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Abstract: In this paper, we study the combinatorial relations between the cokernels cok(A, + pxiIn) (1 < i< m),

where A, is an n x n matrix over the ring of p-adic integers Z,, I, is the n x nidentity matrix and xy, . . ., x,, are
elements of Z,, whose reductions modulo p are distinct. For a positive integer m < 4 and given x1, ..., X € Zp,
we determine the set of m-tuples of finitely generated Z,-modules (Hy, ..., Hy) for which

(cok(An + pxiIp), ..., cok(Ap + pXmlIn)) = (Hi, ..., Hp)

for some matrix A,. We also prove thatif A, is an n x n Haar random matrix over Z, for each positive integer n,
then the joint distribution of cok(A, + px;I;) (1 < i < m) converges as n — ©o.
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1 Introduction

Friedman and Washington [4] computed the distribution of the cokernel of a random matrix over the ring
of p-adic integers Z,. They proved that if A, € M, (Z,) is a Haar random matrix (equidistributed with respect
to the Haar measure) for each positive integer n and H is a finite abelian p-group, then
[T, (1 - p_k)
|Aut(H)|

Here M;;«n(R) denotes the set of m x n matrices over a commutative ring R, M, (R) := Mpxn(R) and P( - ) denotes
the probability of an event. The study of the distributions of the cokernels for much larger classes of random
p-adic matrices was initiated by the work of Wood [12] which proved universality for random symmetric matri-
ces over Zp. Precisely, Wood proved that if A;, € Mp(Z,) is an e-balanced random symmetric matrix for each
positive integer n, then the distribution of cok(A,) always converges to the same distribution as n — co.

nlLIgo P(cok(A,) = H) = 1)

Definition 1.1. For a real number 0 < ¢ < 1, arandom variable x € Z, is e-balanced if P(x = r (mod p)) <1-¢
for every r € Z/pZ. A random matrix A € M(Zp) is e-balanced if its entries are independent and &-balanced.
A random symmetric matrix A € M,(Z,) is e-balanced if its upper triangular entries are independent and
e-balanced.

Theorem 1.2 ([12, Corollary 9.2]). Let 0 < € < 1 be a real number, H be a finite abelian p-group and A, € My(Zp)
be an e-balanced random symmetric matrix for each n. Then we have

. #{symmetric, bilinear, perfect ¢ : Hx H — C*} 3 1-2k
lim P(cok(Ap) = H) = - .
lim P(cok(4n) = H) |H||Aut(H)| g( .
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One of the key ingredients of the proof of Theorem 1.2 is the use of moments for random finitely generated
abelian groups. For a given finite abelian group H, the H-moment of a random finitely generated abelian group
X is defined by the expected value E(# Sur(X, H)) of the number of surjective homomorphisms from X to H.
If the moments of a random finitely generated abelian group X are not too large, then the distribution of X is
uniquely determined by its moments [12, Theorem 8.3]. Theorem 1.2 follows from this result and a sophisticated
computation of the moments of the cokernels of e-balanced matrices.

Starting from the work of Wood, several universality results for the cokernels of random p-adic matrices
were proved [3, 6-10, 13, 15]. All of these results were obtained by computing the (mixed) moments of the cok-
ernels and determining the (joint) distribution of the cokernels from the moments. As an example, we provide
a theorem of Nguyen and Wood [10] which proves universality for £,-balanced matrices over Z,, where &, does
not decrease too fast as n — oo.

Theorem 1.3 ([10, Theorem 4.1]). Let u > 0 be an integer, H a finite abelian p-group and (&p)n>1 a Sequence of
real numbers such that 0 < &, < 1 for each n and for every A > 0, we have &, > MO% for sufficiently large n. Let
Ay € Mpx(ns+wy(Zp) be an ep-balanced random matrix for each n. Then we have

| g IR -p™ Y
lim P(cok(4n) = H) = T HE AW H)]

1.2)
On the other hand, there had been recent progress on generalization of the cokernel condition. Friedman and
Washington [4] proved thatif A, is a Haar random matrix in GL, (Z,) for each n and H is a finite abelian p-group,
then

Hiil(l - P_k)

|Aut(H)|

where I, denotes the n x n identity matrix. As a natural generalization of this result, Cheong and Huang [1]
predicted the limiting joint distribution of the cokernels cok(P;(A,)) (1 < i < m) where A, € My(Z,) is a Haar
random matrix for each n and P1(t),..., Pn(t) € Zp[t] are monic polynomials whose reductions modulo p
are distinct and irreducible. This conjecture was settled by the second author [5, Theorem 2.1]. (Cheong and
Kaplan [2, Theorem 1.1] independently proved the conjecture under the assumption that deg(P;) < 2 for each i.)
Recently, Cheong and Yu [3] generalized this to the case that A, is e-balanced for each n.

nli_{& P(cok(Ap, - I;) = H) = 1.3)

Theorem 1.4 ([3, Corollary 1.8]). Let 0 < & < 1 be a real number and A, € M,(Z,) an e-balanced matrix for each
n 1. Let Pi(t), ..., Pn(t) € Zy[t] be monic polynomials whose reductions modulo p in ¥, [t] are distinct and
irreducible. Also let H; be a finite module over R; := Z,[t]/(P;(t)) for each i. Then we have

m Hoci (1 _p—kdeg(Pi))
; ‘ - IT. - _ k=1
Jlim P(cok(Pi(An)) = Hifor1 < i<m) = g [Atite, (L)

(1.4)

We remark that each R; is a discrete valuation ring with a finite residue field R;/pR; = ]deeg(Pi) and the cokernel
cok(P;(Ap)) has a natural R;-module structure defined by ¢ - x := A,x. There are other ways to generalize the
cokernel condition. For example, Van Peski [11, Theorem 1.4] computed the joint distribution of

cok(A1), cok(AsA1),...,cok(Ar--- A1)

for a fixed n > 1 and Haar random matrices Ay, ..., A, € Mp(Zp) by using explicit formulas for certain
skew Hall-Littlewood polynomials. Nguyen and Van Peski [8, Theorem 1.2] generalized this to the case where
Aq,...,A, are e-balanced.

In Theorem 1.4, the distribution of the cokernels cok(P;(4,)) (1 < i < m) becomes asymptotically indepen-
dent as n — co. Here the condition that the reductions modulo p of P1(¢), ..., Pn(t) are distinct is essential. If
two polynomials P1(t), P»(t) € Zp[t] have the same reduction modulo p, then cok(P1(4)) and cok(P,(A)) have
the same p-rank so they cannot be asymptotically independent. (The p-rank of a finite abelian p-group G is given
by r,(G) := rankg, (G/pG).) Nevertheless, we can still consider their joint distribution. In the previous work of
the second author [7], the joint distribution in the simplest case (P1(t) = ¢ and P,(t) = ¢ + p) was computed.
Denote ¢,(p) := [Treq(1 - p7F) and coo(p) = [T524 (1 - p75).
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Theorem 1.5 ([7, Theorem 3.11]). Let (€n)n>1 be a sequence of real numbers such that for every A > 0, we have

&n 2 MO% for sufficiently large n. Let A, € Mp(Zp) be an en-balanced random matrix for each n. Then we have
0, rp(H1) # rp(Ha),
nlLrgo P(cok(Ap) = Hy and cok(Ap + ply) = Hy) = przcoo(p)cr(p)z

AutH ) Auty D = TeH) =T

for every finite abelian p-groups Hi and H;.

It is very hard to compute the joint distribution of the cokernels cok(P;(4)) (1 < i < m) in general, even in the
case that each A, is equidistributed. Thus we propose the following easier problem.

Problem 1.6. Let Py(t),..., Pn(t) € Zp[t] be monic polynomials whose reductions modulo p are irreducible,
let R; = Z[t]/(Pi(1)), let Mg, be the set of finitely generated Ri-modules and let M = H{’il Mg,. For a given
(Hy,...,Hn) € M, determine whether there exists a matrix A, € Mp(Zp) such that cok(P;(4,)) = H; for each i.
In other words, determine the set

C(Py,...,Pp) :={(Hy,...,Hp) € M : there exists Ap € My(Z,) for some n
such that cok(P;(Ay,)) = H; for each1 < i < m}.

Remark 1.7. (1) For A € My(Z;) and B € My (Z;), we have
cok(Pi <2 g)) = cok(P;(A)) x cok(P;i(B))

so the set C(P4, ..., Pp) is closed under componentwise finite direct product.

(2) In the above problem, we allow the case that cok(P;(A,)) have a free part (i.e. det(P;(A,)) = 0), contrary
to Theorem 1.4. The probability that det(P;(4,)) = 0 for some i is always zero, but it does not mean that this
event cannot happen.

In this paper, we analyze the case where P;(t) = t + px; for some Xy, ..., Xm € Z, whose reductions modulo p
are distinct. Let Xy, := {X1, ..., X} be afinite ordered subset of Z,, of size m whose elements have distinct reduc-
tions modulo p and denote Cy,, := C(t + pX1,...,t + PXm) C Jv[%. The main result of the paper is the following

theorem, which determines the set Cx, for m < 4. Note that in each case, the set Cx,, does not depend on the
choice of Xp,.

Theorem 1.8. For (Hy,...,Hp) € M%p, write

dwi _ T .
H; = 2,™ x [ [@/p"z)*
r=1

and .
(o)
Dy:=Y dy;,  si:=rankg,(Hi/pH;) = ) dri+deo; foreachi.
i=1 r=1
We have:
(1) exl = MZp:

(2) Cx, ={(H1,Hy) € MZZP 181= 832}

() Cx, = {(H1,Hy, Hs) € MBZp 11 =8y =s3and2dy; <Dy (1<i<3)}

4) Cx, = {(Hy,Hy,Hs3, Hy) € M%p 181=82=83=84,3d1,i<Dy(1<i<4)anddy;+ 2(d1,j + dz,j) <Di1+Dy (1<
L,j<4h

If (Hy,...,Hp) € Cy,, then there exists A, € My(Z,) such that cok(A, + pxiI,) = H; for each i. In this case,
we have (Z/pZ)S = H;/pH; = COk]pp (A,) where A, € M (IFp) is the reduction modulo p of A, which implies
that s = s3 =--- = S,». When m = 2, this is the only condition we need for elements of Cx,. We need some
additional relations between the numbers d;; for larger m. It is natural to suggest the following conjecture
from Theorem 1.8.
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Conjecture 1.9. Let d,;, D, and s; be as in Theorem 1.8. For every integer m > 1, we have (Hy, ..., Hp) € Cx,,
ifand only if s1 = --- = s, and

r-1 k r
Z(zdl’ik)"'(m_r) dl;irSD1+"'+Dr
1

k=1 \ =1 =
foreveryl<r<m-2and1<iy,...,i <m.

