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Abstract
Ratings are frequently used to evaluate and compare subjects in various applications, from 
education to healthcare, because ratings provide succinct yet credible measures for com-
paring subjects. However, when multiple rating lists are combined or considered together, 
subjects often have missing ratings, because most rating lists do not rate every subject in 
the combined list. In this study, we propose analyses on missing value patterns using six 
real-world data sets in various applications, as well as the conditions for applicability of 
imputation algorithms. Based on the special structures and properties derived from the 
analyses, we propose optimization models and algorithms that minimize the total rating 
discordance across rating providers to impute missing ratings in the combined rating lists, 
using only the known rating information. The total rating discordance is defined as the sum 
of the pairwise discordance metric, which can be written as a quadratic function. Compu-
tational experiments based on real-world and synthetic rating data sets show that the pro-
posed methods outperform the state-of-the-art general imputation methods in the literature 
in terms of imputation accuracy.

Keywords  Missing rating imputation · Discordance minimization · Quadratic 
programming · Rating data · Data imputation

1  Introduction

Ratings are ubiquitous: university and school ratings for students; credit ratings and envi-
ronmental, social, and governance ratings for investors; hospital ratings for patients; jour-
nal ratings for researchers and research institutions; and so on. Despite the criticism that 
a single number or grade cannot characterize the performance of the subjects evaluated, 
ratings are used in everyday individual and managerial decision-making processes because 
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they usually provide succinct yet credible performance measures and references. Due to 
their importance, a substantial body of research has been conducted on the impacts of rat-
ings (or rankings) in various contexts, such as the impact of sovereign credit ratings on 
markets (Cantor & Packer, 1996), the impact of product rankings on consumer behavior 
(Ghose et al., 2014), the effects of online hotel ratings on customers’ booking intentions 
and behavior toward a hotel (Casalo et al., 2015), the impact of college rankings and their 
visibility on students’ application decisions (Luca & Smith, 2013), the effect of school rat-
ings on neighborhood choice and home values (Lerner, 2015), the impact of ranking sys-
tems on the decision-making of higher education institutions (Hazelkorn, 2007), and the 
effects of hospital performance ratings on the public (Hibbard et al., 2005).

Although ratings have a significant impact, a single rating system does not evaluate or 
rate all assessable subjects. Many rating systems rate a limited number of subjects because 
of capacity limitations in collecting data or performing analysis, insufficient data for evalu-
ations, and the lack of interest in specific groups of subjects. To compare the known rat-
ings of all subjects, a combined list can be created by concatenating the ratings of multi-
ple rating systems. However, in the tabular form of the combined list, missing entries are 
frequently observed because a subject rated by one rating system is not rated by another. 
The missingness of the combined list can be problematic, considering the impact of rat-
ings on decision-making. For example, journal rating lists are frequently used as credible 
measures for evaluating the quality of faculty scholarship (Kim et al., 2021). However, a 
combined journal rating list includes a significant number of missing entries for many rea-
sons, such as quality control at rating agencies and scope of the rating. The missingness 
often creates challenges in faculty scholarship evaluation processes, particularly when the 
academic institution adopts a single rating list that does not rate some of the institutions’ 
target journals.

To remedy this issue, traditional research has primarily focused on reverse-engineering 
the underlying rating formula or identifying significant explanatory factors that constitute 
the rating system (Chang et al., 2012; Adelman, 2020). However, the applicability of the 
traditional approaches is limited for imputing missing values on a combined list of mul-
tiple rating systems, because the explanatory factors may vary across rating systems, thus 
requiring customized treatment for each rating system. To overcome this limitation, Kim 
et al. (2021) recently proposed imputing missing entries in a combined rating list, based 
solely on data imputation approaches.

The goal of this research is to integrate multiple rating systems from various sources, 
create combined rating lists, and impute the missing values of the combined matrix using 
only the known ratings. The resulting imputed rating matrix will enable users to access 
all ratings by all rating providers in their interests. We study the missing value imputation 
problem for a matrix of combined rating lists with a structure similar to the one in Fig. 1, 
which essentially shares the same objective with matrix completion and collaborative fil-
tering. We assume that the ratings must be ordinal. To quantify our model, any character-
coded ordinal ratings are converted to numerical ordinal ratings whose categories are natu-
ral numbers. For example, the character-coded ordinal ratings in Fig. 1a are converted into 
numerical ordinal ratings in Fig. 1b. Without loss of generality, we assume the higher rat-
ing values reflect superior quality. In the example data matrices Fig. 1, six rating providers 
(RPs) rate subsets of the subjects: RP1 rates six subjects, RP2 rates six subjects, etc.

Data imputation has been widely studied and has a rich literature. The problem we 
consider belongs to the general data imputation problem, but it requires ordinal data 
values and prefers coherent columns. Hence, we next provide a brief overview of fre-
quently used data imputation techniques discussed in the literature. The data imputation 
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methods can be classified into two categories (García-Laencina et al., 2010; Lin & Tsai, 
2020): statistical methods and machine learning-based methods. In particular, Lin and 
Tsai (2020) list a few of the most widely used techniques in the literature in each of 
these categories. In the next two paragraphs, we briefly review the methods in statistical 
and machine learning categories.

In the statistical method category, expectation-maximization (EM), regression-based 
methods, and mean/mode imputation are the most commonly used subcategories. EM 
is widely used in various applications and is an iterative method in which each iteration 
consists of two steps: (1) E-step updates the conditional expectation of the log like-
lihood given the observed data and the current parameters, and (2) M-step finds the 
new parameter set by maximizing the conditional expectation of the log likelihood. See 
Chapter  5 of Schafer (1997) for more detail. In R, multiple packages offer EM-based 
imputation methods including norm, imputeR, and TestDataImputation. A regression-
based method sets a variable that includes missing entries as a response variable, while 
setting other variables as predictor variables to build a linear or logistic multiple regres-
sion model as a predictive model. There are several variants of regression-based impu-
tation models implemented in R. For example, the VIM (Kowarik & Templ, 2016) pack-
age includes a regression-based imputation function regressionImp. In practice, a simple 
mean/mode imputation method is popular because of its simplicity and computational 
efficiency. A mean (resp. mode) imputation replaces each missing entry with the mean 
(resp. mode) of the row (or column) that includes the missing entry. In addition, multi-
ple imputation methods have recently received greater attention from researchers. Mul-
tiple imputation methods generate multiple imputed data sets, where each imputed data 
set can be used for the same analysis, and all results can be used to conclude. When a 
single imputed data set is needed, we can aggregate from the multiple imputed data sets. 
Multiple imputation by chained equation (MICE) (Buuren & Groothuis-Oudshoorn, 
2011) is a representative multiple imputation algorithm in the R package mice.

In the machine learning methods category, the four most widely used imputation 
methods are sub-categorized into clustering-based methods, decision tree-based meth-
ods, k-Nearest Neighbors methods, and random forest-based methods. Clustering-based 
methods first place the observations into several clusters, where the number of clusters 
is user-defined, and the distances between observations are measured directly from the 
incomplete data. Then, the missing entries in the same cluster are imputed based only 
on information within the cluster. For example, nearest neighborhood methods (Patil 
et  al., 2010) can be used to determine the nearest instance within the cluster, which 

Fig. 1   Example rating matrices
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then determines the imputation. Some clustering-based imputation methods are imple-
mented in the R package ClustImpute. Decision tree-based methods impute the missing 
entries in a variable, using a decision tree as a predictive model. The decision tree is 
constructed based on the remaining variables (other than the imputed one). Classifica-
tion and Regression Trees (CART) (Breiman et al., 2017) is a widely used decision tree-
based method implemented in the mice package in R. Random forest-based methods 
are based on multiple decision trees constructed using bootstrapping. The imputation 
is performed by aggregating the predictions from the decision trees. A fast random for-
est-based imputation method is implemented in the well-known R package missForest 
(Stekhoven & Bühlmann, 2012).

In addition to statistical and machine learning methods, optimization-based methods 
have also been studied for data imputation. In the seminal work by Candès and Recht 
(2009), the authors propose a convex optimization formulation for matrix completion, 
which finds the imputed matrix that minimizes the nuclear norm. Motivated by this con-
vex formulation, an alternative convex formulation has been proposed by Mazumder 
et  al. (2010), by which the method softImpute was first implemented. The softimpute 
algorithm is an iterative method that, in each iteration, uses a soft-thresholded singular 
value decomposition to impute the missing values of the filled-in matrix from the pre-
vious iteration. Hastie et al. (2015) improved the previous version of softImpute based 
on the enhanced matrix factorization algorithm. Several variants of these methods and 
other computational algorithms have been proposed over the past decade. For example, 
see Ramlatchan et al. (2018) for a review of these methods. More recently, Kim et al. 
(2021) have proposed a mixed-integer linear programming formulation for data with 
multiple ordinal variables, which can be solved using commercial optimization solvers.

Our contributions are threefold. 

1.	 We introduce various real-world rating data sets and study the properties of the input 
rating data matrix and missing value patterns. First, Mann–Whitney U test is used to 
test if the missing value implies inferiority or superiority. Second, the Kendall rank cor-
relation is used to measure the consensus levels among the rating providers. These two 
analyses are performed for multiple real-world rating data from various applications. 
We also provide synthetic data and a data-generation procedure (based on the properties 
we observed from the real data) for systematic performance comparison.

2.	 Based on the properties and structure of the rating data analyzed, we propose a quadratic 
programming (QP) formulation, which minimizes the total discordance between RPs 
in the combined rating lists. In contrast to the existing studies, our algorithms weight 
each pair of RPs based on their consensus levels, where the weights emphasize highly 
correlated RP pairs. To improve the scalability of the proposed QP model, we propose 
a decomposable version of the QP in which the imputation of each cell is independent 
of the other. We derive closed-form solutions to both the QP and its decomposable vari-
ant. This enables us to implement scalable imputation algorithms that do not depend 
on commercial solvers but only require solving systems of linear equations. Finally, we 
propose a mathematical procedure and definitions, which test if the proposed algorithms 
are well-defined and applicable. The derived conditions are referred to as estimatability 
and level-1 estimatability.

3.	 The computational experiment, based on real-world and synthetic data sets, shows that 
the analytical solution approaches significantly reduce the time and space complexities 
of the proposed QP model (solved using a commercial solver); they also outperform the 
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state-of-the-art benchmark algorithms reported in the literature for imputing missing 
ratings.

The paper is structured as follows. In Sect. 2, we present real-world data sets and conduct 
analyses on the properties of the input rating data matrix and missing value patterns. In 
Sect. 3, mathematical models and algorithms are proposed and sufficient conditions for the 
algorithms are derived. In Sect. 4, we compare the proposed algorithms’ performance with 
popular imputation algorithms in the literature using real-world and synthetic data.

2 � Rating data: analysis and imputed data usage

In this section, we present and analyze multiple real-world data sets from various applica-
tions. First, in Sect. 2.1, we briefly describe the real-world data sets we compiled. Next, we 
focus on checking whether the missing values imply inferiority or superiority in Sect. 2.2. 
We propose a procedure to measure the consensus level between a pair of RPs in Sect. 2.3. 
The consensus levels we define are used to penalize the effects of discordant pairs of rating 
providers on the overall discordance. Finally, in Sect. 2.4, we exemplify how users can use 
the resulting imputed rating data. In the rest of the paper, we use the notations summarized 
below.

