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Abstract
We present a numerical study of the transport and localization properties of
excitations in one-dimensional lattices with diagonal disordered mosaic modu-
lations. The model is characterized by the modulation period κ and the disorder
strengthW. We calculate the disorder averages ⟨T⟩, ⟨lnT⟩, and ⟨P⟩, where T is
the transmittance and P is the participation ratio, as a function of energy E and
system size L, for different values of κ andW. For excitations at quasiresonance
energies determined by κ, we find power-law scaling behaviors of the form
⟨T⟩ ∝ L−γa , ⟨lnT⟩ ≈ −γg lnL, and ⟨P⟩ ∝ Lβ , as L increases to a large value.
In the strong disorder limit, the exponents are seen to saturate at the values
γa ∼ 0.5, γg ∼ 1, and β ∼ 0.3, regardless of the quasiresonance energy value.
This behavior is in contrast to the exponential localization behavior occurring
at all other energies. The appearance of sharp peaks in the participation ratio
spectrum at quasiresonance energies provides additional evidence for the exist-
ence of an anomalous power-law localization phenomenon. The corresponding
eigenstates demonstrate multifractal behavior and exhibit unique node struc-
tures. In addition, we investigate the time-dependent wave packet dynamics
and calculate the mean square displacement ⟨m2(t)⟩, spatial probability distri-
bution, participation number, and return probability. When the wave packet’s
initial momentum satisfies the quasiresonance condition, we observe a sub-
diffusive spreading of the wave packet, characterized by ⟨m2(t)⟩ ∝ tη where
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η is always less than 1. We also note the occurrence of partial localization
at quasiresonance energies, as indicated by the saturation of the participation
number and a nonzero value for the return probability at long times.

Keywords: Anderson localization, power-law localization,
disordered mosaic lattice model, diluted Anderson model,
quasiresonant states, subdiffusive spreading

(Some figures may appear in colour only in the online journal)

1. Introduction

According to the scaling theory of Anderson localization in noninteracting systems, local-
ization occurs in one- and two-dimensional systems with arbitrarily weak disorder, and in
three-dimensional systems with strong enough disorder [1, 2]. Despite extensive studies on
Anderson localization [3–8], there are still several aspects that are not fully understood, and
new types of localization phenomena continue to be discovered [9–33]. Recent examples
include unconventional transport in disordered quantum wires [9–13], localization in dis-
ordered non-Hermitian systems [14–20], and the quantum boomerang effect in both Hermitian
and non-Hermitian systems [21–25]. Furthermore, the effect of interactions on Anderson loc-
alization and the related phenomenon of many-body localization has been an important and
challenging research topic for many decades that still raises many open questions [34–36].

It is well-known that in one-dimensional (1D) noninteracting systemswith uncorrelated dis-
order, long-range transport is absent due to Anderson localization [3]. This can be observed
through an exponential decrease in transmittance with thickness for extended excitations, and
a saturation of mean-square displacement at long times for initially localized excitations.
However, studies have shown that certain types of correlations in the disorder distribution
can enable long-range transport. For example, the binary random dimer model exhibits a dis-
crete set of resonance energies [37–41], where the mean-square displacement grows as t3/2

over time t, indicating superdiffusive transport behavior [39]. Additionally, the transmittance
across the system is identically equal to 1 in the scattering problem. This superdiffusive beha-
vior has been observed in optical experiments [41]. The binary random dimer model has been
extended to the binary random N-mer model, and analytical expressions have been derived to
identify the resonant energies that trigger delocalization [42, 43].

Our recent numerical investigation explored the time-dependent reflection of wave packets
incident on an effectively semi-infinite disordered mosaic lattice chain, where disordered on-
site potentials are inserted into the lattice only at equally spaced sites [44]. Through extensive
numerical calculations, we discovered a discrete set of quasiresonance energies that deviate
sharply from the ordinary Anderson localization behavior. We derived a simple analytical for-
mula for these energies, which interestingly takes the same form as the resonance energy for-
mula found in the binary random N-mer model [42]. However, it is important to note that this
similarity is purely coincidental, as the underlying mechanisms are entirely distinct [44]. The
binary random N-mer model exhibits superdiffusive wave packet spreading and completely
extended states at resonance energies. Therefore, a natural question arises: how do these phe-
nomena change at the quasiresonance energies present in the disordered mosaic lattice model?
One of our primary goals is to address this question in the present study. It is worth noting that
1Dmosaic lattice models of various types have yielded many interesting results in recent years
[45–51].
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Recently, we have learned that the model known as the diluted Anderson model, which is
essentially identical to the disordered mosaic lattice model discussed in this paper, was first
studied by Hilke and later explored by various research groups [52, 53]. Nonetheless, our work
deviates significantly from previous studies and presents a multitude of fresh and interesting
results. In [52], it was demonstrated that the underlying periodicity of the lattice gives rise to
resonance energies. Although the resonance energies have been correctly derived, there has
been a mischaracterization regarding the nature of the resonant states, incorrectly labeling
them as entirely extended states. In both this paper and our previous work [44], we provide
unambiguous evidence through calculations of various physical quantities that these states are
not entirely extended; rather, they exhibit power-law localized critical behavior. de Moura
et al investigated the dynamics of a wave packet launched in a diluted Anderson lattice and
observed a subdiffusive spreading characterized by the mean square displacement behavior
⟨m2(t)⟩ ∝ t0.5 [53]. However, their study focused on an initially localized wave packet repres-
ented by a single site δ function. As a result, it encompassed contributions from all eigenstates,
including both the localized and quasiresonant states, thereby making it challenging to distin-
guish the energy dependencies of the wave packet dynamics. Contrastingly, our present work
employs a Gaussian wave packet with a narrow momentum distribution, enabling us to spe-
cifically investigate the distinct influence of the quasiresonant states on the dynamics of the
wave packet.