The paper is organized as follows. In Section 2.1, we provide basic notations and provide some basic properties
of the sets Cx,, .1 x (see Problem 2.2) which are helpful to understand the set Cx, . We prove the main result of the
paper (Theorem 1.8) for the case m < 3 in Section 2.2. The technical heart of the paper is a reduction procedure,
which is explained in Section 3.1. Using this reduction procedure and explicit linear-algebraic computations on
matrices over Zp, we prove the necessary condition of Theorem 1.8 for m = 4 in Section 3.2. After that, we prove
the sufficient condition of Theorem 1.8 for m = 4 in Section 3.3 based on a zone theory.

The last section is devoted to the joint distribution of the cokernels cok(4, + px;Iy) (1 < i< m). In Sec-
tion 4.1, we prove that if each A, is a Haar random matrix, then the joint distribution of the cokernels
cok(Ap + pxiI,) (1 < i< m) converges as n — co. In fact, we prove the following more general result. Note
that our proof does not provide the limiting joint distribution.

Theorem 1.10 (Theorem 4.1). Let A, € My(Z,) be a Haar random matrix for each n > 1, y1, ...,y be distinct
elements of Zy and Hy, . . ., Hy, be finite abelian p-groups. Then the limit

nlinololP(cok(An +yilp)=H;for1<i<m)
converges.

In Section 4.2, we compute the mixed moments of the cokernels cok(4, + px;I;) (1 <i< m), where each
matrix A, € Mp(Zp) is given as in Theorem 1.5. Then it is natural to follow the proof of Theorem 1.5 given
in [7], where the second author determined the unique joint distribution of cok(A4,) and cok(A, + pI,) from
their mixed moments. However, it turns out that for m > 3, we cannot determine a unique joint distribution
of cok(Ap + pxiln) (1 < i < m) from their mixed moments using existing methods (see Example 4.6).

Let Y be arandom m-tuple of finite abelian p-groups (or a random m-tuple of finitely generated Z,-modules
in general). When Y is supported on a smaller set of m-tuples of finite abelian p-groups, it is more likely that the
distribution of Y is uniquely determined by its mixed moments. Therefore the information on the support of Y
would be helpful for determining its distribution. This is one of our motivations for concerning Problem 1.6 in
this paper. In the future work, we hope to determine the joint distribution of cok(4, + px;I) (1 < i < m) from
their mixed moments, together with combinatorial relations between the cokernels provided in Theorem 1.8
and Conjecture 1.9.

2 Preliminaries

The following notations will be used throughout the paper.
For aprime p, let G, be the set of isomorphism classes of finite abelian p-groups and let Mz, be the set of
isomorphism classes of finitely generated Z,-modules.
o SetZ:=ZU{o0}, Zse i={X € Z:x>c}and Zs¢ := Zs¢ U {oo} for ¢ € Z.
e Let mbe apositive integer and let X, = {x1, ..., Xn} be a finite ordered subset of Z, whose elements have
distinct reductions modulo p.
e For A € My(Zp), write
cok(4) = [ (z,/p"z)"
reZs,

(we use the convention that p* = 0 and thus Z,/p*Z, = Z,) and

do)A =n- z dr,A.

reZsq
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In this case, the Smith normal form of A is given by

do.a dia Aoo,a
1
.

diag(T, ., L7 —~D....,0,...,0).
« ForA e Ma(Zp) and k € Zz1, cokz, /piz, (A) denotes the cokernel of A/p¥A as a Z, /p*Z,-module. It is given

as
k-1

COkZp/kap (A) = H(Zp/przp)dm X (Zp/kaP)Zreizk dr,A.
r=1

LetA := A/pA e My(IFp) be the reduction modulo p of A.
«  For A € Mpxw (Zp) and k > 1, denote p¥ | A if each entry of A is divisible by p* and p* } A otherwise.
o Denote
Bm :={(n;Hq,...,Hn) € Zsg ¥ .’M% : n > rankg, (H;/pH;) for every 1 < i < m}.

For an element (n; Hy, ..., Hy) € By, write H; = HrEizl (Zp/per)dhf and dg;:=n- Zrezl dr; for each i.
If a polynomial P(t) € M, (Z;)[t] satisfies cok(P(x;)) = H; for each i, then we have dy p, = dr,; for every
reZsyandl<i<m.

o The sum of two elements in B, is defined by the operation

(n;Hy,...,Hp)+(n';Hy,...,Hy):=(n+n';H xH,...,Hpn x H})). (VA

2.1 Thesets Cy, ; «

For A € My(Zp) with ny = n - dp 4, the Smith normal form of A gives U, V € GLp(Zp) such that

!
UAV = (pA 0 )
O In—nl

for some A" € My, (Z,). For x € Z, and UV = (g; gj) € GLn,+(n-ny)(Zp), we have

cok(A + pxI) = cok(UAV + pxUV)

!
_ cok( ( pA' + pxB; pxB; ))
pxB3 In_n, + pXBy
= cok(p(A' + XxB1) — (pXB2)(Un-n, + pXB4) " (pXB3))
- cok(p(A’ +XBy - Z pd+1xd+sz(—B4)ng)).
d=0

For Ag = A’, A1 = By and A, = —By(~B4)" 2B (r > 2), we have

(o)
cok(A + pxI) = cok(pPﬁO)’Ah___(x)) = cok(p(Ao + z pd‘ldid)).
d=1
In this case, we have
dr’A+px[ = d (1) (2.2)

r_l’PAU,A1,...(X)

for everyr e Zs1. Thus if an inequality holds for the numbers d;_4, Y, for any Ao, Ay, ... € My, (Zp), then
the same inequality holds for the numbers d; 4.pxr. This observation motivates us to introduce the following
variant of Problem 1.6.

Definition 2.1. A polynomial in M;(Z,)[t] is called an I-th integral of ascending polynomial, or just an l-th
integral if it is of the form
Ag+ tA + -+ A + pt Ay + -+ pTtHT Apyy

for some r € Zso and Ay, ..., Ajr € Mp(Zp). For [ = oo, every polynomial in M (Z)[t] is an co-th integral.
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Problem 2.2. For given X, and I, k € zzO, determine the set
Cxplk = {(M; Hy, ..., Hy) € By, : there exists an I-th integral P(t) € Mn(Zp)[t]
such that cokz, piz, (P(X;)) = H;/p*H; for each1 < i < m}.

Now we provide basic properties of the sets Cx,, ;x. For H € Mz, denote s(H) := rankn;p (H/pH). Then we have
s(H;) = Zreizl dri=n-do;for (n;Hi,...,Hn) € Bn.

Proposition 2.3. The following statements hold:
(1) The set Cx,, 1k is closed under the sum in Bp,. In particular, Cx, 1k is a monoid under the operation (2.1) with
an identity (0;1,...,1).
@ ForLl, kK € Zzo and X € Zp, we have the followings:
(@ Cx,1k<CCx, rxforl<!l'andk >k,
(®) Cx,, 100 = Cx, 1m-1-1 forl<m,
(©) Cx,ik = Cxpxo,Lk fOr Xm — X0 1= {X = X0 : X € X}
(3) We have

Cx, ={(H1,...,Hn) € .’Jv[%p : there exists n € Zsisuch that (n;Ha, ..., Hp) € Cx, 0.c0}
={(Hy,...,Hp) € M%p :S(H1) =---=S(Hp) =sand (s;pH1,...,pHn) € Cx, 1,00}
(4) Foreveryl < m, the map
Ok A Hy,y oo, Hy) € Cxpike1 = do =+ = dom = 0} — Cx, 141,k

given by
(n;Hy,...,Hy) = (n;pHy, ..., pHy)

is well-defined and a bijection.

Proof. (1) For every (n;Hy, ..., Hp), (n';Hy,..., Hy) € Cx, 1k, there are I-th integrals P(t) € Mn(Zp)[t] and
P'(t) € My (Zp)[t] such that cokz, jpkz, (P(xi)) = H; and cokg, /piz, (P'(xp)) = H{ for each i. Then the concate-
nation of P(t) and P'(t) given by

(PO 0] ;
Q1) = ( 0 P’(t)) € Mpn' (Zp)[t]

is also an I-th integral and cokzp /pkzp(Q(Xi)) =H;x Hlf for each i. Thus we have
(n+n';Hy xHy,...,Hp x Hy) € Cx, 1k

(2a) It follows from the facts that an I-th integral is also an I'-th integral and

cokzp/pkrzp (A) = Cokzp/pkzp (A)/pk' COkZP/kaP (A).

(2b) The inclusion c holds by (a). Now suppose that (n; H1, ..., Hn) € Cx, 1,m-1-1. Then there exists an I-th
integral P(t) € Mp(Z,) such that cokzp /P12, (P(xy)) = Hi/ p’”"‘lH ; for each i. The Smith normal form of P(x;)
gives Uj, V; € GLp(Zp) such that

dopey) Am-1-1,p(x) Am-1,p(x) oo i)

P(x;) = Udiag(T, ..., 1,...,p" L, . pmtt pmel o p™l 0, 0V

t—X;
Define Lm,i(t) = Hlsjsm,j#i XIT;] € Zp[t]: Dm--1,i = Zrezzm_l_1 dr,P(Xi) and

N—=Dm-i-1,i
——
0,..

m
Q(t) := P(t) + ) L i()U; diag(0, ..., 0, p%* = bis, ..., p*Pmrti = bip, , )Vi,
i=1
where
dm—l—l,P(xi) doo,P(Xi)

(bi,li R} bi,Dm,l,l)i) = (pm_l_l) e ,pm_l_l) DR 0: e 70)




DE GRUYTER J.Jung and . Lee, Joint distribution of random p-adic matricesII == 1125

and ajj € Zsm-i-1 for1 <i<mand 1 <j < Dp__1,;. Then Q(t) is also an l-th integral as p™~-1 | p%s — b; ; for
each i,j and Ly, i(t) is of degree m — 1, while

n=Din_i-1,i
Q(xi) = P(Xi) + Ui dlag(O, s 0, pai'l - bi,l, ceey pai'Dm_"l’i - bi,Dm—I—l.i)Vi
do,p(x;) Am-1-2,p(x;)
= Updiag(T, ..., 1,...,p" 2, ., p™ 2 plia, ., phPmrai)V;

for each i. Now we can choose a;; € Zomoi-1 1<i<m,1 <J < Dm-i-1,i) such that cok(Q(x;)) = H; for each i,
which implies that (n; Hy, ..., Hn) € Cx,,,1,c0-
(2c) It holds that P(t) € M;(Zy)[t] is an I-th polynomial if and only if P1(t) := P(t + Xo) € My (Zp)[t] is an
l-th polynomial and cokZp/kap (P(xy)) = cokZp/kap (P1(Xi — Xo)) so we have Cx,, 1k = Cx,,—x,Lk-
(3) Consider the sets
S1:={(H,...,Hp) € M%p : there exists n € Zs; such that (n; Hy, ..., Hp) € Cx, 0.c0}»
Sy ={(Hy,...,Hp) € M%p 2S(H1) =---=s(Hp) =sand (s;pHy,...,pHn) € Cx, 1,00}

We have:
e (Cx,, = S1) The inclusion c follows from the definition. Suppose that (n; Hy, ..., Hn) € Cx,,,0,00 S0 that there
exists a zeroth integral P(t) € M,(Z,)[t] such that cok(P(x;)) = H; for each i. Let

Q(t) := P(t) + p™ ™t (t = x1) -+ (t = Xm)Ip = Ag + PtAy + -+ pT Ay g 4 pBTE,
for d = deg(P) and Ay, ..., Agsm-1 € Mp(Zp). The rational canonical form of Q(¢), i.e.

