 3α0 ≤ D1.
∙ For every 1 ≤ i, j ≤ 4, we have

D1 + D2 − d2,j ≥ (D1 − 3α0) + (
4
∑
i0=1

min(d2,i0 , α1) − 2α1) + (3α0 + α1)

≥ α0 + (2α0 + α1) ≥ d1,i + (2d1,j + d2,j)

so we conclude that d1,i + 2(d1,j + d2,j) ≤ D1 + D2.

3.3 Zone theory

In this subsection, we prove the sufficient condition of Theorem 1.8 form = 4.Wewill find a generating set ofCX4
andwill prove that each element in a generating set satisfies the desired condition. To do this,we introduce away
to visualize an element ofBm .

Definition 3.9. For given k ∈ ℤ≥0, a k-presentation of (n;H1 , . . . , Hm) ∈ Bm (denoted by Prsk(n;H1 , . . . , Hm)) is
anm × nmatrixwith entries in {0, 1, . . . , k − 1, k+}whose i-th row contains dr,i numbers of r (0 ≤ r ≤ k − 1) and
∑r∈ℤ≥k dr,i numbers of k

+. (It is unique up to ordering of the numbers in each row.) Each entry in a presentation
of a block is called a type.

Remark 3.10. For given l ∈ ℤ≥0 and k ∈ ℤ≥0, assume that Prsk(n;H1 , . . . , Hm) = Prsk(n;H󸀠1 , . . . , H󸀠m). Then we
have Hi/pkHi ≅ H󸀠i /p

kH󸀠i for each i so (n;H1 , . . . , Hm) ∈ CXm ,l,k if and only if (n;H󸀠1 , . . . , H󸀠m) ∈ CXm ,l,k . Hence it
is enough to consider a k-presentation of (n;H1 , . . . , Hm) to determine whether it is an element of CXm ,l,k or not.
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[[

[

0 0 1 1 1 2 2 2 2
1 0 0 1 1 1 3+ 3+ 0
0 0 3+ 3+ 0 0 0 3+ 3+

]]

]

Figure 1: A 3-presentation of (9; (ℤp/pℤp)3 × (ℤp/p2ℤp)4 , (ℤp/pℤp)4 × (ℤp/p3ℤp)2 ,ℤ4p) ∈ B4.

A k-presentation of a sum of two elements in Bm is given by the concatenation of a k-presentation of each
element. By Proposition 2.3 (1), the set of k-presentations of elements in CXm ,l,k is closed under concatenation.

Example 3.11. The equation (3; (ℤp/pℤp)2 , 1) + (2; 1,ℤp/pℤp) = (5; (ℤp/pℤp)2 ,ℤp/pℤp) is presented as

[
0 1 1
0 0 0

] + [
0 0
0 1
] = [

0 1 1 0 0
0 0 0 0 1

] = [
0 0 0 1 1
0 0 0 0 1

] .

Consider an action of a permutation group Sm on Bm by σ ⋅ (n;H1 , . . . , Hm) := (n;Hσ(1) , . . . , Hσ(m)). Then
Prsk(σ ⋅ (n;H1 , . . . , Hm)) is obtained by permuting the rows of Prsk(n;H1 , . . . , Hm) according to σ. For a subset
A ⊂ Bm , denote Sm ⋅A := {σ ⋅ (n;H1 , . . . , Hm) : σ ∈ Sm , (n;H1 , . . . , Hm) ∈ A} ⊂ Bm .

Now we are ready to find a generating set of CXm ,1,1. Note that, by the proof of Lemma 3.3, for any element
(n;H1 , . . . , Hm) ∈ CXm ,1,1, either one of the following holds:
(1) There exists a 1-presentation P of an element of CXm ,1,1 such that one of the following holds:

(a) P + σ ⋅ (1+ 0 ⋅ ⋅ ⋅ 0)
T
= Prs1(n;H1 , . . . , Hm) for some σ ∈ Sm .

(b) P + (0 ⋅ ⋅ ⋅ 0)
T
= Prs1(n;H1 , . . . , Hm),

(2) There is no type 0 on Prs1(n;H1 , . . . , Hm).
We can repeat the above procedure until we find a 1-presentation PH of an element of CXm ,1,1 which has no
type 0 and there exist r1 , . . . , rt ∈ ℤ≥0 and σ1 , . . . , σt ∈ Sm such that

PH +
t
∑
i=1
σi ⋅ (1;ℤp/priℤp , 1, . . . , 1) = Prs1(n;H1 , . . . , Hm).