X: m × n rating matrix with missing entries
I = {1,⋯ ,m} : index set of rows (subjects) of matrix X
J = {1,⋯ , n} : index set of columns (rating providers) of matrix X
xij : entry at row i ∈ I and column j ∈ J of matrix X
uj = maxi∈I{xij} : maximum rating value for rating provider j ∈ J

lj = mini∈I{xij} : minimum rating value for rating provider j ∈ J

cj = uj − lj + 1 : number of observable ratings categories for rating provider j ∈ J

S = {(i, j) ∈ I × J} : index set of matrix entries (Cartesian product of I and J)
Skl = {(i, j) ∈ (I ⧵ {k}) × (J ⧵ {l})} : index set of matrix entries excluding row k and col-
umn l
Q ⊂ S : index set of missing entries
Φ = {xkl|(k, l) ∈ Q} : missing values to impute (set of decision variables)
X̂ : an imputed matrix, where x̂ij is the entry at row i ∈ I and column j ∈ J

wlj : weight imposed for rating provider pairs l ∈ J and j ∈ J

2.1 � Real‑world rating data

Before we present the in-depth analysis in the later sections, we introduce six real-world 
rating data sets we complied. The data sets used in our analyses and experiments are from 
various applications: hospital rating, journal rating, environmental, social, and governance 
(ESG) rating, elementary and high school rating, and movie rating. The rating values in 
these applications offer credible measures to evaluate organizations, individuals, and sub-
jects. However, when multiple RPs are considered together, many missing values exist. 
This hurts the usefulness of the rating systems, and accurate imputation of the missing 
ratings becomes important (Kim et al., 2021). The detailed background and data collection 
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procedures, conversion procedures,1 and missing rate distributions are described in Appen-
dix A1-A5, A6, and A7, respectively.

In Table 1, the summary statistics of the six data sets are presented. The second and 
third columns present the numbers of subjects rated and the numbers of RPs, respectively. 
The next four columns include the average, median, minimum, and maximum missing 
rates of the RPs (columns). The last two columns show the percentages of the rows with 
only one rating and all ratings, respectively. The column summary statistics indicate that 
some RPs rate nearly all subjects (e.g., an RP in the Journal data set has missing values for 
3.8% of the journals), while some RPs rate very few subjects (e.g., an RP for the US Hos-
pital data set has missing values for 94.5% of the hospitals). The row summary statistics 
indicate that some data sets have near-zero rows that have only one rating available (e.g., 
the journal data set has 0.4% of the rows with one rating). In comparison, some data sets 
have more than half of rows with only one rating (e.g., the High School data set has 55.3% 
of the rows with one rating). See Appendix A7 for more detailed statistics and distributions 
of the missing rates.

2.2 � Missingness and inferiority

Most multiple imputation algorithms assume a missing data mechanism, called missing at 
random (MAR) (Donald, 1976), although this assumption is frequently violated. In particu-
lar, we focus primarily on rating data in which the missing at random condition is easily 
violated because the probability that a rating is missing does depend on the value of that 
rating (Marlin & Zemel, 2009). As partial evidence of this statement, we check if the miss-
ingness has some associations with inferiority. More specifically, for each RP pair (j, l), we 
use the Mann–Whitney U test2 to compare the medians between two groups of RP l’s rat-
ings: (i) group G1

jl
 includes RP l’s ratings for the subjects whose ratings of RP j are missing 

and (ii) group G2

jl
 includes RP l’s ratings for the subjects whose ratings of RP j are avail-

able. For RP pair (j, l), we test the following hypotheses.

Table 1   Summary statistics of data sets

Data # Rows # Cols Column missing rates % Rows rated

Avg Med Min Max One RP All RPs

US Hospital 4217 4 30.2% 26.9% 11.6% 55.2% 21.0% 41.3%
Journal 944 11 36.0% 37.7% 5.2% 65.8% 1.2% 13.5%
ESG 1356 4 47.5% 53.9% 3.8% 78.4% 44.0% 14.0%
Elementary school 301 5 38.9% 33.9% 25.9% 66.8% 29.9% 24.3%
High school 132 5 55.6% 53.8% 28.8% 81.8% 55.3% 11.4%
Movielens 1102 12 62.7% 64.8% 53.0% 67.3% 23.1% 3.0%

1  Some RPs use continuous scores, and we convert them into ordinal ratings.
2  Mann–Whitney U test is a nonparametric test that, for two groups G1 and G2, checks if the probability of 
G1 being greater than G2 is equal to the probability of G2 being greater than G1. It only requires that you 
are able to rank order the individual scores or values; there is no need to compute means or variances.
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H0 : P[x� > x��|x� ∈ G1

jl
, x�� ∈ G2

jl
] = 0.5

H1 : P[x� > x��|x� ∈ G1

jl
, x�� ∈ G2

jl
] ≠ 0.5

If the U test concludes that the two groups are different, then missing ratings in RP l may 
imply the inferiority or superiority of the subjects. In Fig. 2, each matrix reports the p-val-
ues of the U test of RP pairs. For each row j and column l of each matrix, the matrix entry 
represents the p-value of the test for RP pair (j, l) that compares the average RP l ratings of 
two subject groups, where the first group consists of subjects unrated by RP j and the sec-
ond group consists of subjects rated by RP j. For example, in Fig. 2a, in Row 1 and Column 
2, 0.6715 is the p-value of the test that compares the ratings of LeapFrog with and without 
the missing values of HCAHPS. The NA cells in Fig. 2b and e indicate that the test is not 
available for the corresponding pair. The test result indicates that there is no significant 
difference in LeapFrog ratings between the two groups, with or without the missing values 
of HCAHPS. In all matrices, the cells are highlighted with light gray and black font if the 
p-value is less than 0.05 and the missing ratings in RP j mean worse ratings in RP l. If the 
p-value is less than 0.05 and the missing ratings in RP j mean better ratings in RP l, then 
the number is colored in red in darker gray cells. The color-coded matrices show that miss-
ing values generally indicate inferiority for Journal and Movielens data sets. In contrast, 
it is not sufficiently clear to conclude similar results for the Hospital, ESG, Elementary 
School, and High School data sets. For the Elementary and High School data sets, missing 
values generally mean better ratings for Niche.

Fig. 2   p-value matrices from Mann–Whitney U test
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2.3 � Analysis for consensus level

Our imputation methods incorporate the discordance levels for all pairs of RPs and aim to 
minimize their sum. Then, each discordance level is penalized based on the consensus level 
obtained from the observed entries. To measure the consensus level for each pair of RPs, 
we use the Kendall rank correlation coefficient �B , which is one of the most widely used 
distance measures between two ranked lists in the rank aggregation literature. For example, 
see Lin (2010), Dwork et al. (2001), and Fagin et al. (2003) for your reference. Unlike the 
typical Pearson correlation, the Kendall rank correlation focuses on the order between the 
two pairs, which aligns with our approach of minimizing the discordance.

Figure 3 presents the correlation matrices of the six data sets. The darker and lighter 
cells have higher and lower correlations, respectively. For all of the RP pairs in the data 
sets, the correlation coefficients are positive, indicating that the ratings are positively cor-
related. However, the magnitudes of the correlations vary for different RP pairs and data 
sets. The correlations for the Journal data range from 0.19 to 0.90, with a mean of 0.56; 
correlations for the Hospital data range from 0.13 to 0.52 with a mean of 0.29. The aver-
age correlation coefficients for the Elementary School, High School, and ESG data sets are 
0.64, 0.79, and 0.47, respectively. Hence, we can see that school ratings are more consist-
ent across different RPs, while the hospital rating data set has low consensus levels among 
different RPs. This observation suggests that highly correlated RP pairs can refer to each 
other for imputing their missing values. Further, highly correlated pairs should affect each 
other more, and lowly correlated pairs should affect each other less. In Sect. 3, we propose 
using these Kendall rank correlation matrices to weight the RP pairs.

Fig. 3   Kendall rank correlations
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2.4 � Imputed rating data usage

Data imputation serves as a pre-analysis tool in many imputation tasks to prepare a com-
plete data matrix for the main analysis, such as regression analysis, by filling in missing 
values. On the other hand, the direct utilization of data imputation is becoming increas-
ingly important, as illustrated in Sect. 2.1. If an end-user prefers specific RPs and the sub-
jects of interest are not rated by the preferred RPs, an accurate estimation of the miss-
ing values can assist stakeholders in making fair and reasonable decisions. For instance, 
numerous academic institutions use a journal quality list for evaluating scholarships, rely-
ing on the ratings provided by this list as a quality score for a published journal (Kim et al., 
2021). However, high-quality journals are often excluded from such trusted journal quality 
lists. In such cases, imputed ratings can provide quality scores for the missing journals in 
the designated journal quality list. Similarly, imputed ratings for hospitals, companies, and 
schools can provide valuable information and insight to users.

An analyst interested in estimating the missing ratings of a preferred rating list can 
use the proposed algorithm as follows. First, generate the Kendall rank correlation matrix 
using all available data. Second, select a subset of RPs (columns) relevant or highly cor-
related to the designated RP. Third, use the rating data of the selected RPs to run the pro-
posed algorithm. Finally, the imputed ratings can be used to evaluate subjects with missing 
ratings. For example, consider the elementary school data in Table 1. Suppose the analyst 
is interested in imputing the ratings for GreatSchools. With a threshold of 0.6, the Kendall 
correlation matrix in Fig. 3d indicates GreatSchool, SchoolDigger, and Texas Guide should 
be used for the algorithm. Using the selected RPs and their ratings, the proposed algorithm 
imputes the missing ratings in the three selected RPs. The analyst can now use the imputed 
ratings for GreatSchool.

3 � Quadratic programming‑based imputation models and algorithms

Missing rating imputation problems have multiple characteristics that make them difficult 
to solve. First, there are inconsistencies among the ratings, as illustrated in Sect. 2.3. Ide-
ally, when experts have the same opinions on subjects, each subject would get the same 
rating by all RPs. However, for various reasons, ratings by the RPs for the same subject 
may differ. For example, in Fig. 1b, RP1 rates S3 higher than S2, whereas RP2 rates S2 
higher than S3. This is referred to as an upset (Kim et al., 2021). Second, rating distribu-
tions are not consistent across the RPs. For example, in the Journal rating data set, both 
Ejis2007 and ABDC2019 use four-category rating scales. However, the proportions of the 
ratings in the four categories are 14%, 31%, 34%, and 21% in Ejis2017, while they are 20%, 
48%, 26%, and 6% in ABDC2019. This can be problematic if a simple approach, such as 
imputation by averaging the available ratings, is used. Third, the MAR mechanism, which 
several imputation algorithms assume, can be violated. For example, missingness might be 
significantly affected by the inferiority of subjects, as discussed in Sect. 2.2. In this section, 
we first derive sufficient conditions for our algorithms and then propose QP-based models 
and algorithms to overcome these challenges.
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3.1 � Sufficient conditions for proposed imputation algorithms

In this section, we discuss the estimatability of the data and the sufficient conditions for the 
proposed algorithms to work properly. In other words, we derive sufficient conditions for 
the data matrix for our algorithms to be well-defined. First, we make the following assump-
tion in the remainder of the paper.

Assumption 1  Every subject (row) is rated by at least one rating provider (column).

Any imputation algorithm will fail (or return meaningless random output) if Assump-
tion  1 does not hold. For this reason, if the data set does not satisfy Assumption 1, 
empty rows must be deleted before running the algorithms. Our algorithm, proposed in 
Sect. 3, requires a stronger assumption in order to be well-defined and work properly. In 
this section, we define a condition called estimatability that the input data must satisfy 
for our algorithm.