Ao
Iy Aq

A= ) . € M@+mn(Zp)
-In Adim-1

satisfies cok(A + pxiI) = cok(Q(x;)) = cok(P(x;)) = H; for each i so we have (Hy, ..., Hp) € Cx,,.
e (Cx, ¢ S2) Suppose that (Hy,...,Hpn) € Cx, so that there exists A € Mp(Zp) for some n > 1 such that
cok(A + px;I) = H; for each i. Then

s(H;) = rankg, (H;/pH;) = rankp, (cok(4))

sowe have s(Hy) = --- = s(Hp) = s. By equation (2.2), there exists a first integral P(t) € Ms(Z,)[t] such that
cok(P(x;)) = pH; for each i, which implies that (s; pH1, ..., pHn) € Cx,,1,00-
e (S c 1) Suppose that (Hy, ..., Hp) € Sz so that s(H1) =--- = s(Hy) =sand (s; pH1, ..., pHn) € Cx, 1,00

Let P(t) € Ms(Z,)[t] be a first integral such that cok(P(x;)) = pH; for each i. Since pP(t) is a zeroth integral

and cok(pP(x;)) = H; for each i, we have (s; H1, ..., Hn) € Cx, 0,00-

(4) Assume that (n;Hy,...,Hpn) € Cx,, 1k+1 With doq =--- = dom = 0. Then there exists an [-th integral
P(t) € Mp(Zp)[t] such that cokzp jpz, (P(Xi)) = Hi /p** H; and do,p(x;) = 0 (so p | P(x;)) for each i. This implies
that

P(t) = (t—x1) -+ (t = xm)Q(t) + pP1(1)
for some Q(t), P1(t) € Mp(Zp)[t] such that deg((t — x1)--- (t — x,)Q(t)) < I and P1(¢) is an (I + 1)-th integral.
Since we have P(x;) = pP1(x;) for each i, we have d; p, (1) = dr+1,p(r) for every r e 71 50

cokz, piz, (P1(X:)) = pHi/p** H;
for each i. Thus the map ¢ is well-defined.

Now assume that (n; Hy, ..., Hp) € Cx, 141,k. Then there exists an (I +1)-th integral P(t) € Mp(Zp)[t]
such that cokzp Ip*Z, (P(x7)) = Hi/pkHi for each i. Since pP(t) is an I-th integral which satisfies dopp() =0
and dy,p(ty = dr+1,pp(r) fOT €Very r € Z, the map

Yk : Cx,i1,k = (M Hy,y ..o, Hy) € Cx,p k41 - dojt = -+ = dom = 0}

given by (n; Hy, ..., Hp) — (n; cok(pP(x1)), . . ., COR(pP(xp))) is the inverse of ¢; k. O



1126 — |.Jungand]. Lee, Joint distribution of random p-adic matrices II DE GRUYTER

As an example, we determine the elements of the set Cx, ;0 Which are of the form (1;Hq,..., Hp). This
result will be frequently used in the proof of Theorem 1.8. We note that if (n; H1,...,Hn) € Cx, 1k, then
(n; Ho(1, - - - » Ho(m)) € Cx,,,1,k for any permutation o € Sp,.

Example 2.4. For an element (1;Hy,...,Hp) € Cx,, 100, there exists an [-th integral P(t) € Z,[t] such that
Zy|P(x;)Zy = H; for each i. If P(t) = 0, then Hy = --- = Hy, = Zp. If P(t) is not identically zero, then there
uniquely exists r € Zyo such that P(t) = p"Q(t) for some (I + r)-th integral Q(¢) € Z,[t] whose reduction mod-
ulo p is not identically zero in IF,(t]. Since Q(t) = 0 (mod p) has at most [ + r roots modulo p, the number
of 1 <i<m such that H; = Z,/p"Z, is at least m — (I + r). Conversely, for every integer 0 <r <m-1[ and
bi,..., by € Zspyq With 1’ < 1+, an I-th integral

P(t) =p" [[t=x)+ ) p"Lyi(t) € Zp[t]
i=1 i=1

satisfies Z,/P(x;)Zy = Zp/pbin for 1<i<r’ and Z,/P(x;)Zp = Zp/p"Z, for i>1+r. (The polynomials
Lpm,i(¢t) are defined as in the proof of Proposition 2.3 (b).)
Now we deduce that (1; H1, ..., Hn) € Cx, 100 if and only if (Hq, ..., Hp) is a permutation of

m-r-1

(Zp|p" Zy, ..., 2y D" 2, Zy D" 2, ..., Zp|D Zp)

forsome0<r<m-landbs,..., by € Zsy. In particular, we have

m-r

(ZpIp" Zp, ..., 2y |0 2y, 7,0 Zp, ..., Zp[D Zp) € Cx,

forevery0 <r<mandby,...,b, € er by Proposition 2.3 (3).

2.2 Proof of Theorem 1.8: The case m < 3

The case m = 11is trivial. When m = 2, we have Cx, c {(H1, Hy) € Mzz,, : 81 = Sy} (see the paragraph after Theo-
rem 1.8). Conversely, every element (Hj, Hy) € MZZP such that s; = s3 = s is of the form

s s
(H Zp/pajzp: HZp/pijp) (aj, bj € Zs1).
=1 =1

Since the set Cy, is closed under finite direct product, to prove Theorem 1.8 for m = 2 it is enough to show that
(Zp|p*Zp, Zp|p"Z,) € Cx, for every a, b € Z1. We already proved this in Example 2.4.

Now we consider the case m = 3. First we prove that every element (H1, Hy, H3) € Cy, satisfies the condition
2d1,; < D1. By equation (2.2), it is enough to show that the numbers do,pggA1 < i < 3) satisfy the triangle
inequality for every Ag, A1, ... € My, (Z;). The congruence PSZ’ A1,...(Xi) = A() + X;A1 (mod p) implies that

d ) = do,ag+xa, = dimg, N(Ao + XiA1),

0.PY) 4. (Xi
where N(A, + x;A1) denotes the null space of Ay + x;A1 € Mn(FF,). By the relation

(x2 = x3)(Ap + x141) + (X3 = X1)(Ag + X241) + (X1 — X2)(Ap + X341) = O,
the numbers dimg, N(Aq + X;A1) (1 < i < 3) satisfy the triangle inequality. We conclude that

GXS c {(Hy,Hy, H3) € MsZ,, 181 =83 =s3and 2d1,i <D; (1<i<3)}

It remains to show that every (Hy, Hy, H3) € M%p satisfying the conditions s = sy = s3 = s and 2dy; < D1
(1 <1< 3)isan element of Cy,. For each i, let ¢; := dy,; and

S
H; = (Zy/pZy)“ x || Zp/p"2,

j:Ci+1
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for some bj¢+1,...,bis € Zzz. We may assume that ¢; = maxj<j<3 ¢;. Then ¢z + ¢3 — ¢1 > 0 and
C1—C3
(H1,Hy, H3) = (Zp|pZp, Zp|pZp, Zp | pZp) "4~ H (Zp|pZp, Zp|pZp, Zy | PP+ Z)
j=1
c1-Cy s 2.3)
X H (Zp/pZy, Zp/sz’”“Z Zy, Zp[pZp) l_[ (Zp/pbl'jzp; Zp/pbz'jzp) Zp/pbs’jzp)~
j=1 Jj=c1+1

Each term on the right-hand side of equation (2.3) is contained in Cx, by Example 2.4 and the set Cy, is closed
under finite direct product, we conclude that (Hy, Hz, H3) € Cy,. This finishes the proof of Theorem 1.8 for m < 3.

3 Proof of Theorem 1.8 form =4

In this section, we prove Theorem 1.8 for m = 4. First we prove a necessary condition for an element of Cy,
using a reduction procedure. The purpose of a reduction procedure is to reduce the size of a matrix n without
information loss of (Hy, ..., Hp) and to extract inequalities using Proposition 2.3. After that, we prove that the
same condition is also a sufficient condition for an element of Cx, using zone theory. Throughout this section,
we assume that x; = 0. (We may assume this by Proposition 2.3 (¢)).

3.1 Areduction procedure

We begin by clarifying the relation between zeroth and first integrals. Recall thatif (n; Hy, ..., Hn) € Cx,, 0,k for
k € Zs1, then doy =---=dom Wheredy; =n- Zrezzl dy,i for each i.

Proposition 3.1. If (n;Hy,...,Hn) € Cx, 0k anddoq =---=dom > 0, then (n —1;Hy,...,Hp) € Cx, 0.k
Proof. Since Cx,, 0,00 = Cx,,,0,m-1, We may assume that k is finite. Let P(¢) € Mn(Zp)[t] be a zeroth integral which

satisfies cokz, /pkz, (P(xi)) = Hi/ pKH; for each i. The constant term of P(t) satisfies rankg, (P(0)) = do,1 > 0. Using
the Smith normal form of P(0), we may assume that

_ (Ao 0 A . Pq(t) ptf(t)
P(t) = ( 0 1) +ptAi+---+p't'A = (ptg(t) 1 +pth(t)) € Mn-1)+1(Zp)[t]
for some r € Z( and zeroth integrals f(t), g(t), h(t), P1(t). Then we have
Py(t) ptf(t)
ptg(t) 1+ pth(t)
_ 242 -1
- cokzﬂpm,,((P 10 - P*C(L+ pth(O)Hfi0gH) 0 ))

COkZp/kap (P(1)) = COkZp/kap ( <

0 1+ pth(t)

= cokz, iz, (Q(D),
where Q(t) = Py(t) — p? tz(zjfz‘ol(—1)7pftfh(t)/)f(t)g(t) € My_1(Zp)[t] is a zeroth integral as the set of zeroth inte-
grals is closed under sum and product. This implies that (n — 1; Hy, ..., Hn) € Cx,, 0,k O

Recall that the set Cy,, ; x has a monoid structure by Proposition 2.3 (1). For § c Cx,, 1k, let (S) be the submonoid
of Cx,, 1k generated by the elements of S.

Corollary 3.2. Forevery k € Z, we have Cxpnok+1 = {11, ..., DU (05,1,{((‘3;(,",1,;()).