In this paper, we aim to further expand our previous research and investigate the nature of
states at quasiresonance energies in more detail through calculations of several other physical
quantities. Specifically, we study three different characteristics. First, we calculate the disorder
averages of the transmittance and the logarithm of transmittance, denoted as ⟨T⟩ and ⟨lnT⟩, in
the scattering geometry and perform a finite-size scaling analysis of the results. Second, we
calculate the averaged participation ratio ⟨P⟩ by solving the eigenvalue problem. For excita-
tions at quasiresonance energies, we find power-law scaling behaviors of the form ⟨T⟩ ∝ L−γa ,
⟨lnT⟩ ≈ −γg lnL, and ⟨P⟩ ∝ Lβ , as the system length L increases to a large value. This behavior
is in stark contrast to the exponential localization behavior displayed at all other energies. The
appearance of sharp peaks in the participation ratio spectrum at quasiresonance energies lends
further support to the notion of an anomalous power-law localization effect. The corresponding
eigenstates demonstrate multifractal behavior and exhibit unique node structures. Thirdly, we
investigate the time-dependent wave packet dynamics and calculate the mean square displace-
ment ⟨m2(t)⟩, spatial probability distribution, participation number, and return probability.
When the wave packet’s initial momentum satisfies the quasiresonance condition, we con-
sistently observe a subdiffusive spreading of the wave packet, characterized by ⟨m2(t)⟩ ∝ tη

where 0< η < 1. Furthermore, we note the occurrence of partial localization at quasireson-
ance energies, as indicated by the saturation of the participation number and a nonzero value
for the return probability at long times.

The rest of this paper is organized as follows. In section 2, we introduce the 1D disordered
mosaic lattice model. The results of the numerical calculations are presented in the order of
wave transmittance, participation ratio, and time-dependent wave packet dynamics in section 3.
Finally, we conclude the paper in section 4.
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2. Model

We consider a quantum particle that moves along a 1D lattice, which can be characterized by
the time-dependent discrete Schrödinger equation

iℏ
dCn (t)

dt
= VnCn (t)+ J [Cn−1 (t)+Cn+1 (t)] , (1)

where Cn(t) is the probability amplitude for finding the particle at the nth site at time t, subject
to the normalization condition

∑
n |Cn(t)|2 = 1. Vn is the on-site potential at the nth site and J

is the coupling strength between adjacent sites. From now on, we measure all energy scales in
the units of J and set J= ℏ= 1, which implies that the energy coincides with the frequency.
The stationary solutions of equation (1) can be represented in the conventional form, Cn(t) =
ψne−iEt, where E is the energy of an eigenstate. Then we obtain

Eψn = Vnψn+ψn−1 +ψn+1. (2)

In the present study, we will investigate the transport and localization properties of a dis-
ordered mosaic lattice model characterized by an on-site potential of the following form:

Vn =

{
εn ∈ [−W,W] , n= mκ
V0, otherwise

, (3)

where κ is a positive integer referred to as the mosaic modulation period and m is an integer
ranging from 1 to N. This equation specifies that the on-site potential undergoes mosaic mod-
ulation with a periodicity of κ. The total number of sites L is equal to κN. The on-site potential
εn at themκth site is a uniformly distributed random variable over the interval [−W,W], where
W represents the magnitude of disorder. At all the other sites, the on-site potential remains
constant with a value of V0. The disordered mosaic lattice model has been the subject of
recent investigation, with emphasis on numerical analysis of the time-dependent reflectance of
wave packets incident upon a lattice with a large length L [44]. The current study significantly
expands on previous research by exploring additional aspects of the transport and localiza-
tion properties of the same model, within the context of both stationary and non-stationary
problems. In figure 1, we illustrate the typical spatial profile of the on-site potential in the 1D
disordered mosaic lattice model for κ= 2 and 3.

3. Numerical results

In this section, we provide comprehensive numerical results in the order of wave transmittance,
participation ratio, and time-dependent wave packet dynamics.

3.1. Wave transmittance

We assume that a plane wave is incident from the right side of a 1D lattice chain of length L
and define the amplitudes of the incident, reflected, and transmitted waves, r0, r1, and t, by

ψn =

{
r0e−iq(n−L) + r1eiq(n−L), n⩾ L
te−iqn, n⩽ 0

, (4)

where the wave number q is related to E by the free-space dispersion relation E= 2cosq. In
the absence of dissipation, the conservation law |r1|2 + |t|2 = |r0|2 is satisfied. We choose the
overall constant phase for the wave functions such that t corresponds to a positive real number.

The transmission coefficient is a crucial parameter for determining the nature of the states,
and in experiments, it is associated with the dc conductivity of the system being studied.
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Figure 1. Examples illustrating the typical spatial profile of the on-site potential in the
1D disordered mosaic lattice model for (a) κ= 2 and (b) κ= 3.

In order to compute the transmittance and reflectance numerically, we begin by selecting a
positive real number for t arbitrarily. Then we use the relationships ψ−1 = teiq, ψ0 = t, and
ψ1 = Eψ0 −ψ−1 and solve equation (2) iteratively until we obtain ψL and ψL+1. Next, using
the relationships ψL = r0 + r1 and ψL+1 = r0e−iq+ r1eiq, we compute

r0 =
ψLeiq−ψL+1

eiq− e−iq
, r1 =

−ψLe−iq+ψL+1

eiq− e−iq
. (5)

Finally, the transmittance T and the reflectance R are obtained from

T(E) =

∣∣∣∣ tr0
∣∣∣∣2 = |t|2 4sin2 q

|ψLeiq−ψL+1|2
, (6)

R(E) =

∣∣∣∣ r1r0
∣∣∣∣2 = ∣∣∣∣ψLe−iq−ψL+1

ψLeiq−ψL+1

∣∣∣∣2 . (7)