We first illustrate the meaning of this notion of estimatability. In this paper, we con-
sistently use the index i (and its variations such as i′, i′′, i1, i2 , etc.) to denote rated sub-
jects, and similarly, the index j (and its variations such as j′, j′′, j1, j2 , etc.) to represent 
rating providers, in accordance with the notations introduced in Sect. 2. Consider imput-
ing one missing entry associated with subject i and rating provider j. Our imputation 
models explore every entry (i�, j�) with i′ ≠ i and j′ ≠ j and the associated corner entries 
(i, j�) and (i�, j) ; they check discrepancy between ratings for i and i′ by j and j′ . Notice 
that the entries (i, j), (i�, j�), (i�, j) , and (i, j�) form a 2 × 2 submatrix of X. In order for (i, j) 
to be “estimatable," we require the existence of (i�, j�) such that the entries (i�, j�), (i, j�) , 
and (i�, j) are observed or estimatable. In other words, two rating providers, j and j′ , can 
directly share their rating information to estimate unobserved ratings if there is at least 
one subject that is rated by both rating providers. Even when there is no such subject, 
they can indirectly share their rating information if there is another rating provider j′′ 
that mediates them. That is, there exist subjects i and i′ such that i rated by both j and j′′ 
and i′ is rated by both j′′ and j′ . If all rating providers are connected in this manner, we 
say that the data is estimatable. Therefore, we define the estimatability of a data entry 
inductively, where initial estimatability is defined by the existence of (i�, j�) such that the 
three corner entries are all “observed."

We next formalize the notion of the level-v estimatability with the following 
definitions.

Definition 1  An unobserved data entry (i,  j) is called level-1 estimatable if there exists 
(i�, j�) such that i′ ≠ i , j′ ≠ j , and all three entries (i�, j), (i, j�) , and (i�, j�) are observed. An 
unobserved entry (i, j) is called level-v estimatable if both of the following two conditions 
hold: (i) It is not level-u estimatable for all u ∈ {1,… , v − 1} ; (ii) There exists (i�, j�) such 
that i′ ≠ i , j′ ≠ j , and that each of the three entries with indices (i�, j), (i, j�) , and (i�, j�) is 
either observed or level-u estimatable for some u ∈ {1,… , v − 1}.

Definition 2  An entry of the input data X is called estimatable if it is level-v estimatable 
for some positive integer v.
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We next define a data set X being estimatable. To this end, we introduce some nota-
tions. Let E0 be the set of all the observed entries of the input data set X. We denote by 
Ev the set of all level-v estimatable entries of X.

Definition 3 

1.	 A data set is level-v estimatable if v is the minimum number such that 
⋃v

u=0
Eu equals 

the set of all the data entries.
2.	 If X is level-v estimatable for some v, we simply say that X is estimatable. If no such v 

exists, the data set is said to be unestimatable.

We next show the relationship between Ev and Ev+1 , where the proof is available in 
Appendix B.

Lemma 1  If Ev = � , then Ev+1 = � for any natural number v.

Checking the estimatability of a data set is straightforward because of Lemma 1. More 
specifically, by Lemma 1, a data set X is level-v estimatable if and only if v is the last index 
such that Ev ≠ ∅.

Fig. 4   Example of unestimatable data

Fig. 5   Example of estimatable data
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In Sect.  3, we present two data imputation algorithms, which rely on different data 
assumptions. One of the algorithms assumes that the data set is estimatable, while the other 
algorithm requires a stronger assumption that the data set is level-1 estimatable.

Example  Let us consider the example data sets in Figs. 4 and 5, which present unestimat-
able and estimatable data sets, respectively. In Fig. 4, the observed entries are marked with 
circled 0 s. Then, the entry (i4, j1) is level-1 estimatable because (i3, j1), (i3, j2) , and (i4, j2) 
are observed. Similarly, the entries (i1, j2) and (i2, j2) are level-1 estimatable, and we mark 
them with circled 1 s. It can be easily verified that the remaining entries (empty cells in 
Fig.  4b) are unestimatable, indicating that the data set is unestimatable. Notice that the 
data set does not violate Assumption 1 but violates the estimatability. Let us next consider 
the data set in Fig. 5. Out of the ten missing entries in Fig. 5a, seven are level-1 estimat-
able. Then, the three remaining entries are level-2 estimatable because they can be esti-
mated based on observed or level-1 estimatable entries. Because all data entries belong to 
E0 ∪ E1 ∪ E2 , the data set is (level-2) estimatable.	�  ◻

We next present a graph characterization of estimatability. To this end, we introduce 
several definitions and notations. Consider an undirected graph whose nodes represent 
RPs and whose edges represent connectivity between nodes.

Definition 4 

1.	 Two RPs are called connected if there exists a subject that is rated by both RPs.
2.	 Two RPs are called path-connected if there exists a path that connects two RPs in the 

graph.
3.	 The graph is called connected if every pair of RPs is path-connected.

For an arbitrary set of rating providers C ⊆ J , we denote the set of subjects observed 
by at least one rating provider in C by O(C) . We also denote the set of all the estimat-
able subjects of the rating providers in C by E(C) . For a set of single rating provider {j} , 
we use shorthand notations O(j) and E(j) for O({j}) and E({j}) , respectively. The graph 
representations of data sets in Figs.  4a and 5a are illustrated in Fig.  6. The following 
results show that the estimatability of a data set can be characterized by the connectivity 
of the graph representation of the data set.

Theorem 1  Given incomplete data X and its graph representation, let C be a connected 
component and let O(C) be the set of subjects rated by at least one rating provider in C. 
Then, all of the entries of the submatrix associated with O(C) and C are estimatable.

Fig. 6   Graph representations for the example data sets
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Theorem  2  The input data set is estimatable if and only if its graph representation is 
connected.

The Proofs are available in Appendix B. Estimatability of the input data set will 
affect the property of the objective function. We discuss this in greater detail in Sect. 3. 
By Theorem 2, the estimatability check of the input data is equivalent to the connectiv-
ity problem for its graph counterpart. The connectivity can be checked efficiently using 
various algorithms. For example, for every distinct pair (u,  v) of rating providers, its 
local connectivity �(u, v) is defined as the maximum number of internally disjoint u − v 
paths in the graph; it can be efficiently determined using the max-flow min-cut algo-
rithm (Dantzig & Fulkerson, 2003; Even & Tarjan, 1975). Thus, the graph is connected 
if and only if minu≠v �(u, v) ≠ 0.

One of the algorithms we propose in Sect. 3 requires a stronger assumption, level-1 
estimatability. We next present a necessary and sufficient condition for an input data set 
to be level-1 estimatable, where the proof is available in Appendix B.

Theorem 3  Given input data X, let Ij be the set of subjects that are rated by j ∈ J . For an 
arbitrary j� ∈ J , let Nj� = {j ∈ J ∣ Ij ∩ Ij� ≠ �} be the set of RPs, including j′ itself, which 
have at least one commonly rated subject with j′ . Then, X is level-1 estimatable if and only 
if I =

⋃
j∈Nj�

Ij for all j� ∈ J.

The key idea of Theorem 3 is to check, for each missing entry (i�, j�) , level-1 estimat-
ability can be established if we can find another row and column ( i′′ and j′′ ) such that 
(i�, j��), (i��, j�) , and (i��, j��) are known. The set Nj′ represents the set of RPs that have a 
direct connection to j′ , where the connection is defined by the existence of a commonly 
rated subject. Next, 

⋃
j∈Nj�

Ij represents the set of subjects rated by at least one neighbor-
ing rating provider including j′ itself, ensuring the level-1 estimability of the associated 
missing entries in column j′ . In other words, 

⋃
j∈Nj�

Ij represents the set of subjects 
whose entries on column j′ are either observed or level-1 estimatable. Therefore, if the 
union is not equal to the entire subject set I, the data set is not level-1 estimatable. If the 
condition holds for all RPs in J, then the data set is level-1 estimatable. We confirm that 
all the data sets we used in Sect. 4 have been tested using Theorem 3 and that all are 
level-1 estimatable.

3.2 � Quadratic programming model and algorithm

Consider rating matrix X with missing values. To impute its missing values, Kim et  al. 
(2021) propose an optimization model that minimizes the number of upsets. This can be 
written as

To solve (1) exactly, the authors reformulate it as a mixed-integer program (MIP) by intro-
ducing several auxiliary binary variables. However, the MIP model is not suitable for 
large-scale data because the problem size increases quadratically in data size: it has O(m2n) 

(1)min
∀xkl∈Φ

∑
(k,l)∈S

∑
(i,j)∈Skl

1(xkl−xil)(xij−xkj)<0
.
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binary variables, O(m2n2) continuous variables, and O(m2n2) constraints. To overcome 
computational difficulties and improve scalabilities, the authors use several techniques, 
including a linear programming relaxation. However, their fastest approach, based on an 
LP relaxation, is still not sufficiently scalable.

In this paper, we propose a QP with correlation-based weights to overcome the scalabil-
ity issue and account for the consensus levels among the RPs.

Several characteristics of (2) are notable. First, instead of using the total number of upsets 
as the objective function, an alternate objective function is used. For row pair (i, k) and col-
umn pair (j,  l), we adopt the squared value of xkl−xil

cl
+

xij−xkj

cj
 instead of the indicator 

1(xkl−xil)(xij−xkj)<0
 . The term (xkl − xil) captures the difference between the ratings of rows i 

and k by RPl  , while the (xkj − xij) term captures the difference between the ratings of rows i 
and k by RP j . Then, each term is normalized by dividing by the number of categories cl 
and cj . Thus, the entire expression xkl−xil

cl
+

xij−xkj

cj
 calculates the rescaled rating discrepancies 

between RPs l and j for subjects i and k. This enables us to avoid a considerable number of 
binary variables and to keep the problem as an unconstrained continuous optimization, 
which is easier to solve than MIP. Second, we impose weight wlj between RPs l and j. As 
illustrated in Sect. 2, some RPs show strong concordance, while some RPs create major 
discordance. We emphasize the ratings from the similar lists for imputing the missing val-
ues in the current list by giving higher weights wlj for the comparison between ratings by 
RPs j and l. Note that wlj ≤ 0 implies zero or negative influences on the objective function, 
which contradicts our modeling idea. To ensure that the weights positively affect the impu-
tation procedure and to prevent numerical errors due to near zero weights, we truncate 
weights as w = max{w, �} where 𝜖 > 0 is a small constant. Finally, note that the first sum-
mation in the objective function considers each missing entry in the matrix, while the sec-
ond summation considers each entry (regardless of missingness) of the matrix. Hence, each 
term xkl−xil

cl
+

xij−xkj

cj
 has at least one missing entry (i.e., xkl ), but all four could possibly be 

missing.
The objective function has a desirable convexity property, as we present in the next 

theorem with the proof available in Appendix B.

Theorem 4  Problem (2) is convex. In particular, if the input data X includes at least one 
level-1 estimatable missing entry, then (2) is strongly convex.

Because strong convexity implies strict convexity, we obtain the following corollary.

Corollary 1  If the input data X includes at least one level-1 estimatable missing entry, (2) 
has a unique optimal solution.