Proof. The inclusion > is clear since a zeroth integral P(t) = 1 gives (1;1,...,1) € Cx,, 0,k+1. Conversely, every
element (n; Hy, ..., Hpn) € Cx,, 01 Satisfiesn > s = s(Hy) = --- = S(Hp) SO

(W Hy, ..., Hp) = (n=s)(L;1,...,1) +(s;Hy, ..., Hp) € ({(L;1,..., D} U </)5,1k(€xm,1,k)>

by Proposition 3.1 and Proposition 2.3 (4). O
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By Proposition 2.3 (b) and Proposition 2.3 (3), the set Cx,, is determined by the set Cx,, 0,m-1, Which is determined
by the set Cx,, 1,m-2 by Corollary 3.2. Since we have Cx, 1,m-2 € Cx,, 1,1 for every m > 3, an inequality which
holds for elements of Cy,, 1,1 also holds for elements of Cx,, 1,m—2.

Lemma3.3. If(n;Hy,...,Hpy) € Cx,, 1,1, then
m
Z doi—-(m-1)ap =0
i=1

for some non-negative integer ap > maxi<i<m do,i.

Proof. 1t suffices to show that Y, do; > (m — 1) maX<i<m do,i. We phrased the result in this way to make it
consistent with Theorem 3.7.

We use induction on n. The case n = 1 follows from Example 2.4. Now assume that n > 1 and the theorem
holds for every n’ < n. Suppose that there exists (n; Hy, . . ., Hy) € Cyx,, 1,1 such that

Zd01<(m 1) max do,;.

i 1<ism

Let P(t) € My(Zy)[t] be a first integral such that cokz, pz, (P(xi)) = Hi/pH; for each i. Applying the Smith nor-
mal form of the constant term of P(t), we may assume that

P(t) = (”(‘)4

for some A € My_q,,(Zy), B € Mp(Zp) and Q(t) € My(Z,)[t]. Moreover,

0

doa

) + tB + pQ(t)

satisfies do,p(x;) = do,p,(x,) for each i so we may assume that

0O O By By
P(t) = ( ) + t( ) .
0 Igy, Bs By

. . 1 O
Case 1. p 4 B1. The Smith normal form of By gives U, V € GLy_q,,(Zp) such that UB1V = ( 0 B’) for some
B € Mp_q,,-1(Zyp). For every non-zero x € Xy, we have 1

v
COkZp/pr (P(X)) = COkzp/pr(<U Y )P(X) (0 Izl))

XUBy

= COkZp/pr B’
ng 174 Ig,, + XB4

= COkZp/pr O Q(X)>)

(3 2 )or(?

Then we have dy,g(x,) = do,1, do,o(x;) = do,i —1for 2 <i < mand (n - 1; cok(Q(x1)), ..., cok(Q(xn))) contradicts
the induction hypothesis since

for a first integral

) € Mp_1(Zp)[t].

z do,o(x;) — (M~ 1) max do,ox)) = Z doi—(m- 1)(max do,oixy +1)
i=1 i=1

<Zd01—(m 1)maxd0,<0
i=1
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Case2:p | Brand[p { By or p + B3]. We may assume that p { B,. Choose invertible matrices U and V such that
UB,V = (}, g; ). For every non-zero x € Xp,, we have

cokz, /pz,(P(X)) = COkZp/pr((g V(L) P(X) (I(g1 3))

x O
O !
= cokzp Iz, 0 xB,
xV71By Iq, +xV1B4V

X 0]
= COkZp/pr<(O Q(X))>

_ (0 o 0 B
o(t) = (0 Id0,11) + t(Bg BL) € My_1(Zp)[t].

Then do,g(x) = do,i —1 for 1 <i<m and (n - 1; cok(Q(x1)), . .., cok(Q(xm))) contradicts the induction hypo-
thesis since

for a first integral

m m
d y—(m-1) max d y=Ydyoi-(m-1)maxdy;—1<0.
i:zl 0,00) — ( ) max do,o(x) 1:21 0,i = ( ) max do,

In the remaining cases, we have p | By, By, B so that do 1 = maxi<i<m do,;. By the same reason, we obtain that
do1 = -+ = dom. Then we have Zlﬁl do,i — (m — 1) maxXi<i<m do,i = do,1 > 0, a contradiction. O

We need some work to find the conditions for elements of Cx,, 1,2.

Lemma 3.4. Assume that | € My(Zy) has a single non-zero row or column. For every r € Zs1, X € Zy and
A € Mp(Zy), there exists Xo € Zp and d € Zxo such that
. d-1lord, x=xp(modp),
di,A = di,A+p’x] fOI’l <r and dr,A+p’x] =
d, X # Xo (mod p).
The matrix ] is called singular of order r at Xo over A if dy a1prx,y = d — 1.

Proof. We may assume | = ( 1 Onx(n_l)). The isomorphism cokzp Iz, (A) = cokzp Iz, (A + p"xJ) implies that

dia = diapryy for each i < r. Let A; be the j-th column of A for each j and As,, ..., A, (2 < s < m) any maxi-
mal subset of {Ay, ..., A} whose elements are linearly independent modulo p™1, i.e. ij 1 CjAs; =0 (mod ph
implies that ¢y, ..., cp = 0 (mod p). (For example, (1,1),(1,p+1) € Z?, are not linearly independent modulo p

but are linearly independent modulo p?.) Define
S:=1{v ez, : thereexist co, ..., cp € Zp such that p } ¢ forsome 0 <j <D
and CoV + (:1AS1 Foeeet CDAsD =0 (mod pr+1)}'

Since the number Y], d; 4 is the maximum number of linearly independent columns of A modulo p™*!, we
have

.
Dy = Z di,A+p’x] =
i=0
If we have Dy = D + 1 for every x € Z,, then the lemma holds for d = d; 4 + 1 and any xo € Z,. Now assume
that Dy, = D for some xo € Z,. Then there exist ¢y, ..., Cp € Zp such that p t ¢; for some j and

D ifA1+p"x]; €S,
D+1 otherwise.

CQ(A1 + er()]l) + C1As1 + -0+ CDAsD =0 (mod pr+1).

If p | co, then co(A1 + p"XoJ1) = co(A1 + pTxJ1) (mod p™*') for every x € Z, sowehave Dy = D for every x € Zp.
Ifp 4 co,then Ay + p"xoJ1 is a Zp-linear combination of Ag,, . .., A5, modulo p"+1.If there exists x; # Xo (mod p)
such that A1 + p"x1J1 is a Zp-linear combination of A, ..., As, modulo p’*!, then

(A1 +p"Xo/1) - (A1 +p"X1]1) _ T,

X0 — X1
is also a Zp-linear combination of Ag,, ..., A, modulo p™ 1 so we have Dy = D for every x € Z,. If there is no
such xj, then Dy = D + 1 if and only if x # x¢ (mod p). O
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The following lemma is the most technical part of this paper.

Lemma 3.5. Let P(t) € Mn(Zp)[t] be a first integral. Then either one of the following holds:
(1) There exists a first integral Q(t) € Mp_1(Zp)[t] satisfies, for at most one1 < r < m,

(a) either
dO,Q(xi) = d(),p(xl.) - 1f0r every 1<i<m,
dl:Q(Xi) € {dl,P(Xi)a d1’p(xi) + l}fOT‘ i=rand dl,Q(Xi) = dl,P(xi) otherwise,
(b) or
do,o(x;) = do,p(x;) for i = r and do,g(x,) = do,p(x;) — 1 otherwise,
d1,0x) € 1d1,p(x;) — 1, d1,p(xy) — 2} for i = r and dy,o(x;) = d1,p(x;) Otherwise,
(c) or

dO,Q(xi) = do,p(xi)for‘ i=rand dO,Q(xi) = dO,P(xi) -1 otherwise,
dl,Q(xi) = dl,p(xl.)for every 1<i<m.

(2) The number dy p(x,) is constant for every 1 < i < m and there exists a first integral Q(t) € Mn_doyp(xi)(zp)[t]
satisfying do,o(x,) = 0 and dy,g(x,) = d1,p(x;) for each i.

Proof. Asin the proof of Lemma 3.3, we may assume that

O O O B11 B12 B13
P():=| O pla, O |+t Bu By Baz |+Ppt>C e Mpn-dys—dyy)+dys+dos (Zp)-
o 0 I, B3 B3y Bss

Denote dj , := Yz, dra1 = n—(dos + di,1) for simplicity.

Case 1: p t By. The Smith normal form of Bq; gives U,V € GLdél(Zp) such that UB11V = ((1)3%) for some
B{‘f € My, _1(Zp). Then for every non-zero x € X,,, we have Y

U 0 v 0
coky /27 (P(X)) = coky /2 (( )P(x)( ))
e Zlr Ty 0 Id0,1+d1,1 0 Id0,1+d1,1
0
X rd XUBlz XUBl3
cok 0 xBy +px*c
= 2
Zy/p*Zy XBn V pIdl,l + XBy» XBy3 P !
XBgl v XB?,Z Ing + XBg3
X o) , XBZZ XB£3
0O xB" XB XB
= cok 2 11 12 13 + X2C1
Zy/p°Zy XBY, xBy pla, +xBy XBos p
xBL, xBy, XB3: Ig,, + xBs3
X 0 0 0
0 xB'¢ B¢ B¢ C
= cokz, /pz, L P OB ap( DT
O XxBy pla, +XxBy, XBys Cia Cra
0 xBi, xBj, Iy, + XBiy
= cokz,/p2z, (Q(X))
for ’ g ;
T
0 0 0 By By, Bi; ,
QWy=( 0 plgy, O |+t| By B By |+pt°CracMn1(Zp)[t].
! !
0 0 la, By By By

Here the last isomorphism is due to the relation

X + pex?
cokz, iz, <( pf2(x)

pfit)\\ _ X + pex?
Q(x))):mk’z"”’zz"(( 0

= cokg, /p2z, (Q(X))

0
Q(X) - pfaX)(x + pex®)pfi (X))>
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for every x # 0 (mod p). Since Q(t) is a first integral with do,o(x,) = do,p(x;)> do,00x;) = do,p(x;) — 1 for every
2 <i<manddy,gux;) = di,py, for every 1 < i < m, it satisfies condition (c) for r = 1.

Case 2:p | Byy and [p + Bqz or p + B21]. We may assume that p  Bqy. Choose invertible matrices U and V such
that UB1,V = (é B?g ) and write By, = pB},. Then for every non-zero x € X, we have

U 0 o Ip. 0 0O
Cokzp/pZZp (P(X)) = COkZp/pZZp (0] V_1 0 P(X) 0 \74 0
0 0 IdU,l 0 0 Ido,1
0]
pxuB, X U XUB13
cok 0 xBy +px*C
= 2
ZoIP* 2y XV1By  pla, +XV 1BV xV~1By px 4
XBgl XBng Ido,l + XB33
pXBY, X 0] XBj,
pxBY, 0] xByd xBY,
= cokz, /p2z, xBY,  p+xBY xBhY XBY, +px*Cy
XBgl XB% Play,-1+ Xng XBng
xBy  xB., XxBY, Ia,, +XB33
0] X 0] 0]
pxBj; O  XBjj XBy
= cokz, /p2z, XB%'}’ p XBj} -pBY, +,)(B‘2‘3 +px2Cy
XBgl 0 pIdm—l + Xng XBgS
xBy O xB}, I, + XBiy
0 X + pex? 0
(0] 0]
= COkZ /p*Z 2 o _pBlu 2
p/PEp XBy + px2Cy 0] 8 | + xB, + px*C;
pId1,1*1 0
0 Ig,,
Then
0] 0] 0
0 0 -pBjy 2
t) = t(Bi B t°(C; Cr) e Mp_1(Zp)[t
=1\ e s 0|7 (Bi B;)+pt*(C1 Cr) € Mpa(Zp)[t]
0 0 Ig,,

satisfies condition (b) for r = 1.