In the κ= 1 case corresponding to the ordinary Anderson model, the transmittance
decreases exponentially with L and vanishes in the L→∞ limit for all states [4, 5]. When
the mosaic modulation is turned on, however, the behavior changes substantially. In figure 2,
we plot the transmittance T as a function of E when κ= 2, 3, 4 and L= 500, 1000, 3000 for a
single disorder configuration. The parametersW and V0 are fixed toW = 1 and V0 = 0. When
L is small, T is substantially large for many different E values as shown in figures 2(a)–(c).
However, when L is sufficiently large (e.g. L= 3000), we find that T remains non-negligible
only at the (κ− 1) special energy values, such as E= 0 for κ= 2, E=±1 for κ= 3, and E= 0,
±
√
2 for κ= 4, as shown in figures 2(g)–(i). At these energies, the transmittance decays much

more slowly than at other values of E where it decays exponentially with L. Recently, we
have investigated the characteristics of these spectral points, primarily by analyzing the time-
dependent reflectance of the incident wave packet through numerical calculations [44]. We
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Figure 2. Transmittance T plotted versus energy E when κ= 2, 3, 4, L= 500, 1000,
3000, W= 1, and V0 = 0 for a single disorder configuration. When L is sufficiently
large (L= 3000), T remains non-negligible only at the (κ− 1) special energy values,
such as E= 0 for κ= 2, E=±1 for κ= 3, and E= 0, ±

√
2 for κ= 4.

have demonstrated that in the long-time limit, almost all the incident wave packets exhibit the
exponential localization behavior, whereas those at a discrete set of the (κ− 1) energy values
given by

ER = V0 + 2cos
(π
κ
n
)

(n= 1,2, . . . ,κ− 1) (8)

behave distinctly. We have argued that this is a kind of quasiresonance phenomenon rather
than a true resonance and the transmittance at ER is always less than 1 in our previous work
[44].

In order to get a more detailed understanding of the transmission properties at the
quasiresonance energies, we perform a finite-size scaling analysis of the disorder-averaged
quantities ⟨lnT⟩ and ⟨T⟩. In the Anderson localized regime, it is expected that ⟨lnT⟩ ≈ −L/ξg
and ⟨T⟩ ∝ e−L/ξa as L→∞, where the quantity ξg is conventionally defined to be the loc-
alization length. At the quasiresonance energies, however, markedly different behaviors are
obtained. In figure 3, we plot ⟨lnT⟩ versus lnL and ⟨T⟩ versus L on a log–log scale at three
quasiresonance energies E= 0 for κ= 2, E= 1 for κ= 3, and E=

√
2 for κ= 4, whenW = 1,

2, 3 and V0 = 0. Disorder averaging is conducted over 50 000 independent disorder config-
urations, which have been chosen to effectively minimize random fluctuations in the curves
at quasiresonance energies. The results demonstrate that in the large-L region, ⟨lnT⟩ follows
⟨lnT⟩ ≈ −γg lnL, and ⟨T⟩ exhibits a power-law behavior of ⟨T⟩ ∝ L−γa . The straight lines in
the plots represent the least-squares fitting, from which we extract the values of the power-law
exponents, γg and γa. γg is obtained from the slope of the curve depicting ⟨lnT⟩ versus lnL
on the linear scale, whereas γa is derived from the slope of the curve showing ⟨T⟩ versus L on
the log–log scale. For all the curves, the adjusted R-squared values for the data fitting exceed
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Figure 3. ⟨lnT⟩ plotted versus lnL and ⟨T⟩ plotted versus L on a log–log scale at the
quasiresonance energies (a), (b) E= 0 for κ= 2, (c), (d) E= 1 for κ= 3, and (e), (f) E=√
2 for κ= 4, whenW= 1, 2, 3 and V0 = 0. It is demonstrated that ⟨lnT⟩ ≈ −γg lnL and

⟨T⟩ ∝ L−γa in the large-L region. The straight lines represent the data fitting from which
the values of the power-law exponents, γa and γg, are extracted. γa and γg approach
saturation values of γa ∼ 0.5 and γg ∼ 1 asW tends to infinity, as illustrated in the right-
hand panel insets. When the energy deviates slightly from the quasiresonance values,
exponential localization behavior is observed, where ⟨lnT⟩ behaves as ⟨lnT⟩ ∝ −L, as
depicted in the insets of the left-hand panels.

0.99. As W approaches infinity, the exponents saturate at the values γa ∼ 0.5 and γg ∼ 1, as
shown in the insets of figures 3(b), (d) and (f). In other words, ⟨lnT⟩ and ⟨T⟩ exhibit power-
law scaling behaviors, as given by ⟨lnT⟩ ≈ lnL−1/2 and ⟨T⟩ ∝ L−1, in the large-L region in the
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Figure 4. Spatial distribution of the intensity of the wave function normalized by that
of the incident wave for one particular realization of the random potential, when a plane
wave is incident from the right side. Quasiresonance energies (a) E= 0 for κ= 2, (b)
E= 1 for κ= 3, and (c) E=

√
2 for κ= 4 are considered. In the inset of (a), an example

of a localized wave function at a slightly different energy is shown for the comparison
with the quasiresonant case. In the insets of (b) and (c), it is shown that the wave func-
tions at the quasiresonance energies have a node structure such that they vanish at all
the sites n= mκ for any integer m.

strong disorder limit. When the energy differs from the quasiresonance values, one can expect
exponential localization behavior, such as ⟨lnT⟩ ∝ −L/ξg.

A similar power-law-type behavior of ⟨lnT⟩ and ⟨T⟩ occurs in other random systems, which
include 1D disordered systems in an external electric (or bias) field and some random models
with Kerr-type nonlinearity [31, 54–57]. This behavior is often referred to as anomalous loc-
alization. It has been argued that the exponent γg is substantially larger than γa due to large
fluctuation effects associated with the statistical distribution [31]. In order to show that the
anomalous localization behavior occurs only at the quasiresonance energies, we plot ⟨lnT⟩
versus L for some values of E that deviate only slightly from the quasiresonance energies,
in the insets of figures 3(a), (c) and (e). In all the cases presented, the transmittance clearly
exhibits an exponential decay with L, indicating the standard localization behavior. We have
also verified numerically that this behavior occurs for all values of E that are not very close to
the quasiresonance energies.