We note here that, if the input data X is estimatable, then X includes at least one 
level-1 estimatable missing entry. Therefore, the estimatability of X implies the strong 
convexity and the existence of a unique solution of (2). Because (2) is strictly convex, 

(2)min
∀xkl∈Φ

∑
(k,l)∈S

∑
(i,j)∈Skl

wlj

(xkl − xil

cl
+

xij − xkj

cj

)2
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multiple solution approaches are available. We can use a general-purpose QP solver, or 
we can develop an analytical solution approach based on the first-order optimality con-
dition. Both approaches theoretically guarantee optimality. In the remainder of this sec-
tion, we develop an analytical solution approach. By setting the partial derivative for all 
xpq ∈ Φ and equating them to zero, we obtain |Q| equations with |Q| unknowns (vari-
ables). Because (2) is convex, the solution to this equation system is the global optimal 
solution for (2). We denote this algorithm by QP-AS and denote the general-purpose 
solver optimizing (2) by QP-Solver throughout the remainder of this paper.

As in the proof of Theorem 4, without loss of generality, assume that each column of 
the data is normalized by dividing it by the number of rating categories. Thus, we can con-
veniently drop the denominators cl ’s from the objective function without affecting the anal-
ysis. Let p(= |Q|) be the number of missing entries. For notational simplicity, we define an 
index set of missing values Q1 using a one-dimensional index system, whereas Q is based 
on a two-dimensional index system, so that there is a one-to-one correspondence between 
Q and Q1 . Now, we denote the missing entries by zq for q ∈ Q1 . We also denote the row and 
column indices of zq in the original matrix by iq and jq . We summarize these new notations 
as follows.

Q1 = {1,⋯ , |Q|} : index set of missing values
iq ∈ I : row index of zq , q ∈ Q1 , in the original matrix
jq ∈ J : column index of zq , q ∈ Q1 , in the original matrix

For each q ∈ Q1 , where zq = xiqjq , we consider all terms in the objective function that 
include zq . Such a square term corresponds to an entry whose row index is different from 
iq , while the column index is different from jq . Then, the sum of all such terms is

Therefore, the partial derivative of the entire objective function in zq is equal to �F

�zq
 (

or
�F

�xiqjq

)
 , which can be rewritten as follows.

F =
∑

j∈J⧵{jq}

∑
i∈I⧵{iq}

wjqj
(xiqjq − xiqj − xijq + xij)

2.

�F

�zq
=

�F

�xiqjq

= 2
�

j∈J⧵{jq}

�
i∈I⧵{iq}

wjqj
(xiqjq − xiqj − xijq + xij)

=2
�

j∈J⧵{jq}

wjqj

⎡
⎢⎢⎣
(m − 1)xiqjq − (m − 1)xiqj −

�
i∈I⧵{iq}

xijq +
�

i∈I⧵{iq}

xij

⎤⎥⎥⎦

=2(m − 1)

⎡⎢⎢⎣

⎛⎜⎜⎝
�

j∈J⧵{jq}

wjqj

⎞⎟⎟⎠
xiqjq −

⎛⎜⎜⎝
�

j∈J⧵{jq}

wjqj
xiqj

⎞⎟⎟⎠

⎤⎥⎥⎦

+ 2

⎡⎢⎢⎣
−

⎛⎜⎜⎝
�

j∈J⧵{jq}

wjqj

⎞⎟⎟⎠

⎛⎜⎜⎝
�

i∈I⧵{iq}

xijq

⎞⎟⎟⎠
+

⎛⎜⎜⎝
�

i∈I⧵{iq}

�
j∈J⧵{jq}

wjqj
xij

⎞⎟⎟⎠

⎤⎥⎥⎦
.
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Then, the equation �F∕�zq = 0 can be written as 
∑

s∈Q1 Aqsxisjs = bq (equivalently, ∑
s∈Q1 Aqszs = bq ) where Aqs and bq are defined as

where yij for i ∈ I, j ∈ J is defined as

The first-order conditions yield a system of equations Az = b , where A is a |Q| × |Q| square 
matrix. By the strict convexity of the objective function, A is positive definite and hence 
invertible, implying that the solution to the system is uniquely determined by z = A−1b.

Note that xkl ∈ Φ in (2) is a continuous decision variable, while data matrix 
X may have integer ratings only. When the ratings of X are integers, for both of the 
proposed algorithms QP-AS and QP-solver, the solution X̂ is transformed by 
x̂kl = min{ul, max{ll, round(x̂kl)}} at the end. This procedure is used for any benchmark 
algorithm returning continuous values.

Our final remark concerns the computational tricks solving (2) and preparing (3) and (4) 
more efficiently. Because the ratings are ordinal (and integers), multiple rows (subjects) can 
be identical, particularly when the number of columns is small. Hence, we can remove the 
duplicated rows and reformulate (2) to reduce the problem size while keeping the solutions 
identical. Let X′ be the reduced matrix of X after deleting duplicated rows. Q′ , Φ� , and S′ are 
defined similarly to Q, Φ , and S, respectively. Let di be the number of duplicated rows identi-
cal to row i of X′.

(3)Aqs =

⎧
⎪⎪⎨⎪⎪⎩

2(m − 1)
�∑

j∈J⧵{jq}
wjqj

�
if iq = is and jq = js

−2(m − 1)wjqjs
if iq = is and jq ≠ js

−2
�∑

j∈J⧵{jq}
wjqj

�
if iq ≠ is and jq = js

2wjqjs
if iq ≠ is and jq ≠ js

(4)

bq =2(m − 1)
�

j∈J⧵{jq}

wjqj
yiqj + 2

⎛
⎜⎜⎝

�
j∈J⧵{jq}

wjqj

⎞
⎟⎟⎠

⎛
⎜⎜⎝

�
i∈I⧵{iq}

yijq

⎞⎟⎟⎠

− 2

⎛⎜⎜⎝
�

i∈I⧵{iq}

�
j∈J⧵{jq}

wjqj
yij

⎞⎟⎟⎠
,

yij =

{
xij if xij is observed

0 otherwise
.

min
∀x�

kl
∈Φ�

∑
(k,l)∈Q�

∑
(i,j)∈S�

wljdidk

(x�
kl
− x�

il

cl
+

x�
ij
− x�

kj

cj

)2

Table 2   Summary of proposed models and algorithms

Algorithm Model reference Solver or formula Sufficient condition Relevant theorems

QP-Solver (2) General purpose solver Level-1 estimatability Theorem 4, Corollary 1
QP-AS (2) (3), (4) Level-1 estimatability Theorem 5
dQP-SVAS (5), (6) (7) Level-1 estimatability Theorem 6
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Given the normalized matrix X′ (obtained by dividing by the number of categories), we 
can define A′ and b′ similarly.

We single out the results in this section as a theorem.

Theorem 5  The solutions z = A−1b and z = (A�)−1b� to the system of equations Az = b and 
A�z = b� , respectively, are the optimal solution to (2).

3.3 � Decomposable quadratic programming model and algorithm

Note that (2) minimizes the total rating discordance using all of the existing and to-be-imputed 
ratings. In this section, we propose a variant of (2) to improve the scalability while maintain-
ing a similar solution quality. We simplify the problem by considering the rating discordance 
for each missing value as follows:

where Rpq = {(i, j) ∈ S⧵Q|(i, q) ∉ Q, (p, j) ∉ Q} . Thus, Rpq includes (i,  j) only if all of 
xij, xiq , and xpj have available ratings. To assure that the optimization problem (5) is well-
defined, we assume that the input data X is level-1 estimatable.

Notice that the level-1 estimatability of the input data is equivalent to Rpq ≠ ∅ for each 
(p, q) ∈ Q . The objective function of (5) is also strongly convex due to the existence of a 
level-1 estimatable entry. We omit its proof because it is almost identical to that of Theo-
rem 4. Therefore, the solution resulting from the first-order condition is the unique global 
optimal solution.

Notice that the objective function of (5) includes no bilinear term. Therefore, each par-
tial derivative in xpq does not include any other decision variables, implying that the xpq 
component of the optimal solution can be obtained directly by finding the zero of its partial 
derivative in xpq . More precisely, for fixed p and q, (5) includes only one decision vari-
able, i.e., xpq and existing ratings. Therefore, (5) can be decomposed into |Q| sub-problems, 
where each sub-problem tries to impute one missing value in Φ . In detail, for each xpq ∈ Φ , 
we define the following optimization problem.

A�
qs
=

⎧
⎪⎪⎨⎪⎪⎩

2

�∑
i∈I⧵{iq}

didiq

��∑
j∈J⧵{jq}

wjqj

�
if iq = is and jq = js

−2
�∑

i∈I⧵{iq}
didiq

�
wjqjs

if iq = is and jq ≠ js

−2diqdis

�∑
j∈J⧵{jq}

wjqj

�
if iq ≠ is and jq = js

2diqdiswjqjs
if iq ≠ is and jq ≠ js

b�
q
=2

⎛⎜⎜⎝
�

i∈I⧵{iq}

didiq

⎞⎟⎟⎠
�

j∈J⧵{jq}

wjqj
y�
iqj
+ 2

⎛⎜⎜⎝
�

j∈J⧵{jq}

wjqj

⎞⎟⎟⎠

⎛⎜⎜⎝
�

i∈I⧵{iq}

didiqy
�
ijq

⎞⎟⎟⎠

− 2

⎛⎜⎜⎝
�

i∈I⧵{iq}

�
j∈J⧵{jq}

wjqj
didiqy

�
ij

⎞⎟⎟⎠

(5)min
xpq∈Φ

∑
(p,q)∈Q

∑
(i,j)∈Rpq

wqj

(xpq − xiq

cq
+

xij − xpj

cj

)2

,
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We can solve (6) based on the same derivative-based approach calculating the imputed 
value from the following equation.

The closed form formula is

Theorem 6  The solution x∗ in (7) is the optimal solution to (5).

We denote (5) by dQP and denote the single value analytical solution approach solves 
(6) for each xpq by dQP-SVAS. Finally, Table 2 summarizes all proposed models and algo-
rithms in this section. To deal with the drawbacks of the MIP model of Kim et al. (2021), 
we do not impose integrality constraints, but instead approximately minimize upsets in the 
imputed data by solving QP (2), where positive Kendall rank correlation matrices in Fig. 3 
led us to weight the upsets. The QP (2) can be solved by a general-purpose solver (QP-
Solver) or analytical solution approach (QP-AS). By imputing each missing value itera-
tively (dQP-SVAS), the solution time is improved.

4 � Computational experiment

In this section, we compare the performance of the proposed algorithms (QP-solver, 
QP-AS, and dQP-SVAS) with multiple benchmarks: cart, LP relaxation of Kim et al. 
(2021), and softImpute. We select the three benchmarks after testing various meth-
ods in the literature whose R packages are available, including VIM.hotdeck, ClustImpute.
ClustImpute, ECLRMC.ECLRMC, mice.polr, mice.pmm, and mic.sample, where the pack-
age and function names are separated by the dot. LP and QP-solver are implemented in 

(6)min
xpq

∑
(i,j)∈Rpq

wqj

(xpq − xiq

cq
+

xij − xpj

cj

)2

∑
(i,j)∈Rpq

wqj

(xpq − xiq

cq
+

xij − xpj

cj

)
= 0

(7)x∗
pq

=

∑
(i,j)∈Rpq wqj

�
xiq

cq
+

xpj−xij

cj

�

∑
(i,j)∈Rpq

�wqj

cq

� .