SincePH has no type 0, it is also a 1-presentation of an element of φ−11,0(CXm ,2,0) = φ
−1
1,0(Bm) by Proposition 2.3 (4).

Conversely, by Example 2.4, σ ⋅ (1;ℤp/prℤp , 1, . . . , 1) ∈ CXm ,1,1 for every r ∈ ℤ≥0 and σ ∈ Sm . Hence we proved
that CXm ,1,1 = ⟨A0,1 ∪A1,m⟩, where

Ar,d := Sm ⋅ {(1;ℤp/pr1ℤp , . . . ,ℤp/prdℤp ,ℤp/prℤp , . . . ,ℤp/prℤp) ∈ Bm : r1 , . . . , rd ∈ ℤ≥r}

for r ∈ ℤ≥0 and 0 ≤ d ≤ m. We can generalize this to the set CXm ,l,1 for every 1 ≤ l ≤ m.

Theorem 3.12. For every 1 ≤ l ≤ m, CXm ,l,1 = ⟨A0,l ∪A1,m⟩ and (n;H1 , . . . , Hm) ∈ CXm ,l,1 if and only if
m
∑
i=1
d0,i − (m − l)α0 ≥ 0 (3.1)

for some (non-negative) integer α0 ≥ max1≤i≤m d0,i .

Proof. Consider the sets S1 := ⟨A0,l ∪A1,m⟩ and

S2 := {(n;H1 , . . . , Hm) ∈ Bm : inequality (3.1) holds for some integer α0 ≥ max
1≤i≤m

d0,i}.

By Example 2.4, we haveA0,l ,A1,m ⊂ CXm ,l,1 so S1 ⊂ CXm ,l,1. Lemma 3.6 implies CXm ,l,1 ⊂ S2. Now it is enough to
show that S2 ⊂ S1. For any element (n;H1 , . . . , Hm) ∈ S2, there exists a non-negative integer α0 ≥ max1≤i≤m d0,i
which satisfies inequality (3.1). If d0,i = 0 for each i, then eachHi is of the form∏nk=1ℤp/prkℤp (r1 , . . . , rn ∈ ℤ≥1)
so (n;H1 , . . . , Hm) ∈ ⟨A1,m⟩. Now assume that d0,i ≥ 1 for some i, so that α0 ≥ 1. Also we may assume that
α0 = max1≤i≤m d0,i ≤ n.

For an integer a, let [a]α0 be an integer such that a ≡ [a]α0 (mod α0) and 1 ≤ [a]α0 ≤ α0. Choose a 1-presenta-
tion Prs1(n;H1 , . . . , Hm)whose r-th row has type 0 at columns [ar]α0 for∑

r−1
i=1 d0,i + 1 ≤ ar ≤ ∑

r
i=1 d0,i for every

1 ≤ r ≤ m. (See Figure 2.) By the inequality (3.1), each of the first α0 columns has at least m − l type 0’s so it
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[[[[

[

0 0 0 1+ 1+ 1+ 1+ 1+

0 0 1+ 0 1+ 1+ 1+ 1+

1+ 1+ 0 0 1+ 1+ 1+ 1+

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Zero

0 0 0 0 ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
One+

1+ 1+ 1+ 1+

]]]]

]

Figure 2: A choice of a 1-presentation of (8; (ℤp/pℤp)5 , (ℤp/pℤp)2 × (ℤp/p2ℤp)3 , (ℤp/pℤp)2 × (ℤp/p3ℤp)4 ,ℤ4p) ∈ B4.

is a 1-presentation of an element of A0,l . The remaining columns have no type 0 so they are 1-presentations
of elements of A1,m . Thus Prs1(n;H1 , . . . , Hm) = Prs1(n;H󸀠1 , . . . , H󸀠m) for some (n;H

󸀠
1 , . . . , H󸀠m) ∈ S1 such that

Hi/pHi ≅ H󸀠i /pH
󸀠
i for each i. By the definition of the setsA0,l andA1,m , if we replace a termℤp/prℤp (r ∈ ℤ≥1)

in H󸀠i with ℤp/p
r󸀠ℤp for any r󸀠 ∈ ℤ≥1, then it is still an element of S1. By iterating this process, we conclude

that (n;H1 , . . . , Hm) ∈ S1.