In figure 4, we show examples of the spatial distribution of wave function intensity at certain
quasiresonance energies for a single typical disorder realization, when the system size L is 3000
and a plane wave is incident from the region where L> 3000. The wave function intensity
is normalized by that of the incident wave, |r0|2. We observe that, despite extending across
almost the entire system, the wave function displays significant fluctuations in its envelope at
quasiresonance energies. This indicates that the associated states are not entirely extended or
exponentially localized. Instead, the wave function appears as multiple disconnected patches,
a unique feature commonly seen in multifractal or critical states [58]. This is in contrast to
the wave function corresponding to ordinary localization, as shown in the inset of figure 4(a).
Investigating the algebraic decay of wave functions in space, as expected for critical states,
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and conducting a multifractal analysis of the wave function, present intriguing avenues for
future research. In [44], we have given an argument that at the quasiresonance energies, the
wave function should exhibit a node structure where it is zero at all the lattice sites mκ for
any integer m, as demonstrated in the insets of figures 4(b) and (c). A similar intrinsic node
structure of the wave function is observed to occur at all the other quasiresonance energies.
This is a crucial feature that connects the periodic and disordered mosaic lattice models and
gives rise to the critical states at the quasiresonance energies.

3.2. Participation ratio

In this subsection, we examine the eigenvalue problem for the stationary discrete Schrödinger
equation given by equation (2). We numerically solve the eigenvalue problem of the form

HΨ = EΨ (9)

to obtain the eigenvalues E and the corresponding eigenfunctions Ψ = (ψ1,ψ2, . . . ,ψL)
T.

Using the open boundary condition, ψ0 = ψL+1 = 0, the matrix representation of H is
given by

H=


V1 1 0 · · · 0 0
1 V2 1 · · · 0 0
0 1 V3 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · 1 VL

 . (10)

In order to estimate the degree of spatial extension or localization of the eigen-
states in disordered systems, we calculate the participation ratio P. For the kth eigenstate
(ψ

(k)
1 ,ψ

(k)
2 , . . . ,ψ

(k)
L )T with the corresponding eigenvalue Ek, the participation ratio P(Ek) is

defined by

P(Ek) =

(∑L
n=1 |ψ

(k)
n |2

)2

∑L
n=1 |ψ

(k)
n |4

. (11)

For a finite system, the value of P gives approximately the number of sites over which the kth
eigenfunction is extended. It has been known that in the localized case, P is closely related to
the localization length, ξg [59]. The participation ratio generally represents an upper bound for
the localization length (P⩾ ξg). When L is sufficiently large, one finds a power-law scaling
behavior of the form

⟨P(E)⟩ ∝ Lβ (12)

with the scaling exponent β. ⟨P(E)⟩ is a double-averaged quantity, where P(E) is obtained by
averaging over all eigenstates within a narrow interval∆E (= 0.1) around E and ⟨· · · ⟩ denotes
averaging over a large number of independent random realizations. It is well-established that
for extended states, ⟨P(E)⟩ increases linearly with L and the exponent β is equal to 1. In con-
trast, for exponentially localized states, β is zero and ⟨P(E)⟩ does not depend on L and con-
verges to a constant value in the L→∞ limit. For critical states, the scaling exponent should
be in the range of 0< β < 1. Therefore the finite-size scaling analysis of ⟨P(E)⟩ provides very
useful information about the nature of the states.

In figure 5, we show ⟨P(E)⟩ obtained by averaging over 1000 distinct disorder realizations
as a function of energy E when κ= 2, 3, 4, W = 0.5, 1, 2, V0 = 0, and L= 1000. We find that

9
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Figure 5. Participation ratio averaged over 1000 distinct disorder configurations,
⟨P(E)⟩, plotted versus energy E when κ= 2, 3, 4,W= 0.5, 1, 2, V0 = 0, and L= 1000.
⟨P(E)⟩ is sharply enhanced at the quasiresonance energy valuesE= 0 for κ= 2,E=±1
for κ= 3, and E= 0, ±

√
2 for κ= 4.

⟨P(E)⟩ is sharply enhanced at all the quasiresonance energy values ER given by equation (8),
which implies that the localization is strongly suppressed at such energies. These results are
fully consistent with those obtained in the previous subsection. The sharp peak at E= 0 is
expected to occur only when κ is even. However, if we pay close attention to the case of
κ= 3, a relatively small peak at E= 0 is clearly seen when the disorder is sufficiently weak
(e.g.W = 0.5) (see figure 5(b)). This peak occurs due to the band-center anomaly (or Kappus–
Wegner anomaly) and arises from the hidden symmetry at this spectral point [60–63]. One
important difference between this peak and those at the quasiresonance energies will be pointed
out below.

In order to understand the critical nature of states at quasiresonance energies, we perform a
finite-size scaling analysis of ⟨P(E)⟩ based on the power-law ansatz, equation (12). In figure 6,
we present the results of numerical calculations of ⟨P(E)⟩ versus L on a log–log scale at E= 0
for κ= 2, E= 1 for κ= 3, and E=

√
2 for κ= 4, whenW = 0.5, 1, 2 and V0 = 0. In all cases,

⟨P(E)⟩ is found to behave as a power law ⟨P(E)⟩ ∝ Lβ with 0< β < 1. The scaling exponent
β has been determined from the slope of the plot of ⟨P(E)⟩ versus L on a log–log scale. The
dependence of β on the disorder strengthW is shown in figure 7. We find that β is a decreasing
function of W and converges to a saturation value in the strong disorder regime. Our numer-
ical results seem to suggest that the limiting value of β is approximately independent of the
quasiresonance energy. These results indicate that the eigenstates at quasiresonance energies
are neither extended nor exponentially localized, but critical states.