Case 3: [p | B11,B12,B211 and [p 1 By3 or p + B3;]. We may assume that p { By3. Choose invertible matrices U
and V such that UB13V = ((1) B?g ) and write Bjj = png for (i, ) € {(1,1), (1, 2)}. Then for every non-zero x € Xp,
we have

U o o Iy, 0 0O
COkZp/pZZp (P(X)) = COkZp/pZZp 0 Idl,l 0 P(X) (0] Idl,l (0]
o o v O o0 V
0
pxUBj; pxUB/, X rd
cok 0 xB +px*C
= 2
ZypIP*Zp XBy1 p‘[dl,l + XBgy XBy3V p !
xVByy  xV7'Bgy  Ig, +xV71BgV
PXBY pxBY, X 0]
pXBf;  pxBY, 0 XBjj
= cokz, /p'z, XBy1  pla, +XBy  xBl, xBY, +px2Cy
xBY, xBY, 1+ xBY XxBLY

d d d rd
XBg; XBg, XBgg Igy,-1 + XBgsg
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0] 0] X 0]
PXB% pXsz 0 Xqu
= cokz, 2z, xB, pla,, +XxB), O XBj, +px2Cy
-pBY, + xB, -pB{,+xBj, 1 XByy
xBY, xBY, 0 Igy,-1+xBY
0] X + pex? 0
K o (0] 0
=co
2,/p'2, < 0 Pl > + xBy + px2Cy 0 < 0 ) + XBy + px*Cy
~PBy; —PBy, o
0o o Lip1s
Then
0 0] 0]

(0] pla,, 0
-pBj; -pBij, 0
(0] 0} Ido,l—l

Q) = +t(B; By)+pt*(Ci Cr) € Mapa(Zp)lt]

satisfies condition (a) for any r.

Case4:[p | B11, B12, B21, B13, Bs1land p + Byy. Choose invertible matrices U and V such that UBy, V = ((1) B(Z? )and
write Bj; = pBéj for (i,7) € {(1,1),(1,2),(2,1)}. Let UV = (gz g;) € GLg,,(Zp). Then for every non-zero x € Xp,
we have

Idél O O Idh 0O O
cokz, p2z,(P(X)) = cokz, /p27, O U O |Px| o Vv o
0 0 Iy, 0 0 Ig,
pxB, pxB},V XBi3
X+pd pDy 2
= cokz, /p2z, pxUB), pD;  pDs+xBIY XUBy3 +pxCy
XBgl XBgz v Id[],l + Xng
pxBj PXBiz PXBj, XB13
XBY. x4+ pd D XBY
= cokz, p2z, 4 a 4 PP d 2 +px*Cy
pree pxBy;  pD;  pD3+XxBy, XBj,
XBy  xBl, xB,  Ig, +xBss
pxB!, 0 pxBi, XB!,
0 X+ pd pDy -pdBY
= cok 23 x*C
ZLIPLy pxBY,  pD, pDs + xBbY ~pDyBY, + xBY, LR
XB3 ‘deéz ‘PBéle +XxBy, lay, - PdBéngs +XByy
xBi, + px*Cuy 0 XByry + px*Cry
2
= coky, /pz, 0 x+p(d + cx®) I 0
XBjg + pXZCId 0 (pAzd Tap, +DAra ) + XBrg + pXZC,»d
Then
0} 0 0}

B!, B Cy C
Q(t):=| O pDs PAr + t( B“ B”‘) + pt* ( C“‘ C”‘) € Mpo1(Zp)[1]
0 pAw Ia, +PAra ld rd ld rd

satisfies condition (b) for r = 1 if rankg, (D3) € {d11 -1, d11 - 2}. This is true by the inequality
rankg, (D3) > rankg, (D, D3) - 1> rankg, (UV) - 2 = d11 - 2.

Case 5: [p | B11, B12, B21, B13, B31, Bpl and [p + Baz or p + B3;]. We may assume that p  Bas. Choose invertible
matrices U and V such that UBy3V = () B(;)g ) and write

Bij = pBﬁj for each i +j < 4.
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Then for every non-zero x € Xp,, we have

— 1133

cokz, /p2z, (P(x))
Iy, 0 0 Iy, 0 0
= cokz, /p2z, O U O |Px)| o Ut o
o o v1! 0 o VvV
pXBjy pXBy, U™ PXBi3V
X 0
= cokz, /p2z, pxUB),  pla,, + pxUB,,U* d +px2Cy
O XBy;
pxV-1B}, xV-1B3, U1 Igy, + XV B33V
pxBy;  pxBj, pXB}, PXBi pXBl
pXBY,  p +pxb3; pXBy; X 0
= cokz, /p2z, prgl pr;‘é pla,, -1+ pr'Z"g 0 ngg +px2Cy
PXBY, xbl¥ XB3, 1+ xbl% XB3y
pXBgl XBIZ%% Xng XBé‘lii Ido,l—l + Xng
pxBj, pxBt, pxB}, 0 PXBi,
0 p 0 X 0
~ d ld rd rd 2
= cokz, /p2z, PXxBy; pXxBy, pla,,-1+pxBy;, O XByq + px“Cy
pA; +pxBY,  pay +xbl¥  pAz+xB 1 xBhY
prgi; A4+ xBé‘é’ ngg’ 0 Ig,-1+ ngg
* * * (0] *
0 0 0 X + pex? 0
= COkZp/pZZp * * Plag,-1+ * 0 *
Ar+ % p(x+pex®)+pay + = Az + * 0 *
p px+p p p
* DA4 + * * 0 Igy -1+

= COkZP/pZZp(pX_lj + P1(x)),

where each * is of the form xB + px2 C,

O 0O 0 O
O 0O 0 O
] = 0O -1 0 O € Mn—l (Zp) (]n_do,l;d;‘1+l = _1)
O O 0 O
and
0 0 0 0

0 0 plg, 0
pA1 pay  pAs 0
(0] DAy (0] Ido,l—l

Now we have do p,(x,) = do,i — 1 and |dy,p,(x;) — d1,il <1 by Lemma 3.4. Precisely,

Pi(t) := +tB' + pt*C’' € My1(Z)[t).

d dia-1 ifp|Ajandp | ay,
LP1(x1) = .

1 di1 otherwise,
and forevery2 <i<m,

dii+1 ifJissingular of order 1 at xl.‘1 over P1(x;),
dy,p,(x) = yd1; -1 if]issingular of order 1 at 0 over P;(x;),

dyi otherwise.

Let P1(t) = (ql(t) qn_l(t)) and q;(t) = a; + th; + pt’c; for some a;, by, ¢; € Z3~.
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Case 5.1: / is singular of order 1 at x;1 over Py(x,) for some 2 < r < m. Let e; be the i-th unit vector in Zg‘l, S0
that the non-zero column of J is —e;_q,,. The proof of Lemma 3.4 tells us that the (d;)1 + 1)-th column of Pq(x;)
is a Z,-linear combination of other columns of P1(x,), i.e.

Qa1 06) = pX;len-a = Y. €iqilxy) (mod p?)

i#dy  +1
for some ¢; € Z,, (i + dj ;). Then
—c1
Id§,1 0]
_Cdé,l
Pt +Pi)| O 1 0 =(@® - qa,© 8O qay, 20 - qua(D)
—Cd, +2
0o : Tdg+dis-2
—Cn-1

and g(x;) = 0 (mod p?) so we have g(t) = (t — x;)f(t) (mod p?) for
fi) = pt_lx;le"—dm +a +pth’ @b e Z;_l).

Now
Py(t) == (q1(0) =~ qa, (O O qay,42(0) -+ qn-1(0) € Mp-1(Zp)[1]
satisfies condition (a) or (c) for the same r.
o« Fori¢{1,r}, wehave
cokz, pz, (P(Xi)) = 0Kz, p2z, (DX '] + P1(X0)) = c0kz, /p2z, (P2(Xi))

SO do,pz(xi) = d(),i —1and d1)p2(xi) = dl,i'
e Fori=1,wehave

0o o 0 0
0 0 opla.. O

P,y(0) = 1

0=t b4t pas 0
0o 0 0 Ig

80 do,p,(x;) = do,1 — 1 and di,p,(x;) = d1,1.
e« Fori=r wehave

cokz, /pz, (P(Xr) = 0Kz, iz, (PX; '] + P1(xr))
= cokz, ez, (1(0) -+ qay, (O Gy, 42(8) -+ qna(D)
80 (do,p,(x,)> A1,p(x,)) € {(dor, dap), (doyr — 1, dvp), (doy — 1, dyr + 1)}
Case 5.2: J is not singular of order 1 at x,‘1 over P1(x;) forall2 <r <m. Let
Pp(t) := p(az + 1+ bt)] + P1(t) € Mp_1(Zp)[t]
for b € {0,1,...,p - 1}. Then we have
cokz, /pz, (DX; '] + P1(Xy)) = cokz, ez, (Py(Xr))

unless J is singular of order 1 at a; + 1 + bx, over Py(x,). Since p > m — 1, one can choose by € {0,1,...,p — 1}
such that J isnot singular of order 1 at a; + 1 + box, over P1(x,) for every 2 < r < m.Now P, (t) is a first integral
and satisfies condition (a) for r = 1.

« Fori+1,wehave

cokz, /p2z, (P(Xi)) = COKz, p2z, (DX7 '] + P1(X:)) = cOKz, /p2z, (Pp, (X))

SO dO,PbU(Xi) =dp;-1and dl,Pbo(Xi) =d,.
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e TFori=1,
0 0 0 0
0 0 pIdLrl 0
PA1 -p  pAs 0
0 pA4 0 Id0‘1_1

P, (0) =

$0 do,p,,(x;) = do,1 — 1 and di,p, (x;) = d1,1.

In the remaining cases, we have B = 0 (mod p) except for (1, j) = (3, 3) so that do; = maXy<i<m do,;. By the same
reason, we have do; = --- = do,m. Then the matrix I, + x;B33 + px? Cs3 is invertible for each i and thus

o 0 B Bu) 9 (Cn Clz)
0= +t + pt
Q( ) (0 p1d1.1> (BZl By P Ca Cp

satisfies condition (2). O

3.2 Necessary condition for an element of Cy,

For a given (n; Hy, ..., Hp) € Cx,,1,00, there exists a first integral P(t) € M;(Zp)[t] such that cok(P(x;)) = H;
for each i. We will use Lemma 3.5 repeatedly until we obtain (n’ JH . .., Hy) € Cx,,1,00 Which satisfies
rank]pp (Hi’/pH{) =n' for each i. For the case m = 4, the elements of (n'; H!, .. .,H[’}) € Cx,,1,2 which satisfies
rankg, (H!/pH]) = n' for each i bijectively corresponds to the elements of Cx, 1 by Proposition 2.3 (4). The
following lemma, which provides an information about the set Cy, » 1, is a generalization of Lemma 3.3.