Table 3   Experimental data sets

Data set name Shorthand name Size (m,n) Number 
of instances

Master matrix

Hospital 10-fold Hospital10F (4217,4) 10 Hospital in Table 1
Journal 10-fold Journal10F (914,13) 10 Journal in Table 1
ESG 10-fold ESG10F (1356,4) 10 ESG in Table 1
Elementary school 10-fold Elementary10F (301,5) 10 Elementary School in Table 1
High school 10-fold Highschool10F (132,5) 10 High School in Table 1
Movielens 10-fold Movielens10F (1102,12) 10 Movielens in Table 1
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C# and solved by CPLEX 20.1. QP-AS and dQP-SVAS are implemented and tested with 
R 4.0.4. The codes for QP-AS and dQP-SVAS are available in the online supplement. For 
the benchmarks, cart from the R package mice (Buuren & Groothuis-Oudshoorn, 2011) 
and softImpute from the R package softImpute (Hastie & Mazumder, 2015; Hastie 
et al., 2015; Mazumder et al., 2010) are tested with R 4.0.4. We adopted � = 0.01 as the 
truncating bound for the weights wlj . For all experiments, a personal computer with 32 GB 
RAM and Intel Core i7-10700 CPU @ 2.90 GHz was used.

4.1 � Experimental data

In this section, we describe the data sets used in the experiment. Starting from the input 
data (with some missing values for real data and without missing values for synthetic data), 
we delete some of the known ratings so that we can check the imputation quality based 
on the deleted ratings. All real data sets used in the experiment are available in the online 
supplement.

4.1.1 � Real data

We generate six families of experimental data sets based on the six original real-world 
data sets summarized in Table  3. All of the test data sets were generated based on the 
procedure used by Kim et  al. (2021). We briefly describe the procedure as follows. For 
each of the data sets listed in Table 3, after randomly partitioning the known ratings into 
ten groups, we create each instance by deleting the known ratings in exactly one group. 
Hence, each 10-fold instance has additional missing values compared to the raw matrix in 
Table 3, while the true values of the deleted missing cells are known so that we can assess 
the model performance.

4.1.2 � Synthetic data

We generate synthetic data using Algorithm 1. In Step 1, a random correlation matrix is 
generated in which all correlations are between s − 0.2 and s + 0.2 , while s is the input 
correlation parameter. In Steps 2 and 3, a multivariate normal data set is created using the 
correlation matrix in Step 1. The generated continuous values are converted into 1 − 5 scale 
ratings using the procedure described in Sect. 5. The generated rating matrix X at the end 

Algorithm 1   Synthetic data generation
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of Step 3 is saved as the true matrix. Note that Xtrue in Step 4 does not have missing values. 
Hence, in Steps 5–11, we selectively delete rating values to create the final synthetic data 
X with missing ratings. In Step 6, given column j, we first define selection weights Ω for 
each entry, where poorly rated entries have smaller weights to be selected. For example, 
if x1j = 5 (good) and x2j = 1 (bad), the weights to be sampled are 1 and 5, respectively, 
which indicates the latter has a higher probability to be deleted in the next step. In Step 7, 
round(rm) entries are randomly selected and deleted based on the selection weights Ω . This 
procedure in Steps 6 and 7 is based on the observation in Sect. 2.2. Finally, in Steps 8–10, 
we make sure that each row has at least one rating available, satisfying Assumption 1.

We generate 10 instances for each tuple (m,  n,  s,  r), where m ∈ {1000, 2000, 3000} , 
n ∈ {6, 8, 10} , s ∈ {0.3, 0.5, 0.7} , and r ∈ {0.2, 0.3, 0.4} . Hence, there are 810 (= 34 × 10) 
synthetic instances, which are used for the experiment in Sect. 4.2. We make a few remarks 
regarding the generated data sets. First, the choice of s, which generates positive correla-
tion matrices, is supported by the analysis in Sect.  2.3, where we show that all RPs are 
positively correlated in all real data sets. Furthermore, the set of s covers a reasonable 
range for correlations. Second, the correlation parameter s mostly leads to lower Kendall 
rank correlations in the final data, as we convert the continuous values into integers and 
delete ratings. The final Kendall rank correlation matrices show less positively correlated 
columns. Finally, because the missing rates of all RPs are strictly less than 0.5, any pair 
of RPs has at least one subject rated by both of the PRs, and the corresponding nodes in 
the graph representation are connected. Therefore, by Theorem 2, the generated data set 
is estimatable. In Appendix C, we present an analysis on the probability that the data set 
generated by Algorithm 1 is estimatable for a more general missing rate greater than 0.5. 
The analysis shows that Algorithm 1 generates estimatable data sets with a high probability 
for reasonable values of m, n,  and r. This implies that a few repetitions of Algorithm 1 can 
return an estimatable data set successfully if estimatability is required.

4.2 � Performance measures and result

Recall that, for any original data set X, Q is the index set of the missing entries of X. 
Because we delete some of the known ratings in X to generate the test data sets, there are 
more missing values in the test data sets. For a 10-fold test data set, let Q∗ be the index 
set of missing ratings that are deleted and let rkl be the deleted true known ratings for xkl , 
(k, l) ∈ Q∗ . Then, for each 10-fold data set, we have missing values in Q∗ ∪ Q , whereas 
Q∗ ∩ Q = � . In other words, because we delete the values in Q∗ from the original data set 
X, each 10-fold data set will have missing values that are deleted (from Q∗ ), as well as 
missing values that were originally missing (from Q).

To measure the performance, we use the following four metrics. 

1.	 Time, running time in seconds.
2.	 Accuracy, defined as 

�∑
(k,l)∈Q∗ 1xkl=rkl

�
∕�Q∗� , measures the proportion of the correctly 

imputed values among the missing values with known ratings.

3.	 Root Mean Square Error (RMSE), defined as 
��∑

(k,l)∈Q∗ (xkl − rkl)
2
�
∕�Q∗� , measures 

the square root of the average squared errors of the imputed values among the missing 
values with known ratings.
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4.	 Mean Absolute Deviation (MAD), defined as 
�∑

(k,l)∈Q∗ �xkl − rkl�
�
∕�Q∗� , measures the 

average absolute errors of the imputed values among the missing values with known 
ratings.

For the real data sets, we additionally check how the Kendall rank correlation matrices are 
changed before and after the imputation. Let TB and T̂B be the Kendall rank correlation 
matrices of original and imputed data matrices for all RP pairs, where TB

j1j2
 and T̂B

j1j2
 repre-

sent the element for RP j1 and j2 . Recall that Fig. 3 presents TB . Because all elements of 
the TB and T̂B have very small p-values for all algorithms, we use the following three met-
rics to measure the deviations. 

1.	 RMSE� : 

�
∑

(j1,j2)∈J
(T̂B

j1j2
− Tj1j2 )

2∕

�
n

2

�

2.	 MAD� : 
∑

(j1,j2)∈J
�T̂B

j1j2
− Tj1j2 �∕

�
n

2

�

3.	 AvgD� : 
∑

(j1,j2)∈J
(T̂B

j1j2
− Tj1j2 )∕

�
n

2

�

Note that, by comparing MAD� and AvgD� , we can observe if the imputed matrices have 
mostly positive or negative changes.

4.2.1 � Result for real data

In Table 4, the result for the real data sets is presented. For each data set, the average 
performances out of 10 instances are reported. For Accuracy, RMSE, and MAD, the 
gray cells indicate that the corresponding algorithm’s output is the best out of all algo-
rithms compared; the boldface fonts indicate that the relative gap of the corresponding 

Table 4   Real data result (boldface = within 5% relative gap, graycell = best)
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algorithm’s output is within 5% from the best value. For the Journal10F data set, LP did 
not solve the problems due to the memory issue, and QP-solver used over 20GB of 
memory on average. For the Movielens10F data set, both LP and QP-solver had the 
same memory issue.

From Table  4, we observe that the imputation qualities (measured by accuracy, 
RMSE, and MAD) of missForest, LP, QP-solver, QP-AS, and dQP-SVAS are in 
the best group, while cart and softImpute are in the second group. Generally, the 
proposed methods (QP-solver, QP-AS, and dQP-SVAS) provide the best or near-
best solutions, except for Journal10F. The missForest method performs exception-
ally well for the Journal10F data set, although it occasionally fails to provide a best or 
near-best solution for the other data sets. In terms of running time, softImpute is 
the fastest method, followed by sQP-SVAS and cart. However, softImpute has 
the worst overall performance regarding other performance measures. For most data 
sets, LP performs well in terms of imputation qualities (accuracy, RMSE, and MAD), 
although the computation time is poor. Overall, the running time differences among the 
algorithms are negligible (except for LP) for the real data sets.

We next focus on comparing the solution quality. In Fig. 7, we present scatter plots of 
accuracy and RMSE for each family of the test data sets. QP-solver is excluded here 
because QP-AS provides almost identical results with a much faster running time. In each 
plot, the horizontal and vertical axes represent the accuracy and RMSE. We indicate the 
Pareto optimal algorithms, which are not dominated by the other algorithms, with black 
colored circles. The areas dominated by the Pareto optimal points are indicated by gray 
(excludes the boundary); we indicate the algorithms in the dominated area using gray cir-
cles. The result shown in Fig. 7 indicates that the proposed algorithms QP-AS and dQP-
SVAS are on or near the Pareto optimal boundaries, except for the Journal10 data set. 

Fig. 7   Relative comparison with accuracy and RMSE
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missForest is also on or near the Pareto optimal boundaries, except for the ESG10F 
data set. cart and softImpute are frequently far away from the boundaries. Overall, 
we conclude that QP-AS, dQP-SVAS, and missForest outperform cart and soft-
Impute in the real-world data sets.

In Table  5, the result of Kendall rank correlation matrix comparison is presented. 
Note that the original six data sets in Table 1 are used instead of the 10-fold data sets in 
Table 3. Hence, each algorithm solves each data set exactly once. The second column 

presents the number of RP pairs, calculated by 
(
n

2

)
 . For all performance measures, the 

gray cells indicate that the corresponding algorithm’s output is the best out of all algo-
rithms compared, where the minimum is the best for RMSE� and MAD� and the close-
to-zero is the best for AvgD� . The boldface fonts indicate that the relative gap of the 
corresponding algorithm’s output is within 5% from the best value. The result indicates 
that cart is the best in general, which is different from the result in Table 4. miss-
Forest performs best or near best for the Journal and Highschool data sets, and QP-
AS and dQP-SVAS outperform for the Journal data set. Comparisons of MAD� and 
AvgD� brings an interesting observation. Because QP-AS and dQP-SVAS minimize 
upsets, which is indirectly maximizing the Kendall rank correlation, MAD� and AvgD� 
are almost identical for QP-AS and dQP-SVAS. In other words, the Kendall rank cor-
relations increase after the imputation by QP-AS and dQP-SVAS. All other benchmark 
algorithms that are not based on upset minimization have mixed signs for AvgD�.

Considering all results in this section, we conclude that prediction quality is not 
closely related to the Kendall rank correlation matrix similarity. QP-AS, dQP-SVAS, 
and missForest outperform in terms of prediction, whereas cart outperforms in 
keeping the Kendall rank correlation matrix similar. When the missing values occur 
randomly, and the Kendall rank correlation matrix is believed to be true, we recom-
mend using cart to retain a similar correlation matrix after the imputation. However, 
when the missing values do not occur randomly, and there is doubt in the Kendall rank 
correlation matrix, we recommend using our proposed algorithms for obtaining more 
accurate imputed values.