We have also performed a finite-size scaling analysis of ⟨P(E)⟩ at E= 0 for κ= 3, which
corresponds to the band-center anomaly. The result shows that the exponent β approaches
towards zero as L→∞ regardless of the disorder strengthW [59]. This implies that although
the participation ratio at the band center increases anomalously, the state at this spectral point
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Figure 6. Disorder-averaged participation ratio ⟨P(E)⟩ plotted versus L on a log–log
scale at (a)E= 0 forκ= 2, (b)E= 1 forκ= 3, and (c)E=

√
2 forκ= 4, whenW= 0.5,

1, 2 and V0 = 0. In all cases, ⟨P(E)⟩ scales as Lβ with 0< β < 1 for sufficiently large
L. The inset in (b) displays ⟨P(E)⟩ versus L on a linear scale when E= 0 and κ= 3.

Figure 7. Dependence of the scaling exponent β at quasiresonance energies E= 0 for
κ= 2, E= 1 for κ= 3, and E=

√
2 for κ= 4 on the disorder strength W. β initially

decreases and then saturates to the same values as W increases.

is still exponentially localized and is fundamentally different from the quasiresonant states
appearing at ER.

3.3. Time-dependent wave packet dynamics

Up to this point, our emphasis has been on the stationary properties of excitations in the
disordered mosaic lattice model. Here, we shift our focus to the dynamic characteristics
and explore how initially localized wave packets propagate over time. Previous research has
demonstrated that critical states typically lead to subdiffusive wave packet spreading in the
long-time limit [64, 65]. While there are various types of initial wave packets that can be
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employed, including a single-site δ function wave packet, it is most suitable to use a Gaussian
wave packet with a finite initial momentum, as defined by [66]

Cn (t= 0) = Aσ exp

[
− (n− n0)

2

4σ2
+ iq(n− n0)

]
, (13)

where σ and n0 are the spatial width and the initial position of the wave packet, respectively.
Aσ is the normalization constant that has to be determined according to

∑
n |Cn(t)|

2
= 1. It is

reminded that q is the wave number related to E by E= 2cosq. It is worth mentioning that the
initial wave packet defined by equation (13) possesses a momentum distribution that is also a
Gaussian, centered around q, and its momentum width is inversely proportional to the spatial
width σ. In order to ensure that the lattice chain’s dynamic evolution is governed by a clearly
defined energy E, it is essential to employ wave packets with a narrowmomentum distribution.
For this reason, the spatial width σ is selected to be adequately broad to satisfy the condition
that qσ≫ 1 [21].

We solve numerically the time-dependent discrete Schrödinger equation, equation (1), to
determine the time evolution of an initially localized wave packet given by equation (13). We
utilized the Adams–Moulton method to solve ordinary differential equations and employed
the IMSL subroutine IVPAG. To characterize the wave packet’s spatial spreading over time,
we calculate dynamic quantities such as the mean-square displacement, spatial probability
distribution, participation number, and return probability.

3.3.1. Mean-square displacement and spatial probability distribution. The first quantity we
focus on is the mean-square displacement m2(t) defined by

m2 (t) =
L∑

n=1

(n− n0)
2 |Cn (t)|2 , (14)

which measures the difference between the wave packet’s position at time t and its initial
position [67]. The asymptotic spreading of the ensemble-averaged quantity ⟨m2(t)⟩ can be
fitted using a power-law ansatz

⟨m2 (t)⟩ ∝ tη, (15)

where ⟨· · · ⟩ denotes the averaging over independent realizations of the disorder. By analyzing
the scaling exponent η, we can identify the various transport regimes, such as ballistic (η= 2),
superdiffusive (1< η < 2), diffusive (η= 1), subdiffusive (0< η < 1), and localized (η= 0)
regimes.

In order to prevent unwanted boundary effects in the numerical simulations, the system
size L must be adequately large such that the wave function amplitude is insignificant at the
edges for the longest time considered. Subsequently, the numerical calculations are conducted
using a system size of L= 40000, the longest evolution time tmax = 104, and a time step of
∆t= 0.1. This choice guarantees that |Cn(tmax)|2 < 10−50 at the edges. In addition, we have
chosen σ= 20 and n0 = L/2 and the value of all calculated quantities is averaged over 50
independent disorder realizations. Employing a limited number of random configurations in
the calculation of time-dependent quantities is essential to keep computation times reasonable.
However, it may lead to the persistence of some random fluctuations in the averaged curves.
This stands in contrast to the use of a large number of configurations in the calculation of time-
independent quantities, where calculations are significantly more efficient. The magnitude of
boundary effects will increase if different initial conditions are chosen, such as placing the
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wave packet closer to one end of the lattice chain than the other. However, when the lattice
chain is sufficiently long within the considered time limit tmax, using different boundary con-
ditions will yield the same results.

In figure 8, we plot the time evolution of ⟨m2(t)⟩ of an initially localized Gaussian wave
packet for κ= 2, 3, and 4 at E= 0, 1, and

√
2, whenW = 2 and V0 = 0. We find that when the

wave packet is released with an initial velocity that does not satisfy the quasiresonance con-
dition, equation (8), the temporal growth of ⟨m2(t)⟩ ceases completely in the long-time limit.
This behavior is characterized by the scaling exponent η= 0 in equation (15), which indicates
the usual Anderson localization. In contrast, when the initial velocity of the wave packet does
satisfy the quasiresonance condition, a subdiffusive spreading with 0< η < 1 appears at long
times. The exponent η has been determined by the fitting of the ⟨m2(t)⟩ data in the range of
100⩽ t⩽ 104. When W is 2, we obtain η≈ 0.84 for κ= 2 and η≈ 0.85 for κ= 4 at E= 0,
η≈ 0.85 for κ= 3 at E= 1, and η≈ 0.87 for κ= 4 at E=

√
2. TheW dependence of η at these

quasiresonance energies is shown in the insets. We find that η is an increasing function of W,
but its value is always less than 1, which indicates that the subdiffusive transport behavior
observed at quasiresonance energies remains robust. Like the other power-law exponents γa,
γg, and β calculated in the previous subsections, we note that the exponent η approaches the
same saturation value at all quasiresonance energies as W increases.