Similarly, one can find a generating set of CXm ,1,2 as follows.

Lemma 3.13. We haveDm = Dm,1 ∪Dm,2 ⊂ CXm ,1,2 for

Dm,1 := Sm ⋅ {(d + 1;ℤp/pr1ℤp , . . . ,ℤp/prd+2ℤp ,ℤp/pℤp , . . . ,ℤp/pℤp) ∈ Bm : 0 ≤ d ≤ m − 2 and
r1 , . . . , rd+2 ∈ ℤ≥2}

and

Dm,2 := Sm ⋅ {(d + 1; (ℤp/pℤp)2 , . . . , (ℤp/pℤp)2 ,ℤp/pr1ℤp , . . . ,ℤp/prm−dℤp) ∈ Bm : 0 ≤ d ≤ m and
r1 , . . . , rm−d ∈ ℤ≥2}.

Proof. For 0 ≤ d ≤ m − 2 and f1(t) = ∑d+2k=0 ak tk := ∏
d+2
j=1 (t − xj), the first integral

P1(t) :=((

(

1 pad+1t + pad+2t2

−t 1 par t
. . . . . .

...
−t 1 pa2t
−t pa0 + pa1t

))

)

∈ Md+1(ℤp)[t]

satisfies cok(P1(t)) ≅ cok(pf1(t)) so we haveDm,1 ⊂ CXm ,1,2. For 0 ≤ d ≤ m, the first integral

P2(t) :=(

t − x1 p
. . .

...
t − xd p

p ⋅ ⋅ ⋅ p

) ∈ Md+1(ℤp)[t]

satisfies cok(P2(xi)) ≅ (ℤp/pℤp)2 for 1 ≤ i ≤ d and cok(P2(xi)) ≅ ℤp/priℤp (ri ∈ ℤ≥2) for d + 1 ≤ i ≤ m so we
haveDm,2 ⊂ CXm ,1,2.

Theorem 3.14. We have CXm ,1,2 = ⟨A0,1 ∪A1,2 ∪A2,m ∪Dm⟩. Moreover, (n;H1 , . . . , Hm) ∈ CXm ,1,2 if and only if
m
∑
i=1
d0,i − (m − 1)α0 ≥ 0, (3.2)

(
m
∑
i=1
d0,i − (m − 1)α0) + (

m
∑
i=1

min(d1,i , α1) − (m − 2)α1) ≥ 0 (3.3)

for some non-negative integers α0 and α1 such that α0 ≥ max1≤i≤m d0,i and 2α0 + α1 ≥ max1≤i≤m(2d0,i + d1,i).

Proof. Consider the sets S1 := ⟨A0,1 ∪A1,2 ∪A2,m ∪Dm⟩ and

S2 := {(n;H1 , . . . , Hm) ∈ Bm : inequalities (3.2) and (3.3) hold for some α0 , α1 ∈ ℤ≥0
such that α0 ≥ max

1≤i≤m
d0,i and 2α0 + α1 ≥ max

1≤i≤m
(2d0,i + d1,i)}.
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[[[[

[

0 0 0 0 ∗ ∗
0 0 ∗ ∗ 1 1
0 ∗ 0 0 1 ∗

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Zero

0 0 0 0 ⏟⏟⏟⏟⏟⏟⏟⏟⏟
One

∗ ∗

]]]]

]

→
[[[[

[

0 0 0 0 ∗ ∗
0 0 1 1 1 1
0 ∗ 0 0 1 ∗

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Zero

0 0 0 0 ⏟⏟⏟⏟⏟⏟⏟⏟⏟
One

∗ ∗

]]]]

]

→
[[[[

[

0 0 0 0 2+ 2+ 2+ 2+

0 0 1 1 1 1 1 1
0 2+ 0 0 1 2+ 2+ 2+

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Zero

0 0 0 0 ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
One

2+ 2+ ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Two+

2+ 2+

]]]]

]

=
[[[[

[

0 2+

0 1
0 2+

0 2+

]]]]

]

+ 2
[[[[

[

0 2+

1 1
0 2+

0 2+

]]]]

]

+
[[[[

[

0
0
2+

0

]]]]

]

+
[[[[

[

2+

1
1
2+

]]]]

]

Figure 3: A process for (8; (ℤp/p2ℤp)2 × (ℤp/p3ℤp)2 , (ℤp/pℤp)6 ,ℤp/pℤp × ℤp/p3ℤp × (ℤp/p5ℤp)3 ,ℤ4p) ∈ B4 (α0 = 4, α1 = 2).