We finally remark that the proposed algorithms, QP-AS and dQP-SVAS, are deter-
ministic. Hence, given a fixed data set, they always return the same set of imputed val-
ues and do not address the uncertainty issues of missing value imputation. To check the 
robustness of the proposed algorithms over varying subsets of the samples, we present 

Table 5   Real data Kendall rank correlation result (boldface = within 5% relative gap, graycell = best)
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multiple imputation versions of the proposed algorithms in Appendix D. Multiple impu-
tation generates multiple plausible values for each missing value to create multiple com-
plete data sets (Rubin, 1996). With iterative random samplings of the rows, the multiple 
imputation versions of the proposed algorithms can return multiple imputed values for 
each missing value. The results in Appendix D indicate QP-AS and dQP-SVAS return 
consistent imputed values. Also, the prediction performances are slightly better than the 
corresponding multiple imputation versions, while the solution times of QP-AS and 
dQP-SVAS are much faster.

4.2.2 � Result for synthetic data

In this section, we present the results for the synthetic data sets in Tables 6 - 9. Note that 
LP and QP-solver are excluded in the comparison due to the scalability issue. Fur-
thermore, because there are 810 instances in total, the aggregated results by m (number 
of subjects), n (number of RPs), correlation parameter s, and missing rate are presented 
in Tables 6,  7,  8, and 9, respectively. Similar to the format in Table 4, the best algo-
rithm and the algorithms within 5% of the best are indicated by gray cells and boldfaces, 
respectively. In all tables, we observe that dQP-SVAS outperforms the other methods 
in most cases. The running time of dQP-SVAS is the second-best after softImpute, 
while the solution quality of dQP-SVAS is decisively the best. The solution quality of 
QP-AS is frequently within 5% of the best, while softImpute and missForest 
occasionally provide good solutions. Overall, dQP-SVAS and QP-AS provide lower 
RMSEs and MADs.

Table 6   Synthetic data results (averaged by m, number of subjects)

Table 7   Synthetic data results (averaged by n, number of RPs)
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Table 6 shows that, when the results are aggregated by m, softImpute, missFor-
est, QP-AS, and dQP-SVAS provide similar accuracy. The solution quality changes very 
little as m changes for all algorithms. The solution time of softImpute is constantly the 
best, followed by dQP-SVAS. However, as m increases, the running time of dQP-SVAS 
increases more rapidly than cart and missForest. Hence, we expect that the running 
time of dQP-SVAS will be slower than that of cart and missForest when m is large.

In Table 7, when the results are aggregated by n, QP-AS and dQP-SVAS consist-
ently perform well, while softImpute and missForest provide competitive accu-
racy when n = 8 and 10. We observe that the accuracies of QP-AS and dQP-SVAS 
decrease as n increases, while the benchmark algorithms’ accuracies remain rela-
tively constant as n changes. In terms of the running time, we observe the same trend. 
softImpute is the fastest, while the running time of dQP-SVAS increases much 
more quickly than cart and missForest as n increases.

The result in Table  8 shows that the solution quality of QP-AS and dQP-SVAS 
improves drastically as the correlation parameter s increases. The other methods pro-
vide relatively constant solution quality in increasing s. Therefore, we conclude that 
the proposed algorithms perform well when the ratings are highly correlated.

The result in Table  9 shows that the solution quality of QP-AS and dQP-SVAS 
decreases as the missing rate increases, while other methods provide relatively con-
stant solution quality. However, the effect of the missing rate on the solution quality is 
less significant than the effect of s.

To investigate the effect of n, s, and the missing rate in greater detail, we compare 
in Fig.  8 the performance of dQP-SVAS against the three benchmark algorithms in 
the literature (cart, softImpute, and missForest). In each plot, the horizontal 
axis represents a data characteristic such as n, correlation, and missing rates, while the 

Table 8   Synthetic data results (averaged by correlation parameter s)

Table 9   Synthetic data results (averaged by missing rate)
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vertical axis represents the improvement by dQP-SVAS from the best outcome out of 
the three benchmarks, which is defined as

obj���−���� - max{obj����,obj����������,obj����������} , for obj = accuracy,
min{obj����,obj����������,obj����������} - obj���−���� , for obj = RMSE, MAD.

If the improvement is positive, this implies that dQP-SVAS outperforms. Otherwise, it 
implies that one of the three algorithms defeats dQP-SVAS.

The plots in Fig. 8 summarize the relative performance of dQP-SVAS in increasing 
n, correlation, and the missing rate. As n increases, the solution quality improvement 
by dQP-SVAS from the three algorithms decreases. Thus, we expect a worse perfor-
mance for dQP-SVAS when n is large, which explains the poor performance of dQP-
SVAS (and other proposed algorithms) for the Journal10F data set in Table 4. As the 
missing rate increases, dQP-SVAS becomes less attractive, although it outperforms 
the three benchmarks in all performance measures for missing rates 0.2, 0.3, and 0.4. 
The effect of correlation parameter s is shown in Fig. 8b. As correlations among RPs 
increase, the improvement by dQP-SVAS from the three algorithms rapidly increases. 
Therefore, we conclude that dQP-SVAS performs particularly well for the input data 
with a few highly correlated PRs and a relatively small number of missing values.

5 � Conclusion

Ratings provide succinct and credible measures for comparing subjects and are used 
throughout individual and corporate decision-making processes. However, missing 
entries are frequently observed in a combined list. Hence, accurate estimation or impu-
tation of the missing entries in the combined rating data sets can address this problem 
and significantly impact users’ decision-making processes.

In this paper, we propose three algorithms and examine the properties of missing 
values in the combined rating list. In detail, we present QP models and algorithms tai-
lored for missing rating imputation. The proposed algorithms outperform the state-of-
the-art general imputation methods such as cart, missForest, and softImpute 
in terms of imputation accuracy, while showing outstanding scalability compared with 
the MIP-based rating imputation model reported in the literature. The proposed algo-
rithms tend to increase the Kendall rank correlation coefficients after the imputation, 

Fig. 8   Improvement by dQP-SVAS
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but we observe that preserving the original data’s Kendall rank correlation coefficients 
does not necessarily guarantee imputation quality. The proposed algorithms can also be 
used for imputing continuous values, with a slight modification on normalization. Our 
algorithms perform particularly well when the columns are highly correlated. We also 
provide a procedure and definitions for defining when the imputation algorithms are 
applicable. These analyses show that the consensus level between the RPs varies across 
contexts, that MAR assumptions are frequently violated, and that missingness may indi-
cate superiority or inferiority of the subject. The synthetic data sets mimic the proper-
ties of the real-world data sets and can serve as benchmark data sets.

Despite the outstanding performance of the proposed algorithms, several future 
research directions are available. Although the dQP-SVAS algorithm is the fast-
est among the proposed algorithms and provides a competitive solution time for the 
data sets used in the experiment, it cannot handle a very large data set with millions 
of subjects. This demands even more scalable algorithms with similar prediction per-
formances. Furthermore, although our study assumes that the subjects are evaluated at 
the same time, some ratings are from different time periods. Hence, extensions on time 
series ratings are promising.

Appendix A: Data preparation and description

Missing rating data frequently appear in practice. In the current research, we are particu-
larly interested in data such that decision-makers or stakeholders might take advantage of 
imputing the missing entries. For example, customers can use the imputed values to find a 
service provider that would likely offer better customer service. Institutions can use them 
to evaluate unrated subjects. Some companies use it to make intelligent recommendation 
systems. We compiled multiple real-world data sets in various applications: hospital rating, 
journal rating, environmental, social, and governance (ESG) rating, elementary and high 
school rating, and movie rating. In Sections A1 - A5, we describe the detailed background 
and our data collection/compiling procedures for each data set. Section A6 presents the 
conversion procedure of the continuous rating scores. Finally, in Section A7, we present 
the detailed statistics and distribution of the missing values in the collected data sets.

A1: Journal data

The quality of journal publications has been adopted as one of the most significant crite-
ria for faculty scholarship evaluation. The baseline indices are frequently defined based 
on several important factors, such as the publication volume, citation metrics, acceptance 
rates, Journal Impact Factor (JIF), H-index, SCImago Journal Rank (SJR) indicator, Cit-
eScores, Source Normalized Impact per Paper (SNIP), and the Eigenfactor, among others. 
Despite the existence of such indices, these quality measures are too fragmentary to be 
adopted as sole quality quantifiers for a journal. Alternatively, some organizations have 
developed journal rating systems that determine journal ratings by considering various 
quality indices along with inputs of expert panels. Such journal rating lists in the business 
research domain include the Australian Business Deans Council (ABDC), the Associa-
tion of Business Schools (ABS), the Erasmus Research Institute of Management (EJL), the 
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European Journal of Information Systems (EJIS), and the High Council for Evaluation of 
Research and Higher Education (HCERES).

Many academic institutions adopt a journal quality list and use the referred ratings as 
a quality score for a journal publication. Nevertheless, it is commonly observed that some 
quality journals are not included in the journal list. This necessitates estimating the ratings 
of the journals within the quality principles of the designated journal list.

In this study, we use the recent journal rating data from Harzing.com (Harzing, 2020), 
which provides ratings for a collection of RPs. All raw ratings, such as {A∗,A,B,C} , are 
converted to numerical values {4, 3, 2, 1} such that higher rating values indicate better qual-
ity. Note that Kim et al. (2021) also use an earlier version of the data from Harzing.com, 
although the data set differs slightly in terms of the rating values and the number of RPs 
and subjects. Hence, the results are not directly comparable to the results of the current 
paper.

A2: Hospital rating data

Hospital administrators, healthcare consumers, and journalists are all captivated by the 
release of general hospital ratings and their implications for healthcare quality improve-
ment and data analytics. In the United States, these ratings may come from a variety of 
sources, such as U.S. News and Consumer Reports (Ozcan, 2008). Recently, hospital rat-
ings have been publicly released by U.S. government agencies such as the Centers for Med-
icaid and Medical Services (CMS) and other associated entities under the U.S. Department 
of Health and Human Services (HHS), sourced from the Agency for Healthcare Research 
and Quality (AHRQ). Close to 4,000 hospitals in the U.S. are assigned ratings of 1–5 stars 
(The Centers for Medicare & Medicaid Services, 2019). The Leapfrog Group, a U.S. non-
profit watchdog organization, also compiles data for informed purchasing in the healthcare 
industry to foster hospital transparency and value-based purchasing in the U.S. healthcare 
system. The evaluations are typically based on hundreds of different measures assessing 
the hospital facility, services, and equipment quality; a summarized rating is then com-
posed according to the different weights assigned to different categories (Venkatesh et al., 
2017).

To create a combined hospital quality list, we collect ratings from four publicly avail-
able rating systems: HCAHPS (Hospital Consumer Assessment of Healthcare Providers 
and Systems) Star Ratings (The Centers for Medicare & Medicaid Services, 2019), Leap-
Frog’s Hospital Safety Grade (LeapFrog Group, 2019), the Centers for Medicare & Medic-
aid Services (The Centers for Medicare & Medicaid Services, 2019), and U.S. News’s Best 
Hospital (U.S. News & World Report, 2019). For notational convenience, we denote them 
as HCAHPS, LeapFrog, Medicare, and U.S. News, respectively. U.S. News provides ratings 
of hospitals for 16 specialties and nine procedures and conditions. Among these, we focus 
on 12 specialties that are not exclusively based on reputation survey and that have numeri-
cal scores, following Austin et al. (2015). The specialty scores are then standardized and 
averaged. The procedures for the other three sources of rating data (LeapFrog, Medicare, 
and HCAHPS) are relatively straightforward: A, B, C, D, and F are converted into 5, 4, 3, 
2, and 1 for LeapFrog, while the 5-to-1 star rating systems of Medicare (Hospital overall 
rating) and HCAHPS (Overall hospital rating - star rating) are directly used without modi-
fications. With these ratings from the four rating providers, we create a combined rating 
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list by merging based on the available hospital name, address, city, state, and zip code. The 
combined rating data include 4,217 hospitals rated by four RPs.