A more visual picture of the wave packet spreading over time can be obtained from plotting
the averaged spatial probability distribution ⟨|Cn(t)|2⟩. In figure 9, we show ⟨|Cn(t)|2⟩ versus
site index n at t= tmax = 104 in a logarithmic plot. The other parameters are the same as in
figure 8. Observations reveal three significant characteristics. The first feature involves the
emergence of two distinct profiles for the averaged field distribution that are reliant on the loc-
alization behavior of the states. When the energy corresponds to quasiresonance energy, such
as E= 0 for κ= 2 and 4, E= 1 for κ= 3, and E=

√
2 for κ= 4, the average field pattern dis-

plays a Gaussian-like characteristic profile and the logarithm of ⟨|Cn(t)|2⟩ decays parabolically
away from the central region of the lattice. In contrast, when the energy does not correspond to
quasiresonance energy, the average field pattern decays exponentially away from the central
region of the lattice and the logarithm of ⟨|Cn(t)|2⟩ follows a linear curve, indicating the usual
localization behavior. In previous studies of localization phenomena in nonlinear systems,
similar characteristic field profiles have been observed experimentally in synthetic photonic
lattices and ultracold-atom systems [68, 69]. The second feature is that when the quasireson-
ance condition is satisfied, the width of the wave packet gets broader when its initial velocity
is larger. This is consistent with the calculated values of ⟨m2(t)⟩ presented in figure 8. The
third distinct feature is the emergence of a pronounced peak in the probability distribution at
the center of the lattice, even when at quasiresonance energies. This indicates that while the
edges of the wave packet undergo subdiffusive expansion within the lattice, its central part will
remain localized near its original position for an extended period. This result will be further
corroborated below.

3.3.2. Participation number and return probability. We now consider the participation num-
ber which gives an estimation of the number of lattice sites where the wave packet has a sig-
nificant amplitude [67],

PN (t) =
1∑L

n=1 |Cn (t) |4
, (16)

and the return probability defined by

R0 (t) = |Cn0 (t) |2. (17)
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Figure 8. Mean-square displacement obtained by averaging over 50 independent dis-
order realizations, ⟨m2(t)⟩, plotted versus time t at (a) E= 0, (b) E= 1, and (c) E=

√
2,

when κ= 2, 3, 4,W= 2, and V0 = 0. All the results exhibit subdiffusive transport at the
quasiresonance energies such that ⟨m2(t)⟩ ∝ tη with 0< η < 1. When the energy is not
at the quasiresonance energies, ⟨m2(t)⟩ is seen to converge to a constant value and η
approaches to 0. The W dependence of the scaling exponent η is shown in the insets.

14



J. Phys. A: Math. Theor. 56 (2023) 475701 B P Nguyen and K Kim

Figure 9. Disorder-averaged probability distribution ⟨|Cn(t)|2⟩ versus site index n at
t= tmax = 104 when κ= 2, 3, 4, W= 2, V0 = 0, and (a) E= 0, (b) E= 1, (c) E=

√
2.

The values of |Cn(t)|2 are averaged over the same 50 disorder realizations as in figure 8.

A quasiparticle is said to have escaped from its initial position when the return probability
R0(t) vanishes in the long-time limit. In contrast, the value of R0(t→∞) remains finite for a
localized wave packet. It has been known that the width of the spatial probability distribution
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Figure 10. Disorder-averaged participation number ⟨PN(t)⟩ versus time t when κ= 2,
3, 4,W= 2, V0 = 0, and (a) E= 0, (b) E= 1, (c) E=

√
2. ⟨PN(t)⟩ reaches an asymptot-

ically finite value at the quasi-resonance energies at which ⟨m2(t)⟩ increases as a power
law in time.
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Figure 11. Disorder-averaged return probability ⟨R0(t)⟩ versus time t when κ= 2, 3, 4,
W= 2, V0 = 0, and (a) E= 0, (b) E= 1, (c) E=

√
2. It is observed that there is always

a finite probability of finding the quasiparticle at the initial position as t→∞.

of a wave packet is closely related to the mean-square displacement, while its amplitude is
closely associated with the participation number and the return probability [65]. In figures 10
and 11, we show the disorder-averaged participation number ⟨PN(t)⟩ and return probability
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⟨R0(t)⟩ as a function of time t. All the numerical calculations are performed with the same
parameters as in figure 8. The results show that a partial localization phenomenon occurs at
all the quasiresonance energies. A signature of the presence of partial localization is a satura-
tion of ⟨PN(t→∞)⟩ to a finite value as in the cases of κ= 2 and 4 in figure 10(a), though the
corresponding values of ⟨m2(t)⟩ keep increasing owing to the expanding edges as t→∞ as
shown in figure 8(a). Similarly, asymptotically finite values of ⟨R0(t→∞)⟩ are seen clearly
in figure 11. The observed behavior is not limited to energies where regular Anderson localiz-
ation takes place but is also evident at quasiresonance energies, where subdiffusive transport
is observed. All of these findings are in line with the existence of central peaks detected in the
spatial probability distribution.