By Example 2.4 and Lemma 3.13, we have

A0,1 ,A1,2 ,A2,m , Dm ⊂ CXm ,1,2

so S1 ⊂ CXm ,1,2. (Recall thatCXm ,1,∞ ⊂ CXm ,1,2 by Proposition 2.3 (a).) Theorem 3.7 impliesCXm ,1,2 ⊂ S2. It is enough
to show that S2 ⊂ S1. For any element (n;H1 , . . . , Hm) ∈ S2, there exist α0 , α1 ∈ ℤ≥0 such that α0 ≥ max1≤i≤m d0,i ,
2α0 + α1 ≥ max1≤i≤m(2d0,i + d1,i) and inequalities (3.2) and (3.3) hold.

Allocate α0 columns to Zero Zone and α1 columns toOne Zone. Arrange type 0’s on Zero Zone and type 1’s on
One Zone as in the proof of Theorem 3.12. Then all type 0’s are placed because α0 ≥ d0,i for each i, while type 1’s
may not. Fill the remaining type 1’s to Zero Zone. If there are still remaining type 1’s, then allocate new columns
for remaining type 1’s to Two+ Zone and then fill type 2+’s on empty entries. Finally, allocate new columns to
Two+ Zone for remaining type 2+’s if necessary. Then we have the followings:
(a) Each column on Zero Zone contains at least m − 1 type 0’s.
(b) There are exactly ∑mi=1 d0,i − (m − 1)α0 numbers of (0 ⋅ ⋅ ⋅ 0)

T columns.
(c) By replacing at most∑mi=1 d0,i − (m − 1)α0 entries, we can make each column on One Zone contains at least

m − 2 type 1’s.
(d) Type 1 appears more or equal on Zero Zone than on Two+ Zone for each row.
Properties (a) and (b) are easy to prove, and (c) follows from inequality (3.3). For each i, the inequality 2α0 + α1 ≥
2d0,i + d1,i is equivalent to α0 − d0,i ≥ (d1,i − α1) − (α0 − d0,i), which implies (d).

If there are some empty entries, then swap them to the rightmost non-empty entry on each row and delete
all empty columns. Thenwe obtain a 2-presentation of (n;H1 , . . . , Hm), which still satisfies properties (a), (b), (c),
and (d). Figure 3 illustrates the process to place the types.

For each column on One Zone which has m − 2 − d type 1 for d > 0, concatenate d (0 ⋅ ⋅ ⋅ 0)
T ; this is

possible due to (b) and (c). For each column on Two+ Zone which has type 1 on rows i1 , . . . , id , concatenate
ei1 , . . . , eid (ei is a column on Zero Zone whose i-th row is 1); this is possible due to (d). These are elements
ofDm and the other columns are elements ofA0,1 ∪A1,2 ∪A2,m , so we have (n;H1 , . . . , Hm) ∈ S1.

Now we can complete the proof of Theorem 1.8 for m = 4.

Proof of Theorem 1.8 for m = 4. Suppose that (H1 , H2 , H3 , H4) ∈M4
ℤp satisfies the conditions

s := s1 = ⋅ ⋅ ⋅ = s4 , 3d1,i ≤ D1 and d1,i + 2(d1,j + d2,j) ≤ D1 + D2 for every 1 ≤ i, j ≤ 4.