A3: Environmental, social, and governance data

Environmental, social, and governance (ESG) assessments have become the standards used 
to measure a firm’s degree of involvement in socially responsible activities (Huang, 2021). 
ESG ratings have been widely used in various domains, including socially responsible 
investing, risk identification & management, and supplier selection & evaluation. Given 
the popularity of ESG measures in both academia and industry, there are several propri-
etary databases on the market that specialize in ESG ratings for firms. Firms are evaluated 
by a score derived from their performance in multiple indicators for each category: this 
varies across ESG databases. The overall performances can also be evaluated with com-
posite scores.

Among the multiple databases available, we include four databases in our data set: (1) 
Kinder, Lydenberg, Domini, and Company (KLD), which is now known as MSCI ESG, 
(2) Bloomberg ESG, (3) Sustainalytics, and (4) CSRHub. KLD (MSCI, 2014) measures 
ESG scores based on binary indicators (Halbritter & Dorfleitner, 2015) across three cat-
egories (environmental, social, and governance). However, only the binary indicators are 
reported, while category or composite scores are not reported. To obtain a single score 
for each category, we follow the common approach that computes the difference between 
the strengths and concerns (Waddock & Graves, 1997). The overall ESG score is then 
obtained by aggregating the scores of the three categories. The ratings in the Bloomberg 
ESG data (Bloomberg, 2014) primarily indicate the extent to which a firm discloses infor-
mation regarding ESG. The Bloomberg ESG includes a firm’s overall ESG score and rat-
ings in each of the three categories. The score is updated annually and is tailored based 
on the industry, with the scale for the scores ranging from 0.1 to 100 (McBrayer, 2018). 
Sustainalytics (Sustainalytics, 2014) includes a firm’s ratings in the environmental, social, 
and governance categories based on multiple indicators. Sustainalytics reports a weighted 
overall ESG score, where the weights are determined by the firm’s industry. The scale of 
this overall ESG score is from 0 to 100 (Surroca et al., 2010). A firm’s overall ESG score 
in CSRHub (CSRHub, 2014) is based on the weighted combinations of the four categories 
(i.e., community, employees, environment, and governance), with a scale from 0 to 100. 
CSRHub also reports the overall score every month. We use the simple average of the 12 
months as the annual score.

In this study, we focus on manufacturing firms (NAICS 31–33) in North America 
in 2014 from COMPUSTAT. Because KLD had stopped reporting the total numbers of 
strengths and concerns for each category after 2014, which are used to calculate the over-
all KLD score, the combined rating data use the year 2014. These ESG databases were 
merged based on the ticker symbol. It should be noted that missing values appear randomly 
due to the lack of information on the construction of the ESG score.

A4: Elementary and high school rating data

School rating systems have become widespread for various purposes. School administrators 
have adopted school ratings in school accountability reports as a baseline school perfor-
mance measure to inspect their administrative strategies. This, in turn, provides guidelines 
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for teachers to take action to improve their instructions and testing strategies. Highly rated 
schools also use school ratings for advertisements to attract good students. School qual-
ity, typically and simply represented by school ratings, is known to be a significant factor 
for house prices (Lerner, 2015). Students and parents often use school ratings to choose 
schools or school districts or provide incentives for school administrators to improve their 
pedagogical tactics.

Multiple organizations publish school ratings. For example, the Department of Educa-
tion and its equivalents in state governments in the United States issue school ratings to 
compare school quality in the state. Some private organizations also issue school ratings 
for schools across the country. See Dalton (2017) for a taxonomy of school rating issuers.

Missingness in school rating systems occurs frequently. In a state school rating system, 
the missingness results from its geographical constraint. For consumer-oriented rating sys-
tems, despite their wide span of subjects, there are missing subjects in the list because 
each rating issuer maintains its own exclusion rules. For example, Niche.com measures the 
completeness of data for individual schools, and if a school does not provide a sufficient 
amount of data, the school is disqualified from the Niche rating.

We prepare two data sets for elementary and high school rating data for Dallas, Texas. 
To create a combined school rating list, we collect ratings from five publicly available 
rating systems: GreatSchools (GreatSchools, 2020), Niche (Niche, 2020), SchoolDigger 
(SchoolDigger, 2020), TexasSchoolGuide (Children At Risk, 2020), and TexasSchool-
Rating (Txschools.gov, 2020). The original ratings of GreatSchool and SchoolDigger in 
10-to-1 and 5-to-0 scales, respectively, are converted into 5-to-1 and 6-to-1 scale ratings. 
The other RPs provide letter grades ({A+,...,D-} and {A+,...,D-,F}), which are converted 
into 4-to-1 and 5-to-1 scale ratings, respectively, based on the letter grade and ignoring 
the plus or minus. After creating a combined rating matrix by merging based on name and 
address, we keep the schools that have at least one rating available.

A5: Movie rating data

The movie rating data sets have been studied extensively in the collaborative filtering and 
matrix completion literature and share a similar structure with other data sets presented in 
this study. In other words, the users and movies are rating providers and subjects, respec-
tively, in the context of our research. A movie recommendation system could use the 
imputed values to build recommended movie lists customized for individual users.

We remark that there are a few differences between movie rating data and other test data. 
Perhaps, the most striking distinction of the movie rating data from the other experimental 
data in this paper is its high missing rate. For example, the Movielens data sets (Harper & 
Konstan, 2015; GroupLens, 2022) have missing rates ranging from 94.1% to 99.7% while 
the other data sets in Table 1 have missing rates from 30.2% to 55.6%. Another critical dif-
ference is the size of the data. Even the smallest MovieLens data set includes thousands of 
movies and hundreds of users. Most imputation algorithms cannot handle this data. Lastly, 
the movie rating data has smaller user correlations than the other data sets we consider. 
Hence, the proposed imputation methods are unlikely to yield satisfactory imputations with 
the original form of movie rating data. For these reasons, we customize movie rating data 
to have similar sizes, missing rates, and inter-rater correlations with the other experimental 
data.

We use the MovieLens 100k data set (Harper & Konstan, 2015; GroupLens, 2022) to 
create a reduced data set with highly correlated rating providers. The original data includes 
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100,000 ratings from 943 users on 1682 movies, where 1–5 rating system is used for the 
ratings. To create coherent ratings without too many missing values, we first select the 
users who rate at least 20% of the movies. Next, we check the Kendall rank correlations to 
further reduce the user set by selecting the users whose average correlation is greater than 
0.25. Finally, we keep the movies rated at least once by the final user set. The reduced data 
set with highly correlated users include 12 users and 1102 movies.

A6: Conversion of continuous scores

Our study considers ordinal rating data. When an RP provides continuous scores instead of 
explicit rating categories, the scores can be converted. Given an RP and scores for all sub-
jects rated by the RP, we partition the subjects into five groups based on their scores and 
assign 1–5 scale ratings, where 5 is the best and 1 is the worst. Let d1, d2, d3, and d4 be the 
cutoffs defining five ranges, which are defined below. Given rating provider j for subject i 
with a continuous score of sij , the converted rating rij is determined by the following rule:

Observe that the values of d1 − d4 significantly affect the distribution of the con-
verted ratings. To resemble the distribution of the original scores, we use 
(d1, d2, d3, d4) = (0.1, 0.35, 0.65, 0.9) for US News of the hospital data, which is similar to 
Normal distribution. For the ESG data, we divide the full range of the scores into equal-
length ranges, in order to preserve the distribution of the original scores. For rating pro-
vider j, we define smax

j
 and smin

j
 to be the 99%tile and 1%tile of sij . With srange

j
= smax

j
− smin

j
 , 

we define dj = smin
j

+
j⋅s

range

j

5
 , for j ∈ {1, 2, 3, 4}.

A7: Missing rates by row and column

In this section, we present the detailed statistics of missing rates of the data sets. Figures 9 
and 10 present the missing rates by column and row, respectively, while Table 1 in Sect. 2.1 
only focuses on the summary statistics at the data set level. Hence, this section can help 
understand the distribution of missing rates over columns and rows.

Figure 9 visualizes missing rates for individual rating providers for all data sets, where 
the horizontal and vertical axes of each plot represent rating providers and missing rates 
in percentages. Each bar indicates the missing rate of the corresponding RP. For example, 
16.1% for HCAHPS in Fig. 1a indicates that 16.1% of the 4,217 hospitals have missing rat-
ings by HCAHPS. The missing rates vary across RPs and data sets, from 3.8% to 81.8%. 
Within the same data set, the ESG data set has RPs with missing rate 3.8% to 78.4%.

Figure  10 visualizes the proportions of subjects in percentages by the number of 
observed ratings. Each bar represents the percentage of subjects for the corresponding 
number of ratings available. For example, in Fig. 2a, 21.0% and 41.3% of the 4,217 hospi-
tals are rated by only one RP and all four RPs, respectively. The percentages of fully rated 
subjects also vary across data sets, from 41.3% to 11.4%. Among the data sets, the Hospital 

rij =

⎧
⎪⎪⎨⎪⎪⎩

5 if d4 ≤ sij < ∞

4 if d3 ≤ sij < d4
3 if d2 ≤ sij < d3
2 if d1 ≤ sij < d2
1 if −∞ < sij < d1
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and Journal data sets have the increasing number of ratings in the increasing number of 
available ratings. The other data sets generally have the decreasing number of ratings in the 
increasing number of available ratings.
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Fig. 9   Missing rates by rating providers
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Appendix B: Proofs of lemmas and theorems

Proof of Lemma 1  Suppose Ev = � . This means that there is no 2 × 2 submatrix such that 
one entry is not level-u estimatable for all u ≤ v − 1 , and each of the three remaining 
entries is either observed or level-u for some u ≤ v − 1 . Because Ev = � , the construction 
of level-(v + 1) estimatable entries must be based on only level-u estimatable entries for 
u ≤ v − 1 . Because no desirable 2 × 2 submatrix exists, thus Ev+1 = � . Therefore, if Ev = � 
then Eu = � for all u ≥ v + 1 . 	�  ◻

Proof of Theorem 1  Denote the distinct rating providers in C by j1,… , js . Then, after relabe-
ling, we can assume that j1 − j2 −⋯ − js forms a connected path. For any j = 1,… , s − 1 , 
because RPs j and j + 1 are connected, there exists a subject S rated by both j and j + 1 . 
Therefore, for an arbitrary S� ∈ E(j) , by the existence of a commonly observed subject 
S ∈ O(j) ∩O(j + 1) and the definition of estimatability, we have S� ∈ E(j + 1) , showing that 
E(j) ⊆ E(j + 1) . Similarly, the opposite inclusion also holds, showing that E(1) = ⋯ = E(s) . 
Then, for each l ∈ {1,… , s},

where the first equality holds by the definition of O(C) , the inclusion holds because 
O(j) ⊆ E(j) for all j = 1,… , s , and the second equality holds because E(1) = ⋯ = E(s) . 
Finally, consider an arbitrary entry (i��, j��) ∈ O(C) × C . Then, j�� = l for some 
l ∈ {1,… , s} . Therefore, S�� ∈ O(C) ⊆ E(l) = E(j��) , showing that S′′ is estimatable. 	�  ◻