4. Conclusion

In this paper, we have expanded our previous research on the disorderedmosaic latticemodel to
perform detailed numerical calculations on various other physical quantities. Our earlier study
focused on exploring the delocalization effect that arises at a finite number of quasireson-
ance energies primarily by analyzing the behavior of time-dependent reflectance of incom-
ing wave packets over a long time interval. In this study, we have examined the nature of
states at quasiresonance energies through calculations on the stationary quantities such as
the disorder-averaged transmittance, logarithm of transmittance, and participation ratio, ⟨T⟩,
⟨lnT⟩, and ⟨P⟩, and the dynamic quantities such as the mean square displacement ⟨m2(t)⟩,
spatial probability distribution, participation number, and return probability. For excitations at
quasiresonance energies, we have found power-law scaling behaviors of the form ⟨T⟩ ∝ L−γa ,
⟨lnT⟩ ≈ −γg lnL, and ⟨P⟩ ∝ Lβ . Furthermore, when the wave packet’s initial momentum sat-
isfies the quasiresonance condition, we have observed a subdiffusive spreading of the wave
packet, characterized by ⟨m2(t)⟩ ∝ tη where η is always less than 1. It is known that critical
modes of complex systems with multifractal spectra are associated with subdiffusive transport
[70, 71]. Exploring the potential connection between the multifractality of wave functions in
real space and subdiffusive transport presents an intriguing avenue for future investigation. We
have also noted the occurrence of partial localization at quasiresonance energies, as indicated
by the saturation of the participation number and a nonzero value for the return probability
at long times. The disordered mosaic lattice model studied in this paper can be readily real-
ized experimentally using various physical systems, which include coupled optical waveguide
arrays, synthetic photonic lattices, and ultracold atoms. We hope that the results presented
here will be a useful contribution to the study of unconventional localization phenomena in
disordered systems.
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[42] Kosior A, Major J, Płodzień M and Zakrzewski J 2015 Acta Phys. Pol. 128 1002
[43] Major J 2016 Phys. Rev. A 94 053613
[44] Nguyen B P, Phung D K and Kim K 2022 Phys. Rev. B 106 134204
[45] Wang Y, Xia X, Zhang L, Yao H, Chen S, You J, Zhou Q and Liu X-J 2020 Phys. Rev. Lett.

125 196604

19

https://orcid.org/0000-0001-9965-3535
https://orcid.org/0000-0001-9965-3535
https://doi.org/10.1103/PhysRevLett.42.673
https://doi.org/10.1103/PhysRevLett.42.673
https://doi.org/10.1103/RevModPhys.57.287
https://doi.org/10.1103/RevModPhys.57.287
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/RevModPhys.80.1355
https://doi.org/10.1103/RevModPhys.80.1355
https://doi.org/10.1063/1.3206091
https://doi.org/10.1063/1.3206091
https://doi.org/10.1016j.physrep.2011.11.002
https://doi.org/10.1016j.physrep.2011.11.002
https://doi.org/10.1209/0295-5075/92/57014
https://doi.org/10.1209/0295-5075/92/57014
https://doi.org/10.1103/PhysRevB.85.235450
https://doi.org/10.1103/PhysRevB.85.235450
https://doi.org/10.1103/PhysRevE.96.062141
https://doi.org/10.1103/PhysRevE.96.062141
https://doi.org/10.1103/PhysRevB.100.174201
https://doi.org/10.1103/PhysRevB.100.174201
https://doi.org/10.1103/PhysRevResearch.3.023035
https://doi.org/10.1103/PhysRevResearch.3.023035
https://doi.org/10.1103/PhysRevA.90.043815
https://doi.org/10.1103/PhysRevA.90.043815
https://doi.org/10.1088/1751-8121/ab5eb8
https://doi.org/10.1088/1751-8121/ab5eb8
https://doi.org/10.1103/PhysRevResearch.3.013208
https://doi.org/10.1103/PhysRevResearch.3.013208
https://doi.org/10.1038/s41566-021-00823-w
https://doi.org/10.1038/s41566-021-00823-w
https://doi.org/10.1088/2399-6528/ac261f
https://doi.org/10.1088/2399-6528/ac261f
https://doi.org/10.1080/17455030.2020.1774680
https://doi.org/10.1080/17455030.2020.1774680
https://doi.org/10.1093/ptep/ptac162
https://doi.org/10.1093/ptep/ptac162
https://doi.org/10.1103/PhysRevA.99.023629
https://doi.org/10.1103/PhysRevA.99.023629
https://doi.org/10.1103/PhysRevA.102.013303
https://doi.org/10.1103/PhysRevA.102.013303
https://doi.org/10.1103/PhysRevA.103.063316
https://doi.org/10.1103/PhysRevA.103.063316
https://doi.org/10.1103/PhysRevB.106.104310
https://doi.org/10.1103/PhysRevB.106.104310
https://doi.org/10.1103/PhysRevB.106.L060301
https://doi.org/10.1103/PhysRevB.106.L060301
https://doi.org/10.1140/epjb/e2016-70551-2
https://doi.org/10.1140/epjb/e2016-70551-2
https://doi.org/10.1364/OE.23.014520
https://doi.org/10.1364/OE.23.014520
https://doi.org/10.1088/2053-1591/ab1aa9
https://doi.org/10.1088/2053-1591/ab1aa9
https://doi.org/10.1103/PhysRevB.99.014205
https://doi.org/10.1103/PhysRevB.99.014205
https://doi.org/10.1103/PhysRevB.100.104201
https://doi.org/10.1103/PhysRevB.100.104201
https://doi.org/10.1103/PhysRevB.95.140201
https://doi.org/10.1103/PhysRevB.95.140201
https://doi.org/10.1103/PhysRevA.97.013613
https://doi.org/10.1103/PhysRevA.97.013613
https://doi.org/10.1103/PhysRevResearch.2.013386
https://doi.org/10.1103/PhysRevResearch.2.013386
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1016/j.physa.2014.05.059
https://doi.org/10.1016/j.physa.2014.05.059
https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1103/PhysRevLett.65.88
https://doi.org/10.1103/PhysRevLett.65.88
https://doi.org/10.1103/PhysRevB.45.1623
https://doi.org/10.1103/PhysRevB.45.1623
https://doi.org/10.1103/PhysRevB.47.10727
https://doi.org/10.1103/PhysRevB.47.10727
https://doi.org/10.1103/PhysRevB.52.3274
https://doi.org/10.1103/PhysRevB.52.3274
https://doi.org/10.1088/1367-2630/15/1/013045
https://doi.org/10.1088/1367-2630/15/1/013045
https://doi.org/10.12693/APhysPolA.128.1002
https://doi.org/10.12693/APhysPolA.128.1002
https://doi.org/10.1103/PhysRevA.94.053613
https://doi.org/10.1103/PhysRevA.94.053613
https://doi.org/10.1103/PhysRevB.106.134204
https://doi.org/10.1103/PhysRevB.106.134204
https://doi.org/10.1103/PhysRevLett.125.196604
https://doi.org/10.1103/PhysRevLett.125.196604