We claim that (s;H1 , H2 , H3 , H4) ∈ CX4 ,0,3 so that (H1 , H2 , H3 , H4) ∈ CX4 . By Proposition 2.3 (4), it suffices to prove
that (s; pH1 , pH2 , pH3 , pH4) ∈ CX4 ,1,2. Set α0 = max1≤i≤4 d1,i and α1 = max1≤i≤4(2d1,i + d2,i) − 2max1≤i≤4 d1,i .
Then D1 − 3α0 = D1 − 3max1≤i≤4 d1,i ≥ 0 by the assumption. To apply Theorem 3.14, we need to prove

(D1 − 3α0) + (
4
∑
i=1

min(d2,i , α1) − 2α1) ≥ 0.

The case F(α1) := ∑4i=1min(d2,i , α1) − 2α1 ≥ 0 is clear, so wemay assume that F(α1) < 0 and d2,i ≥ α1 for at most
one i. For i0 such that 2d1,i0 + d2,i0 = max1≤i≤4(2d1,i + d2,i), we have α1 = 2d1,i0 + d2,i0 − 2max1≤i≤4 d1,i ≤ d2,i0 so
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d2,i0 = max1≤i≤4 d2,i . Now we have F(α1) = D2 − d2,i0 − α1 so

(D1 − 3α0) + F(α1) = (D1 − 3α0) + (D2 − α1 − d2,i0 ) = D1 + D2 −max1≤i≤4
d1,i − 2d1,i0 − 2d2,i0 ≥ 0

by the assumption. We conclude that (s; pH1 , pH2 , pH3 , pH4) ∈ CX4 ,1,2 by Theorem 3.14.

4 Joint distribution of multiple cokernels

4.1 Convergence of the joint distribution

In this subsection, we study the limit

lim
n→∞
ℙ(cok(An + yi In) ≅ Hi for 1 ≤ i ≤ m),

where An ∈ Mn(ℤp) is a Haar randommatrix for each n ≥ 1, y1 , . . . , ym ∈ ℤp are distinct and H1 , . . . , Hm ∈ Gp .
Although we do not know the value of the above limit, we can prove the convergence of the limit. The proof is
based on the probabilistic argument in [5, Section 2.2].

Theorem 4.1. Let An ∈ Mn(ℤp) be a Haar randommatrix for each n ≥ 1, let y1 , . . . , ym be distinct elements ofℤp
and H1 , . . . , Hm ∈ Gp . Then the limit

lim
n→∞
ℙ(cok(An + yi In) ≅ Hi for 1 ≤ i ≤ m)

converges.

The following lemma will be frequently used in the proof of Theorem 4.1.

Lemma 4.2 ([5, Lemma 2.3]). For any integers n ≥ r > 0 and a Haar random C ∈ Mn×r(ℤp), we have

ℙ(there exists Y ∈ GLn(ℤp) such that YC = (
Ir
O
)) = cn,r :=

r−1
∏
j=0
(1 − 1

pn−j
).

Proof of Theorem 4.1. For any n ∈ ℤ≥1 and k ∈ ℤ≥0, denote

Pn,k := ℙ(cok(MA, [B1 ,...,Bk](yi)) ≅ Hi for 1 ≤ i ≤ m),

where A ∈ Mn(ℤp), B1 , . . . , Bk ∈ Mn×1(ℤp) are random and independent matrices and

MA, [B1 ,...,Bk](y) := A + y(
0

In−1
) +

k
∑
j=1
yj (Bj On×(n−1)) + yk+1 (

1
On−1
) ∈ Mn(ℤp).

To prove the convergence of the limit

lim
n→∞

Pn,0 = lim
n→∞
ℙ(cok(An + yi In) ≅ Hi for 1 ≤ i ≤ m),

wewill show that Pn,k and Pn−1,k+1 are very close. For n > 1, A = ( A1 A2A3 A4 ) ∈ M1+(n−1)(ℤp), B1 , . . . , Bk ∈ Mn×1(ℤp)
and

U = (1 O
O U1
) ∈ GLn(ℤp) (U1 ∈ GLn−1(ℤp)),

we have
UMA, [B1 ,...,Bk](y)U−1 = MA󸀠 , [B󸀠

1 ,...,B
󸀠
k]
(y)

for

A󸀠 = ( A1 A2U−11
U1A3 U1A4U−11

) , B󸀠j = UBj
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by a direct computation. For a random A2, the probability that there exists U1 ∈ GLn−1(ℤp) such that