Lemma3.6. If (n;Hy,...,Hn) € Cx, 11 and l < m, then

m
Z doi—(m-Dag =0
i=1

for some non-negative integer ap > maxi<i<m do,i.

Proof. We use induction on n. The case n = 1 follows from Example 2.4. Now assume that n > 1 and the lemma
holds for every n’ < n. Suppose that there exists (n; Hy, ..., Hy) € Cx,,,1,1 such that

m
Y do,i < (m—1) max d,.
o 1<ism

As in the proof of Lemma 3.3, we may assume that do1 = maXj<j<m do,; and there exists an I-th integral

0O 0 !
P(t) = tA] + -+ tLA] € Mp(Zp)[t
(t) (0 Id0,1>+ 14+ A € Mp(Zp)[t]

such that cokzp/pzp (P(x;)) = H;/pH, for each i.

Assume that do; < n and let Q(t) € Mp_1(Zp)[t] be the I-th integral which is obtained by eliminating first
column and row from P(t). Then we have do g(x,) = do,1 and do g(x;) < do,i < do,1 for 2 < i < m. The induction
hypothesis implies that

m m
doi—-(m-10)maxdy; > ) d y—(m-1) max d >0,
1; il )1Sism 0.1 1; 0.00) ~ ( )1sism 0,Q(x:)

which is a contradiction. Thus we have dy 1 = n. Now consider the first integral

tI A
-1 tI Aq

Py() = : € Min(Zp)[t],
-1 tI Ao

-1 Apq+tA;
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where Ay = P(0) = (81;0)1 ). It satisfies cok(Py(t)) = cok(P(t)) so that do p,(x,) = do,i + (I - 1)nforeveryl <i<m

and maxi<i<m do p,(x,) = In. Then we have

m m
z dO,i - (m — l)n = Z dO,P1(Xi) - (m - l)ln >0
i=1 i=1

by Lemma 3.3, which is a contradiction. This finishes the proof. O

Now we prove a necessary condition for an element of Cx,, 1,2 using Lemma 3.5 and 3.6.

Theorem 3.7. If (n; Hy, ..., Hn) € Cx,, 1,2, then

m
Y doi—(m-1)ag 20
i=1
and
m m
( Y doi— (m - 1)a0> + ( Y min(dy ;, ay) - (m - 2)a1> >0
i=1 i=1
for some non-negative integers ao and a; such that ap > maxi<i<m do,;i and 2ap + a1 > MaXi<i<m(2do i + d1,i).

Proof. We use induction on n. The case n = 1 follows from Example 2.4. Now assume that n > 1 and the theo-
rem holds for every n’ < n. Let P(t) € Mn(Zp)[t] be a first integral such that cokZp 0z, (P(x;)) = Hi/ szi for
each i.If do; = 0 for each i, then we have (n; pHy, ..., pHp) € Cx,, 2,1 by Proposition 2.3 (4) and do px, = d1,i. By
Lemma 3.6, there exists By > maxi<i<m do,pn, such that Z{L’l dopr; — (M = 2)Bo = 0. Now (ap, ai) = (0, Bo) satis-
fies the desired properties. Otherwise, choose a first integral Q(t) € My (Zp) with n’ < n satisfying one of the
conditions in Lemma 3.5. By the induction hypothesis, we have

m
z do,o(xy — (M — 1)(1(’) >0
i=1

and

m m
( Y do,ox) — (M- 1)a(’)> + ( Y min(d, v, @) - (m - 2)a;) >0

i-1 i=1

for some ag, a] € Zso such that a; > maxi<icm do,o(x) and 2ag + @} > Maxi<izm(2do,o(x) + d1,0(x)). Now we
divide the cases according to the condition of Q(t).

Case 1: Q(t) satisfies condition (1) of Lemma 3.5. Let (ao, a1) = (a; + 1, a}). Then we have

ao = max do o) +1 = max do;,
1<i<m 1<i<m

2ap + a; > max (2(do,o(x) + 1) + d1,0(x)) = max (2do,; + dy,;),
1<i<m 1<i<m

m m
Y doji— (m=1)ao > Y dogexy — (m~1)ag = 0.
i=1 i=1

If Q(t) satisfies condition (a), then we have

m m
0< ( z do,ox) — (M = Dag + 1) + ( z min(ds,gx), ;) — (M - 2)aj - 1)
i=1

i=1
m m
< ( Y doi— (m- 1)a0> + ( Y min(dy,;, ay) - (m - 2)a1>.
i=1 i=1
If Q(t) satisfies condition (b) or (c), then we have

m m
0< < z d0,0(x,-) -(m- 1)(16) + ( Z min(dl,g(xi), a{) -(m- 2)(1;)
i=1 i

i=1

< ( Z doi—(m- 1)a0> + ( Zmin(du, ay) - (m- 2)a1>.

i=1 i=1
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Case 2: Q(¢) satisfies condition (2) of Lemma 3.5. In this case, aj = 0 and Y ', min(d;, a}) — (m - 2)a} > 0 for
some a; > MaXi<jcm d1,i. Let dy = do; for each i and (ao, a1) = (do, a). Then we have

ap = max do,i,
1<i<m

2ap + a1 > 2 max do; + max di,; > max(2do,; + d1,i),
1<i<m 1<ism 1<i<sm

m
Y do,i - (m-1)ag = mdo - (m-1)dp > 0,
i=1

do < ( Y doi— (m - 1)a0) + ( > min(dy ;, a1) - (m - 2)a1). O

i=1 i=1
As a corollary of Theorem 3.7, we prove one direction of Theorem 1.8 for the case m = 4.
Corollary 3.8. The inclusion
Cx, € {(H1, Hy, H3, Hy) € M%p 181 =8y =83=84, 3d1; <Dy (1<i<4)and
dyi+2(dyj+dyj) <Dy +Dy (1<i,j<4)}
holds where s; = rank]Fp (Hi/pH)) 1 <i<4)and D, = Z;l:l driforr=1,2.

Proof. Suppose that (H1, Hz, Hs, Hy) € Cx,. By Proposition 2.3, we have
S1 =Sy = 83 = sgand (n; pHy, pHy, pH3, pHy) € Cx, 1,00 = Cx,,1,2

for some n € Z1. Let P(t) € Ma(Z)p)[t] be a first integral which satisfies cokz, 2z, (P(Xi)) = pH; /p3H; so that
do,p(x;) = di,; and dq,px,) = dy,; for each i. By Theorem 3.7, there exist ag, a1 € Zso such that

4
Dy —3ag > 0 and (D; - 3ap) + ( > min(dy,;, a1) - 2a1) >0
i=1
with ap > maxigj<s d1,; and 2ap + @1 > MaXi<i<a(2dy; + dy ).
o Foreveryl<i<4,wehave3d;; <3ap < Ds.
o Foreveryl<i,j<4, wehave

4
D1+ Dy - dz,j > (D1 -3agp) + ( Z mil’l(dz,io, ay) — 2(11) + (3ap + ay)

ip=1

> ap + (2a0 + 1) = dy; + (2dyj + da )

so we conclude that dq ; + 2(dyj + dz,j) < D1 + D. O

3.3 Zone theory

In this subsection, we prove the sufficient condition of Theorem 1.8 for m = 4. We will find a generating set of Cx,
and will prove that each element in a generating set satisfies the desired condition. To do this, we introduce a way
to visualize an element of B,.

Definition 3.9. For given k € Z., a k-presentation of (n; Hy, ..., Hp) € B (denoted by Prsi(n; Hy, ..., Hp))is
anm x nmatrix with entriesin {0, 1, ..., k — 1, k*} whose i-th row contains d, ; numbersof r (0 < r < k — 1) and
Yrez., dr,i numbers of k™. (It is unique up to ordering of the numbers in each row.) Each entry in a presentation
of a block is called a type.

Remark 3.10. For given [ € Zso and k € Zsg, assume that Prsy(n; Hy, ..., Hp) = Prsp(n; H! , .. ., H},). Then we
have H;/p*H; = H!/p*H| for each i so (n; Hy, ..., Hn) € Cx, ik if and onlyif (n; H}, ..., H},) € €x,, 1. Hence it
is enough to consider a k-presentation of (n; Hy, . . ., Hp) to determine whether it is an element of Cx,, ; x or not.
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o001 1 122 2 2
100 1 1 1 3% 3t 0
0 0 3 30 0 0 3% 3

Figure 1: A 3-presentation of (9; (Z,/pZ,)* x (Z,/p*Z,)*, (Z |pZp)* X (Z,|P*Z,)*, Z3) € Ba.

A k-presentation of a sum of two elements in B, is given by the concatenation of a k-presentation of each
element. By Proposition 2.3 (1), the set of k-presentations of elements in Cyx,, 1 x is closed under concatenation.

Example 3.11. The equation (3; (Zp/pr)Z, 1) +(21,Zy/pZp) = (5; (Zp/pr)Z, Z,[pZp) is presented as
011]+[00_[01100]_[00011]
0 0 O 0 1 0 0 0 0 1 0 0 0 0 1
Consider an action of a permutation group S, on B, by o- (n; Hy, ..., Hpy) := (;Heqy, - .., Hogmy). Then
Prsx(o-(n; Hy, ..., Hp)) is obtained by permuting the rows of Prsi(n; Hy, . . ., Hp) according to o. For a subset
A c Bp,denote Sy - A :={o-(n;Hy,...,Hp):0€ Sy, (N;Hy,...,Hp) € A} ¢ B

Now we are ready to find a generating set of Cx,, 1,1. Note that, by the proof of Lemma 3.3, for any element
(n;Hy, ..., Hp) € Cx,, 1,1, either one of the following holds:
(1) There exists a 1-presentation P of an element of Cx, 1,1 such that one of the following holds:

@ P+o- (1+ 0o --- O)T =Prsi(n;Hy,...,Hp) for some o € Sp,.

® P+(0 - 0) =Prsi(m;Hy,..., Hy),
(2) Thereisno type 0 on Prs;(n; Hy, ..., Hpy).

We can repeat the above procedure until we find a 1-presentation Py of an element of Cx, 1,1 which has no
type 0 and there exist rq,...,1; € Zsoand gy, ..., 0; € Sy such that

t
Pu+Y 0 (L, 2Zp[p" 2,1, ..., 1) = Prsy(n; Hy, ..., Hp).
i=1
Since Py has no type 0, it is also a 1-presentation of an element of (pilo(e X,,2,0) = (pI})(Bm) by Proposition 2.3 (4).
Conversely, by Example 2.4, 6 - (1, Z,/p"Zp, 1, ...,1) € Cx,, 1,1 for every r ¢ Z-o and 0 € Sp,. Hence we proved
that Cx,11 = (Ao UA1m), where

Ard = Sm A ZyIp" 2y, ..., Zp P Ly, Zp[D Zp, ..., Zp|D"Zp) € Bp i T1,...,Td € Zsy}
for r € Zp and 0 < d < m. We can generalize this to the set Cx, ;1 for every1 <1< m.