Proof of Theorem 2  Because the “if” part directly follows from Theorem 1, it suffices to 
show the “only if" part. Suppose the graph is disconnected. Let C1,… ,Cr be all the con-
nected components of the graph, where r ≥ 2 . Consider the r submatrices of the input data, 
where each submatrix Xi corresponds to the rating providers in Ci and the subjects in O(Ci) 
for i = 1,… , r . By Theorem 1, all the entries in D ∶=

⋃r

i=1
Xi are either observed or esti-

matable. Moreover, because {Ci}
r
i=1

 are mutually exclusive, so are {Xi}
r
i=1

 and {O(Ci)}
r
i=1

 , 
respectively. Moreover, by Assumption 1, it holds that O(C1),⋯ ,O(Cr) partition the set 
of all subjects. This, in turn, shows that O(Ci) ⊆ E(Ci) for all i = 1,… , r . Consider data 
entries outside D. We claim that none of these entries are estimatable. To prove this by 
contradiction, consider entry e ∉ D , which is included in the first estimatable batch outside 
D in the sequential construction of estimatable entries. In other words, the estimatability 
of e is derived by three corner entries in D. Suppose this entry e is associated with sub-
ject i and rating provider j. Let C be the connected component that includes j. Then, there 
exists a subject i′ ≠ i and a rating provider j′ ≠ j such that (i, j�), (i�, j) , and (i�, j�) entries 
are estimatable and included in D. We first show that j and j′ are not in the same con-
nected component. Assume j� ∈ C . Because (i, j�) ∈ D and j� ∈ C , it holds that i ∈ O(C) , 
implying that (i, j) ∈ D , creating a contradiction. Therefore, we assume that j� ∈ C� for 
some connected component C′ other than C. Let X′ be the submatrix associated with C′ 
and O(C�) . Because (i�, j�) ∈ D and j� ∈ C� , it holds that i� ∈ O(C�) . Similarly, we can show 
that i� ∈ O(C) because (i�, j) ∈ D and j ∈ C . This contradicts the fact that O(C) and O(C�) 
are disjoint. Therefore, e is estimatable. This means that the sequential construction of esti-
matable entries is discontinued after the construction of D. Therefore, the input data set is 
unestimatable. 	�  ◻

O(C) =

s⋃
j=1

O(j) ⊆

s⋃
j=1

E(j) = E(l)
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Proof of Theorem 3  To prove the “if" part, assume I =
⋃

j∈Nj�
Ij for all j� ∈ J and consider 

an arbitrary missing entry (i�, j�) . Then, there exists j ∈ Nj� such that i� ∈ Ij and j ≠ j′ . 
Because j ∈ Nj� , there exists i ∈ I such that i ≠ i′ and i ∈ Ij ∩ Ij� . Hence, for the missing 
entry (i�, j�) , we have ratings available at (i�, j) , (i,  j), and (i, j�) . This implies that (i�, j�) is 
level-1 estimatable. Applying this procedure for all missing entries in X, we can show that 
X is level-1 estimatable.

We next prove the “only if" part. Assume that X is level-1 estimatable and consider an 
arbitrary rating provider j′ . Then, for each missing entry (i�, j�) , there exists i′′ and j′′ such 
that the ratings are available for entries at (i��, j�) , (i�, j��) , and (i��, j��) because of the defini-
tion of level-1 estimatability. This implies that j�� ∈ Nj� and i� ∈ Ij�� . By combining the 
result for all missing entries in j′ , we can show that I =

⋃
j∈Nj�

Ij holds for j′ . Applying this 
procedure for all RPs in J completes the proof. 	� ◻

Proof of Theorem 4  Consider each term

of the objective function. Its square part is convex because it is a composition of a convex 
function ( f (x) = x2 ) and an affine function. Then, (8) is also convex because it is a scalar 
multiple of a convex function. Next, assume that the data set is estimatable. Because input 
data X includes at least one level-1 estimatable missing entry, there exists a term of the 
form (8) such that three ratings are known and one rating is unknown. Because this term 
is a univariate quadratic function that is concave upward, it is strongly convex. Finally, 
because the sum of a strongly convex function and a convex function is strongly convex, 
the objective function of (4) is strongly convex. 	�  ◻

Appendix C: Analysis on probability of estimatability

In this section, we present an analysis on the estimatability of the data sets generated by 
Algorithm 1. Based on the graph representation in Sect. 3.1, we calculate the probability 
that a generated data set is estimatable. To achieve this goal, we must check whether or not 
the corresponding graph is connected. The graph connectivity calculation is based on edge 
connectivities.

Edge connection probability depends on the missing rate r and the number of subjects 
(rows) m. Following Algorithm 1, let us assume all RPs (columns) have the same missing 
rates and that the number of missing values in each RP is ⌊rm⌋ . Then, the edge connection 
probability, denoted as Pedge , can be derived as follows:

(8)wlj

(xkl − xil

cl
+

xij − xkj

cj

)2

Pedge =

⎧⎪⎪⎨⎪⎪⎩

1 if ⌊rm⌋ < m

2

1 −

⎛⎜⎜⎝
⌊rm⌋

2⌊rm⌋ − m

⎞⎟⎟⎠
⎛⎜⎜⎝

m

⌊rm⌋
⎞⎟⎟⎠

if ⌊rm⌋ ≥ m

2
.
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The edge connection probabilities Pedge are calculated over various r and m in Table 10. 
Note that the edge connection probabilities are reasonably high even if the missing rate r is 
as high as 0.8.

The graph connectivity depends on the edge connection probability ( Pedge ) and the num-
ber of RPs (n). However, it is difficult to calculate the probability mathematically given 
Pedge and n. On the other hand, it is easy to check if a generated graph is connected or not. 
Therefore, to approximate the graph connection probability, denoted as Pconnect , we gener-
ate 10,000 random graphs for each (Pedge, n) pair and estimate the probability. For this task, 
we use the networkx.is_connected function in Python. The simulation result is presented in 
Table 11.

As expected, Pconnect rapidly increases as Pedge or n increases. Even for a small edge 
probability of 0.2, the graph connectivity is over 0.9, which demonstrates that Algorithm 1 
successfully generates an estimatable data set nine out of ten times. Combining the results 
in Tables 10 and 11, we conclude that Algorithm 1 generates an estimatable data set with 
high probabilities for most of the realistic parameters for r,  m,   and n. For example, if 
r = 0.9 , m = 50 , and n = 4 , then Pconnect = 0.8619 . This implies that Algorithm 1 gener-
ates an estimatable data set with a probability greater than 0.8619 if r ≤ 0.9 , m ≥ 50 , and 
n ≥ 4 . With this high success rate, one can repeat Algorithm 1 until an estimatable data set 
is generated.

Appendix D: Tests for robustness of algorithm

The proposed algorithms, QP-AS and dQP-SVAS, are deterministic. Hence, given a fixed 
data set, they always return the same set of imputed values and do not address the uncertainty 
issues of missing value imputation. To check the robustness of the proposed algorithms over 
varying subsets of the samples, in this section, we present multiple imputation versions of 

Table 10   Edge connection 
probabilities for various r and m 

r∖m 50 100 500 1000 5000

0.60 1.0000 1.0000 1.0000 1.0000 1.0000
0.70 0.9986 1.0000 1.0000 1.0000 1.0000
0.80 0.9175 0.9934 1.0000 1.0000 1.0000
0.90 0.4234 0.6695 0.9962 1.0000 1.0000
0.95 0.1727 0.2304 0.7315 0.9280 1.0000

Table 11   Graph connection 
probability for various Pedge 
and n 

Pedge∖n 4 8 12 16 20 50

0.1 0.0744 0.1147 0.2680 0.4947 0.6911 0.9988
0.2 0.3278 0.6800 0.9143 0.9803 0.9955 1.0000
0.3 0.6139 0.9454 0.9956 0.9993 1.0000 1.0000
0.4 0.8202 0.9932 0.9999 1.0000 1.0000 1.0000
0.5 0.9353 0.9996 1.0000 1.0000 1.0000 1.0000
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QP-AS and dQP-SVAS. For each imputation trial, we randomly sample 80% of the rows (sub-
jects) in the data and run QP-AS (or dQP-SVAS). The iterations end when each of the rows 
is sampled at least 10 times. We refer to these algorithms as QP-ASMI and dQP-SVASMI.

We remark that each sampled data set should be estimatable. Even when the full data set 
is estimatable, it is possible to have a sampled data set that is not estimatable. Hence, we 
need to ensure that all sampled data sets are estimatable before calling QP-AS and dQP-
SVAS. For each algorithm and data set, we use the following two performance metrics. 

1.	 %ZeroSD: the percentage of missing entries that have the same imputed value over all 
samples

2.	 AvgSD: the average standard deviation of the imputed value.

By checking the two metrics, we can measure how consistent the imputed values are 
(%ZeroSD) and the variances, if not consistent (AvgSD).

In Table 12, we check the variations of the imputed values over multiple samples using 
the real experimental data sets in Table  3. For each algorithm, #Samples is the number 
of samples drawn until the termination criteria are met. The two performance metrics 
and #Samples are reported for each data set for the two algorithms QP-ASMI and dQP-
SVASMI. Observe that at least 77% and 73% of the imputed values are identical for QP-
ASMI and dQP-SVASMI, respectively. This implies that the proposed algorithms return 
the same imputed values for over-70% of the missing entries. Further, The imputed values’ 
average standard deviations are mostly less than 0.1. The results show that both algorithms 
return consistent imputed values even if the samples differ.

The two algorithms, QP-ASMI and dQP-SVASMI, are also compared against their 
deterministic versions QP-AS and dQP-SVAS in Table 13. Similar to the results in the 
main section, the gray cells and boldfaces are used to indicate the best and within-5%-gaps, 
respectively, among all algorithms in Table 4. For example, no algorithms in Table 13 have 
boldfaces or gray cells for the Journal10F data set, because all four algorithms are not close 
to the best result (missForest) in Table 4. The result shows that QP-AS and dQP-SVAS are 
slightly better than QP-ASMI and dQP-SVASMI, while the multiple imputation versions 
return similar quality solutions in terms of the relative gap from the best. There exists only 
one case (MAD of Movielens10F data set) where either dQP-ASMI or dQP-SVASMI 
beats the best solution among all benchmarks including QP-AS and dQP-SVAS. On the 
other hand, the computation times of QP-ASMI and dQP-SVASMI are much worse. 
Hence, considering the prediction performances and computation time, we conclude the 
deterministic versions outperform.

Table 12   Variations over samples

Data set QP-ASMI dQP-SVASMI

#Samples %ZeroSD AvgSD #Samples %ZeroSD AvgSD

Hospital10F 21.9 97% 0.0125 21.3 96% 0.0125
Journal10F 19.7 95% 0.0178 20.1 95% 0.0204
ESG10F 20.5 77% 0.0978 20.4 82% 0.0719
Elementary10F 19 83% 0.0620 19.9 79% 0.0776
Highschool10F 18.7 80% 0.0835 18.6 73% 0.1029
Movielens10F 21.2 91% 0.0331 19.9 88% 0.0453
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