A2U−11 = (−1 O(n−2)×1)

is cn−2,1 by Lemma 4.2. Moreover, for any given A2 and U1, the matrices U1A3, U1A4U−11 and UBj (1 ≤ j ≤ k) are
random and independent if and only if A3, A4 and Bj (1 ≤ j ≤ k) are random and independent. These imply that

|Pn,k − P̃n,k| ≤ 1 − cn−2,1 (4.1)

for

M̃n(ℤp) := {(
A1 −1 O
A2 A3 A4
A5 A6 A7

) ∈ M1+1+(n−2)(ℤp)} ⊂ Mn(ℤp)

and
P̃n,k := ℙ(cok(MA, [B1 ,...,Bk](yi)) ≅ Hi for 1 ≤ i ≤ m),

where A ∈ M̃n(ℤp), B1 , . . . , Bk ∈ Mn×1(ℤp) are random and independent. Let

A = (
A1 −1 O
A2 A3 A4
A5 A6 A7

) ∈ M̃n(ℤp), Bj = (
cj
dj
ej
) ∈ M(1+1+(n−2))×1(ℤp) (1 ≤ j ≤ k).

By elementary operations, we have

MA, [B1 ,...,Bk](y) = (
A1 + ∑kj=1 yjcj + yk+1 −1 O

A2 + ∑kj=1 yjdj A3 + y A4
A5 + ∑kj=1 yjej A6 A7 + yIn−2

)

⇒(
0 −1 O

(A2 + ∑kj=1 yjdj) + (A3 + y)(A1 + ∑
k
j=1 yjcj + yk+1) A3 + y A4

(A5 + ∑kj=1 yjej) + A6(A1 + ∑
k
j=1 yjcj + yk+1) A6 A7 + yIn−2

)

⇒ (
A2 + A3A1 A4
A5 + A6A1 A7

) + y(0
In−2
) +

k
∑
j=1
yj (dj + A3cj + cj−1 O

ej + A6cj O
)

+ yk+1 (A3 + ck O
A6 O

) + yk+2 (1
On−2
) (c0 := A1)

=: MA󸀠 , [B󸀠
1 ,...,B

󸀠
k+1]
(y).

Since the elementary operations do not change the cokernel, we have

cok(MA, [B1 ,...,Bk](yi)) ≅ cok(MA󸀠 , [B󸀠
1 ,...,B

󸀠
k+1]
(yi))

for each i. The matrices B󸀠1 , . . . , B
󸀠
k are given by

B󸀠j = (
dj
ej
) + Nj (1 ≤ j ≤ k),

where N1 , . . . , Nk ∈ M(n−1)×1(ℤp) depending only on A1, A3, A6 and cj (1 ≤ j ≤ k). Similarly,

A󸀠 = (A2 A4
A5 A7

) + N

for some N ∈ Mn−1(ℤp) depending only on A1, A3 and A6 and

B󸀠k+1 = (
A3 + ck O
A6 O

) .
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Therefore A󸀠 , B󸀠1 , . . . , B
󸀠
k+1 are random and independent if dj , ej (1 ≤ j ≤ k), Al (2 ≤ l ≤ 7) are random and inde-

pendent, or A, B1 , . . . , Bk are random and independent. This implies that

P̃n,k = Pn−1,k+1 . (4.2)

Choose M > 0 such that pMHi = 0 for every i. By equations (4.1) and (4.2), we have

|Pn,0 − Pn−d,d| ≤
d
∑
i=1
|Pn−i+1,i−1 − Pn−i,i| ≤

d
∑
i=1
(1 − cn−i−1,1) <

2
pn−d−1

(4.3)

for d ≥ M and n > d. For every n > M + 1, we have Pn−M,M = Pn−M,M+1 and

|Pn,0 − Pn+1,0| ≤ |Pn,0 − Pn−M,M | + |Pn+1,0 − Pn−M,M+1| <
4

pn−M−1

by equation (4.3). This finishes the proof.