Theorem 3.12. Forevery1l <l<m, Cyx, 11 = (Ao UA1m) and (n; Hy,...,Hp) € Cx, 11 if and only if

m
Y doi—(m-Dag>0 31
i=1

for some (non-negative) integer ap > maXi<i<m do,i.

Proof. Consider the sets S := (A, U A1,m) and

Sy = {(n; Hy,...,Hp) € By : inequality (3.1) holds for some integer ag > 112&3; do,i}.

By Example 2.4, we have Ag, A1,m € Cx,,.11 0 S1 € Cx,, 1,1. Lemma 3.6 implies Cx,, ;1 ¢ S2. Now it is enough to
show that Sy ¢ S1. For any element (n; Hy, ..., Hn) € Sy, there exists a non-negative integer ap > maxi<i<m do,i
which satisfies inequality (3.1). If dp ; = 0 for each i, then each H; is of the form H’,}zl Zylp"* 2y (r1,...,Tn € Z1)
so (n;Hy,...,Hm) € (A1,m). Now assume that dy; > 1 for some i, so that ap > 1. Also we may assume that
o = MaXy<jcm do,i < N.

For aninteger a, let [a]4, be aninteger such that a = [a]4, (mod ag) and 1 < [a]q, < ao. Choose a 1-presenta-
tion Prsy(n; Hy, . . ., Hyn) whose r-th row has type 0 at columns [a;]4, for Zf;ll doi+1l<ar< 2{21 dy,i for every
1 < r < m. (See Figure 2.) By the inequality (3.1), each of the first ap columns has at least m — [ type 0’s so it
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o o o0 1 1* 1 1* 1*

o o 1 o 1* 1* 1* 1*

* 1 0 o 1t 1% 1* 1*

o o o o 1*v 1* 1* 1*
Zero One+

Figure 2: A choice of a 1-presentation of (8; (Z,/pZ,)*, (Zp/pZy)* X (Zp|p*Zp)?, (Zp[pZy)* X (Z|p*Zy)*, Z) € By,

is a 1-presentation of an element of Ap ;. The remaining columns have no type 0 so they are 1-presentations
of elements of Ay p. Thus Prsy(n; Hy, ..., Hp) = Prsy(n; Hy, ..., H),) for some (n; Hy, ..., H},) € S; such that
H;/pH; = H]/pH] for each i. By the definition of the sets Ag; and A1, if we replace a term Z,/p"Z, (r € Z1)
in H{ with Z,/ pr'Zp for any r’ € Zs1, then it is still an element of S;. By iterating this process, we conclude
that (n; Hy,...,Hp) € S1. O

Similarly, one can find a generating set of Cx,, 1,2 as follows.
Lemma 3.13. We have Dy = Dyyg U D2 € Cx,, 1,2 for

D1 =Sm-{(d+1;Zp/p"" Zp, ..., Zp|p " Zp, Zp|PZyp, ..., Zp|pZp) € By :0<d<m-2and

T, ... Tarz € Zso}
and
Dmz = Sm-{(d + L (Zp/PZp), ..., (Zp/PZp)", Zp [P L, - .., Zp D" Zp) € B :0<d <mand
Iy eoosTmed € Zs2}.
Proof. For0<d<m-2andfi(t) = ﬁ:g artk = ]'[]‘-ijlz(t - X;), the first integral
1 pagsit + pag.t?
-t 1 part
Py(0) = : € Ma+1(Zp)[t]
-t 1 past

—t pap + past

satisfies cok(P1(t)) = cok(pfi(t)) so we have Dp 1 C Cx,, 1,2. For 0 < d < m, the first integral

t—Xx1 p
Py(t) == - © | € M@ (Zp)][t]
t—-Xqg p
p cee p
satisfies cok(Py(x;)) = (Zp/pr)2 for 1 < i< d and cok(Py(x;)) = Zy/p"Zy (ri € Zsy) for d+1<i<msowe
have Dp, 2 ¢ Cx,, 1,2- O

Theorem 3.14. We have Cx, 12 = (Ao1 UA12 U Az m UDp). Moreover, (n; Hy, ..., Hn) € Cx,, 1,2 if and only if
m
Y doi - (m-1)ag 20, (3.2)

i=1

( > do;i - (m- 1)a0) + ( Y min(dy i, a1) - (m - 2)a1) >0 (3.3)

i=1 i=1
for some non-negative integers ay and ai such that ap > maxXi<j<m do,; and 2ap + a1 > MaXi<j<cm(2do,; + di,;)-
Proof. Consider the sets Sy := (Ap1 UA12UAzm UDp) and
Sy = {(n; Hy,...,Hp) € By, : inequalities (3.2) and (3.3) hold for some ag, a; € Zsg

such that ap > max dp; and 2ap + a3 > max(2dp,; + dl,i)}.
1<ism 1<ism
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00 0 0 # = 00 0 0 % =
00 * » 1 1 00111 1
00« 0 0 1 | |0 « 00 1 =
00 0 0 # = 00 0 0 % =
Zero One Zero One

0 0 0 0 2+ 2t 2t 2t7 [0 2t 0 21 [o 2+

o0 1 1 1 1 1 1 0 1 11 0 1

“lo 220 0 1 20 20 20| o 20| o 2| 2| Tt

0 0 0 o0 2 2t 2+ 2t] |o 2 o 2] o 2+
Zero One Two+

Figure 3: A process for (8; (Z,,/p*Zp)* X (Z,|D*Zp)?, (Zy |DZp)°, Zy | DZp X Zp [D>Zp X (Zp | °Zp)?, Z) € By (a0 = 4, a1 = 2).

By Example 2.4 and Lemma 3.13, we have
Ao1, A1z, Aam, Dm € Cx,1,2

s0S1 ¢ Cyx,, 1,2. (Recall that Cx, 1,00 € Cx,,,1,2 by Proposition 2.3 (a).) Theorem 3.7 implies Cx, 1,2 € Sz.Itisenough
toshow that S, ¢ S1.For any element (n; Hy, ..., Hy) € Sy, there exist ag, a1 € Zso such that ap > maxi<i<m do,i,
2ap + a1 > maxXi<i<m(2do,; + d1,;) and inequalities (3.2) and (3.3) hold.

Allocate ag columns to Zero Zone and a4 columns to One Zone. Arrange type 0’s on Zero Zone and type 1’s on
One Zone as in the proof of Theorem 3.12. Then all type 0’s are placed because ap > do; for each i, while type 1’s
may not. Fill the remaining type 1’s to Zero Zone. If there are still remaining type 1’s, then allocate new columns
for remaining type 1’s to Two+ Zone and then fill type 2*’s on empty entries. Finally, allocate new columns to
Two+ Zone for remaining type 2*’s if necessary. Then we have the followings:

(a) Each column on Zero Zone contains at least m — 1 type 0’s.
(b) There are exactly Zﬁl do,i — (m — 1)ap numbers of (0 O)T columns.
(c) Byreplacing at most Zﬁl do,i — (m — 1)ay entries, we can make each column on One Zone contains at least

m — 2 type 1’s.

(d) Type 1 appears more or equal on Zero Zone than on Two+ Zone for each row.
Properties (a) and (b) are easy to prove, and (c) follows from inequality (3.3). For each i, the inequality 2ap + a; >
2dy,; + dy,; is equivalent to ap — do; > (d1,; — a1) — (@ — do,;), which implies (d).

If there are some empty entries, then swap them to the rightmost non-empty entry on each row and delete
all empty columns. Then we obtain a 2-presentation of (n; Hy, . . ., Hy), which still satisfies properties (a), (b), (c),
and (d). Figure 3 illustrates the process to place the types.

For each column on One Zone which has m — 2 — d type 1 for d > 0, concatenate d (0 O)T; this is
possible due to (b) and (c). For each column on Two+ Zone which has type 1 on rows iy, ..., iz, concatenate
€i,,..., e, (e; is a column on Zero Zone whose i-th row is 1); this is possible due to (d). These are elements
of Dy, and the other columns are elements of Agq U A1 U Az m, S0 we have (n; Hy, ..., Hp) € S1. O

Now we can complete the proof of Theorem 1.8 for m = 4.
Proof of Theorem 1.8 for m = 4. Suppose that (H1, Hy, H3, Hy) € M4z,, satisfies the conditions
§:=81=---= 84, 3di; <Dy and dy;+2(dyj+dyj) <Di+D; foreveryl<i,j<4.

We claim that (s; H1, Hy, Hs, Hy) € Cx, 0,3 S0 that (H1, Hy, Hs, Hy) € Cx,. By Proposition 2.3 (4), it suffices to prove
that (s; pH1, pHz, pHs, pHy) € Cx, 12 Set ap = MaXjgicq d1,; and @y = Maxygi<a(2dy,i + da,i) — 2MaXigicq dy i
Then D; — 3ap = D1 — 3maXi<;<sa di; = 0 by the assumption. To apply Theorem 3.14, we need to prove

4
(D1 - 3ag) + ( Zmin(dz,i, ay) — 2(11) >0.

i=1
The case F(ay) := Z‘i*:l min(dy ;, a1) — 2a; > 0is clear, so we may assume that F(a;) < 0and dy; > a; for at most
one i. For ip such that 2d1 ;, + dz,;, = MaX1<i<4(2d1,; + dy;), we have a1 = 2dy ;, + da,ij, — 2MaX1<i<a d1,i < dy,j, SO
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dy i, = MaXq<i<4 dz ;. Now we have F(a;) = Dy — d3;, — a1 SO

(D1 = 3ag) + F(a1) = (D1 —3agp) + (D2 — ay — da;,) = D1+ Dy — max dyi — 2dyj, — 2d2, = 0

by the assumption. We conclude that (s; pHi, pH2, pH3, pHy) € Cx, 1,2 by Theorem 3.14. O

4 Joint distribution of multiple cokernels

4.1 Convergence of the joint distribution

In this subsection, we study the limit
nlinc}o P(cok(Ap + yilp) = Hifor1 <i<m),

where A, € My(Z,) is a Haar random matrix for eachn > 1, y1,...,ym € Zp are distinct and Hy, ..., Hp € Gp.
Although we do not know the value of the above limit, we can prove the convergence of the limit. The proof is
based on the probabilistic argument in [5, Section 2.2].

Theorem 4.1. Let A, € My(Zy) be a Haar random matrix for eachn > 1, let y1, . . ., yn be distinct elements of Z,
and Hy, ..., Hy € Gp. Then the limit

nan(}O P(cok(Ap +yily) = Hifor1 < i< m)
converges.

The following lemma will be frequently used in the proof of Theorem 4.1.