4.2 Mixed moments

Now we compute the mixed moments of the cokernels cok(An + pxi In) (1 ≤ i ≤ m) where each random matrix
An ∈ Mn(ℤp) (n ≥ 1) is given as in Theorem 1.5. Nguyen and Van Peski [8] and the second author [7] inde-
pendently defined mixed moments of multiple random groups and extended the universality results of Wood
[13, Theorem 1.3] to the joint distribution of various multiple cokernels. Themixed moments of (not necessarily
independent) random finite groups Y1 , . . . , Yr are defined to be the expected values

𝔼(
r
∏
k=1

# Sur(Yk , Gk))

for finite groups G1 , . . . , Gr .
For a partition λ = (λ1 ≥ ⋅ ⋅ ⋅ ≥ λr), let λ󸀠 be the conjugate of λ, let Gλ := ∏ri=1ℤ/pλiℤ be the finite abelian

p-group of type λ and denote

m(Gλ) := p∑i
(λ󸀠i )

2

2 .

The following theorem is a special case of [7, Theorem 1.3] (taking P = {p}), which extends [14, Theorem 2.5]
to the multiple random groups. We note that Nguyen and Van Peski [8, Theorem 9.1] independently obtained
a similar result.

Theorem 4.3 ([7, Theorem 1.3]). Let Y = (Y (1) , . . . , Y (r)) and Yn = (Y (1)n , . . . , Y (r)n ) (n ≥ 1) be random r-tuples of
elements in Gp . Suppose that for every G(1) , . . . , G(r) ∈ Gp , we have

lim
n→∞
𝔼(

r
∏
k=1

# Sur(Y (k)n , G(k))) = 𝔼(
r
∏
k=1

# Sur(Y (k) , G(k))) = O(
r
∏
k=1

m(G(k))).

Then for every H(1) , . . . , H(r) ∈ Gp , we have

lim
n→∞
ℙ(Y (k)n ≅ H(k) for 1 ≤ k ≤ r) = ℙ(Y (k) ≅ H(k) for 1 ≤ k ≤ r).

Example 4.4 ([14, Section 2.2]). Let Yodd and Yeven be random elements of Gp given as in [14, (2.7)]. (We consider
them as randomfinite abelian p-groups which are always elementary abelian p-groups.) Let Y (1)1 , . . . , Y (r)1 (resp.
Y (1)2 , . . . , Y (r)2 ) be i.i.d. random variables in Gp following the distribution of Yodd (resp. Yeven). Then we have

𝔼(
r
∏
k=1

# Sur(Y (k)1 , (ℤ/pℤ)t)) = 𝔼(
r
∏
k=1

# Sur(Y (k)2 , (ℤ/pℤ)t)) = p
r(t2+t)

2

by [14, Theorem 2.8]. This example shows that Theorem 4.3 can fail even if themixedmoments are slightly larger
than the upper bound, which is given by O(∏rk=1 m((ℤ/pℤ)t)) = O(p

rt2
2 ) here.
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Let P1 , . . . , Pm ∈ ℤp[t] be monic polynomials whose reductions modulo p are irreducible and let An ∈ Mn(ℤp)
be a randommatrix for each n ≥ 1. Assume that one can determine the (limiting) joint distribution of the coker-
nels cok(Pi(An)) (1 ≤ i ≤ m) when each An is equidistributed. Then the next goal would be to prove universality
of the joint distribution of the cokernels for general εn-balanced matrices An . The only known way to prove
such universality is to compute the mixed moments of the cokernels. Recall that Xm = {x1 , . . . , xm} is a finite
ordered subset of ℤp whose elements have distinct reductions modulo p.

Theorem 4.5. Let (εn)n≥1 be a sequence of real numbers such that for every Δ > 0, we have εn ≥ Δ log n
n for suf-

ficiently large n. Let An ∈ Mn(ℤp) be an εn-balanced random matrix for each n ≥ 1, let G1 , . . . , Gm ∈ Gp and let
pk : ∏mi=1 Gi → Gk (1 ≤ k ≤ m) be the natural projections. Then we have

lim
n→∞
𝔼(

m
∏
i=1

# Sur(cok(An + pxi In), Gi)) = |SG1 ,...,Gm (Xm)|, (4.4)

where Tx ∈ End(∏mi=1 Gi) ((g1 , . . . , gm) 󳨃→ (x1g1 , . . . , xmgm)) and

SG1 ,...,Gm (Xm) := {G ≤
m
∏
i=1

Gi : pi(G) = Gi for each i and pTx(G) ≤ G}.

Proof. Choose k ∈ ℤ≥1 such that pkGi = 0 for all i. Let R = ℤ/pkℤ, A󸀠n ∈ Mn(R) be the reduction of Anmodulo pk

(which is also εn-balanced) and vj = A󸀠nej ∈ Rn where {e1 , . . . , en} is the standard basis of Rn . Then we have

𝔼(
m
∏
i=1

# Sur(cok(An + pxi In), Gi)) = ∑
Fi∈Sur(Rn ,Gi)

1≤i≤m

ℙ(Fi(vj + pxiej) = 0 for all 1 ≤ j ≤ n)

= ∑
Fi∈Sur(Rn ,Gi)

1≤i≤m

ℙ(Fvj = −pTx(Fej) for all 1 ≤ j ≤ n)

= ∑
Fi∈Sur(Rn ,Gi)

1≤i≤m

ℙ(FA󸀠n = −pTxF). (4.5)

If the probability ℙ(FA󸀠n = −pTxF) is non-zero, then G = im(F) is an element of SG1 ,...,Gm (Xm). Following the
proof of [10, Theorem 4.12], one can prove that there are constants c, K > 0 (depend only on G and Xm) such that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∑

F∈SurR(Rn ,G)
ℙ(FA󸀠n = −pTxF) − 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ Kn−c (4.6)

for every n ≥ 1 and G ∈ SG1 ,...,Gm (Xm). (To do this, we need to generalize [10, Lemma 4.11] to an upper bound
of ℙ(FX = A) for every A ∈ im(F). For any X0 such that FX0 = A, we have ℙ(FX = A) = ℙ(F(X − X0) = 0) and
X − X0 is also an εn-balanced matrix so this immediately follows from the case A = 0.)

Now equations (4.5) and (4.6) imply that

lim
n→∞
𝔼(

m
∏
i=1

# Sur(cok(An + pxi In), Gi)) = lim
n→∞

∑
Fi∈Sur(Rn ,Gi)

1≤i≤m

ℙ(FA󸀠n = −pTxF)

= lim
n→∞

∑
G∈SG1 ,...,Gm (Xm)

∑
F∈Sur(Rn ,G)

ℙ(FA󸀠n = −pTxF)

= |SG1 ,...,Gm (Xm)|.

Example 4.6. Let p ≥ m ≥ 3, let G1 = ⋅ ⋅ ⋅ = Gm = (ℤ/pℤ)t and let {e1 , . . . , et} be the standard basis of (ℤ/pℤ)t .
Then we have

|SG1 ,...,Gm (Xm)| := #{G ≤
m
∏
i=1

Gi : pi(G) = Gi for each i}

≥ #{G = ⟨(ej , u2,j , . . . , um,j) : 1 ≤ j ≤ t⟩ : ⟨ui,1 , . . . , ui,t⟩ = (ℤ/pℤ)t for every 2 ≤ i ≤ m}

= (
t−1
∏
k=0
(pt − pk))

m−1

> c∞(p)p(m−1)t
2
.
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To apply Theorem 4.3, the mixed moments of the cokernels for G1 , . . . , Gm should be

O(
m
∏
i=1

m(Gi)) = O((p
t2
2 )m) = O(p

mt2
2 ).

However, the above inequality implies that for every constant C > 0, we have

|SG1 ,...,Gm (Xm)| > c∞(p)p(m−1)t
2
> Cp

mt2
2

for sufficiently large t. Therefore we cannot apply Theorem 4.3 in this case. In fact, Example 4.4 tells us that
there are two differentm-tuples of random elements in Gp whose mixed moments for G1 = ⋅ ⋅ ⋅ = Gm = (ℤ/pℤ)t

are p
m(t2+t)

2 , which is smaller than c∞(p)p(m−1)t
2 for every t ≥ 4 by the inequality c∞(p) > 1

4 .

By the above example, we cannot determine the joint distribution of the cokernels cok(An + pxi In) (1 ≤ i ≤ m)
for m ≥ 3 using existing methods. As we mentioned in the introduction, we believe that one needs to combine
combinatorial relations between the cokernels (Theorem 1.8 and Conjecture 1.9) and the mixed moments of the
cokernels (Theorem 4.5) to solve this problem.
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