Lemma 4.2 ([5, Lemma 2.3]). For any integers n > r > 0 and a Haar random C € Mnxr(Zy), we have

r-1
1
IP(there exists Y € GLy(Zp) such that YC = (g)) =Cnr = H(l T )
J=0

Proof of Theorem 4.1. For any n € Zs1 and k € Zs,, denote

Pn,k = IP(COk(MAy B Bk](yi)) =H;for1<i<m),

.....

where A € Mp(Zp), B, . .., Bx € Mpx1(Z,) are random and independent matrices and
0 d j k+1 1
Ma, g, pa@)i=A+y| )+ >V (B Onxn-n) +¥ L) € Ma(Zyp).
n-— j:1 n-—
To prove the convergence of the limit
lim Ppo = lim P(cok(A, +yil,) = Hifor1<i<m),
n—oo n—.oo
we will show that P, x and Pp_1 k41 are very close. Forn > 1,A = (g; gi) € M14(n-1)(Zp), B4, ..., Bx € Mpx1(Zp)
and
1 0
U= € GLp(Zp) (Ur € GLp-1(Zp)),
0 U
we have
UMa, B,,..50 U = My (5,810
for

aro (A AU g
UiAs UiAqUTY ) T !
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by a direct computation. For a random Ay, the probability that there exists U; € GL,_1(Zp) such that

AzU{l = (—1 O(H—Z)xl)

iS cp—2,1 by Lemma 4.2. Moreover, for any given A, and Uy, the matrices U1 A3, U1A4U1*1 and UB;j (1 <j < k) are
random and independent if and only if A3, A4 and B; (1 < j < k) are random and independent. These imply that

[Pk — Pl <1-cCn-z1

for
A -1 O
Mn(Zp) :={| Az Az Ay | € Mis14(n-2)(Zp)} € Mn(Zp)
As Ag Ay
and

.....

where A € 1\7[n(Zp), By, ..., Bk € Myx1(Zp) are random and independent. Let

A -1 0 G
A= Ay As; Ay | € Mp(2Zp), Bj=| dj | € Mas1+(-2px1(Zp) (1<j<k).
As Ag Ay €j

By elementary operations, we have

AL+ 35 Y Gyt | -1 0
Ma, 18,,...800) = Az + Z,’-lly’ d; Az +y Ay
As + Z]I‘{zl)’]‘-’j Ag | A7 +yIn
0 -1 0

= | A+ 3LYd) + Az +y)A+ 35 Y+ YD) [As+y [ A

(A5 + Y1 V) + Ag(Ar + X1 g ycj + yFT) As | A7+ylns

k
_ (At AsAr | A (0 LYy dj+Asci+ ¢ | O
As + AgAq | Ay ) ia ej + AgCj ‘ 0}

As+ck | O 1
k+1 3 k k+2
+ + Co =
y ( " 0) y ( 0n—2> (co == A1)
= My 5,5, 10
Since the elementary operations do not change the cokernel, we have

.....

for each i. The matrices B, .. ., B} are given by

y (4 .
Bf_(ej +N; (1<j<k),

where Ny, ..., Nk € M(n-1)x1(Zp) depending only on Ay, A3, Ag and ¢; (1 < j < k). Similarly,

A= (A2 Ay
As A

for some N € My_1(Zp) depending only on Aq, A3 and Ag and

' As+cky O
Bk+1 = AG 0 '

4.1
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Therefore A’, B;, e Bé{ .1 arerandom and independent ifdj,ej (1 <j<k),A;(2<1<7)arerandom and inde-
pendent, or A, By, ..., Bx are random and independent. This implies that
Pn,k = Pn—l,k+1- (4.2)

Choose M > 0 such that p™H; = 0 for every i. By equations (4.1) and (4.2), we have

d d

2
|Pno = Pn-ddl < ) |Pn-ivaict = Pl < ) (1= Cnoica) < i 4.3)
i=1 =1

ford> M and n > d. For everyn > M + 1, we have Pp_prn = Pp-p,m+1 and
[Pro = Prs1,0l < |Pno = Prnomml + |Pns1,0 = Prommal < =

by equation (4.3). This finishes the proof. O

4.2 Mixed moments

Now we compute the mixed moments of the cokernels cok(A, + px;I;) (1 < i < m) where each random matrix
Ay € Mp(Zp) (n = 1) is given as in Theorem 1.5. Nguyen and Van Peski [8] and the second author [7] inde-
pendently defined mixed moments of multiple random groups and extended the universality results of Wood
[13, Theorem 1.3] to the joint distribution of various multiple cokernels. The mixed moments of (not necessarily
independent) random finite groups Y1, ..., Y, are defined to be the expected values

r
]E( [ [ #sur(yy, Gk)>
k=1

for finite groups Gy, ..., G,.

For a partition A = (A; > --- > A;), let A’ be the conjugate of A, let G, := []._; Z/p"Z be the finite abelian
p-group of type A and denote

ah?
m(Gy) = pXi & .

The following theorem is a special case of [7, Theorem 1.3] (taking P = {p}), which extends [14, Theorem 2.5]
to the multiple random groups. We note that Nguyen and Van Peski [8, Theorem 9.1] independently obtained
a similar result.

Theorem 4.3 ([7, Theorem 1.3]). Let Y = (Y®, ..., Y®) and Y, = (Y, ..., Y) (n > 1) be random r-tuples of

elements in Gp. Suppose that for every GV, ..., G € G, we have
2 0 k) - W0 k) - )
nlgg{)]E( H#Sur(y,, ,G )) = IE( E#Sur(Y ,G )) = o( Em(c )).

Then for every HY, ... ,H" € G, we have
lim PYP =H® for1 <k <r)=PY® = H® for1 < k < r).

Example 4.4 ([14, Section 2.2]). Let Y,qq and Yeyen be random elements of G, given as in [14, (2.7)]. (We consider
them as random finite abelian p-groups which are always elementary abelian p-groups.) Let Y&, Y{r) (resp.
Yél), R Yér)) be ii.d. random variables in G, following the distribution of Yoqq (resp. Yeven). Then we have

r([2+t)

]E( [T#Sur(ri®, (Z/pZ)t)> = ]E( [ T#Sur(rs?, (Z/pz)f)> - p™a
k=1 k-1

by [14, Theorem 2.8]. This example shows that Theorem 4.3 can fail even if the mixed moments are slightly larger
than the upper bound, which is given by O([]}._, m((Z/pZ)")) = O(p%) here.
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Let Py, ..., Py € Zy[t] be monic polynomials whose reductions modulo p are irreducible and let A, € My (Z))
be a random matrix for each n > 1. Assume that one can determine the (limiting) joint distribution of the coker-
nels cok(P;(An)) (1 < i < m) when each A, is equidistributed. Then the next goal would be to prove universality
of the joint distribution of the cokernels for general ¢,-balanced matrices A,. The only known way to prove
such universality is to compute the mixed moments of the cokernels. Recall that X, = {x1, ..., xp} is a finite
ordered subset of Z, whose elements have distinct reductions modulo p.

Theorem 4.5. Let (¢p)n>1 be a sequence of real numbers such that for every A > 0, we have &, > A k,’[g" for suf-
ficiently large n. Let A, € My(Z,) be an e,-balanced random matrix for each n > 1, let Gy, ..., Gy € Gp and let

Pk : 114, Gi — Gi (1 < k < m) be the natural projections. Then we have

m
Jlim ]E( E #Sur(cok(4, + pxiln), Gg) = 186,,...60 Xm)l, (4.4)

where Ty € End(TT%; Gi) (g1, ..., &m) = (X181, - .., Xmgm)) and

m
S61,...Gn (Xm) = {G < H G; : pi(G) = G; for each i and pTx(G) < G}.
i=1

Proof. Choose k € Zs1 such that p¥G; = Oforalli. Let R = Z/p¥Z, Al, € Mp(R) be the reduction of A, modulo p¥

(which is also €4-balanced) and v; = A;lej € R™ where {eq, ..., ey} is the standard basis of R™. Then we have
m
IE( 1_[ #Sur(cok(An + pxily), G,-)) = Z P(F;(v + pxiej) = 0forall1 <j < n)
i=1 FiESur(R",G,-)
1<ism

= ) P(Fvj=-pTx(Fe)foralll<j<n)

F;eSur(R",G;)
1<ism

= Z P(FA), = —-pTyF). (4.5)

F;eSur(R",G;)
1<ism

If the probability P(FA), = -pTxF) is non-zero, then G = im(F) is an element of Sg, .. ¢, (Xm). Following the
proof of [10, Theorem 4.12], one can prove that there are constants ¢, K > 0 (depend only on G and X,) such that

S P(FA, = -pTyb) - 1| <Kn¢ 4.6)
FeSurg(R",G)
for everyn > 1 and G € Sg,,....¢,,(Xm). (To do this, we need to generalize [10, Lemma 4.11] to an upper bound
of P(FX = A) for every A € im(F). For any X such that FX, = A, we have P(FX = A) = P(F(X - Xp) = 0) and
X — Xy is also an &,-balanced matrix so this immediately follows from the case A = 0.)

Now equations (4.5) and (4.6) imply that

m
lim IE( H#Sur(cok(A,, + pxidy), Gi)) lim Z P(FA], = —-pTxF)

n—.oo
i=1 F;eSur(R",G;)
1<i<m
sjmo Y X PEA =T
GeSq,....6m (Xm) FESur(R",G)
= S6,,...6m (Xm)I. O
Example 4.6. Letp>m >3,let Gy = --- = Gy = (Z/pZ)* and let {ey, .. ., e;} be the standard basis of (Z/pZ)".

Then we have

m
[SGs,...Gn (Xm)| = #{G < 1_[ G; : pi(G) = G; for each i]»
i=1

> #{G = ((ej,uzj, ..., Umj) : 1<j<t)y :(upt,...,Ue) = (Z/pZ)‘ forevery 2 < i< mj}

t-1 m-1
= ( []w' - p"))
k=0

> Coo(p)p ™V
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To apply Theorem 4.3, the mixed moments of the cokernels for G, ..., G, should be
" 2 i
0< Hm(Gi)) =0((p7)™ =0(p7).
i=1

However, the above inequality implies that for every constant C > 0, we have

i
161,60 (Xm)| > Coo(@P™VE > Cp™F

for sufficiently large t. Therefore we cannot apply Theorem 4.3 in this case. In fact, Example 4.4 tells us that
there are two different m-tuples of random elements in G, whose mixed moments for Gy = --- = G = (Z/ pZ)t

m(t2+t)

are p“7, which is smaller than c(p)p™ V¢ for every ¢ > 4 by the inequality coo(p) > 1.

By the above example, we cannot determine the joint distribution of the cokernels cok(A, + px;Ip) (1 < i< m)
for m > 3 using existing methods. As we mentioned in the introduction, we believe that one needs to combine
combinatorial relations between the cokernels (Theorem 1.8 and Conjecture 1.9) and the mixed moments of the
cokernels (Theorem 4.5) to solve this problem.
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