J. Phys. A: Math. Theor. 56 (2023) 475701 B P Nguyen and K Kim

[46] Zeng Q-B and Lü R 2021 Phys. Rev. B 104 064203
[47] Zeng Q-B, Lü R and You L 2021 Europhys. Lett. 135 17003
[48] Liu Y, Wang Y, Liu X-J, Zhou Q and Chen S 2021 Phys. Rev. B 103 014203
[49] Gong L-Y, Lu H and Cheng W-W 2021 Adv. Theory Simul. 4 2100135
[50] Dwiputra D and Zen F P 2022 Single-particle mobility edge without disorder Phys. Rev. B

105 L081110
[51] Zeng Q-B and Lü R 2022 Phys. Rev. B 105 245407
[52] Hilke M 1997 J. Phys. A: Math. Gen. 30 L367
[53] de Moura F A B F, Santos M N B, Fulco U L, Lyra M L, Lazo E and Onell M E 2003 Eur. Phys. J.

B 36 81
[54] Soukoulis C M, José J V, Economou E N and Sheng P 1983 Phys. Rev. Lett. 50 764
[55] Doucot B and Rammal R 1987 J. Physique 48 527
[56] Sharabi Y, Sheinfux H H, Sagi Y, Eisenstein G and Segev M 2018 Phys. Rev. Lett. 121 233901
[57] Iomin A 2019 Phys. Rev. E 100 052123
[58] Castellani C and Peliti L 1986 J. Phys. A: Math. Gen. 19 L429
[59] Krimer D O and Flach S 2010 Phys. Rev. E 82 046221
[60] Kappus M and Wegner F 1981 Z. Phys. B 45 15
[61] Deych L I, Erementchouk M V, Lisyansky A A and Altshuler B L 2003 Phys. Rev. Lett. 91 09660
[62] Schomerus H and Titov M 2003 Phys. Rev. B 67 100201(R)
[63] Nguyen B P and Kim K 2012 J. Phys.: Condens. Matter 24 135303
[64] Hiramoto H and Abe S 1988 J. Phys. Soc. Japan 57 1365
[65] Larcher M, Dalfovo F and Modugno M 2009 Phys. Rev. A 80 053606
[66] dos Santos J L L, Nguyen B P and deMoura F A B F 2015 Electronic transport in disordered chains

with saturable nonlinearity Physica A 435 15
[67] Johansson M, Hörnquist M and Riklund R 1995 Phys. Rev. B 52 231
[68] Schwartz T, Bartal G, Fishman S and Segev M 2007 Nature 446 52
[69] Roati G, D’Errico C, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M and

Inguscio M 2008 Nature 453 895
[70] Geisel T, Ketzmerick R and Petschel G 1991 Phys. Rev. Lett. 66 1651
[71] Guarneri I and Mantica G 1994 Phys. Rev. Lett. 73 3379

20

https://doi.org/10.1103/PhysRevB.104.064203
https://doi.org/10.1103/PhysRevB.104.064203
https://doi.org/10.1209/0295-5075/ac1879
https://doi.org/10.1209/0295-5075/ac1879
https://doi.org/10.1103/PhysRevB.103.014203
https://doi.org/10.1103/PhysRevB.103.014203
https://doi.org/10.1002/adts.202100135
https://doi.org/10.1002/adts.202100135
https://doi.org/10.1103/PhysRevB.105.L081110
https://doi.org/10.1103/PhysRevB.105.L081110
https://doi.org/10.1103/PhysRevB.105.245407
https://doi.org/10.1103/PhysRevB.105.245407
https://doi.org/10.1088/0305-4470/30/11/004
https://doi.org/10.1088/0305-4470/30/11/004
https://doi.org/10.1140/epjb/e2003-00319-8
https://doi.org/10.1140/epjb/e2003-00319-8
https://doi.org/10.1103/PhysRevLett.50.764
https://doi.org/10.1103/PhysRevLett.50.764
https://doi.org/10.1051/jphys:01987004804052700
https://doi.org/10.1051/jphys:01987004804052700
https://doi.org/10.1103/PhysRevLett.121.233901
https://doi.org/10.1103/PhysRevLett.121.233901
https://doi.org/10.1103/PhysRevE.100.052123
https://doi.org/10.1103/PhysRevE.100.052123
https://doi.org/10.1088/0305-4470/19/8/004
https://doi.org/10.1088/0305-4470/19/8/004
https://doi.org/10.1103/PhysRevE.82.046221
https://doi.org/10.1103/PhysRevE.82.046221
https://doi.org/10.1007/BF01294272
https://doi.org/10.1007/BF01294272
https://doi.org/10.1103/PhysRevLett.91.096601
https://doi.org/10.1103/PhysRevLett.91.096601
https://doi.org/10.1103/PhysRevB.67.100201
https://doi.org/10.1103/PhysRevB.67.100201
https://doi.org/10.1088/0953-8984/24/13/135303
https://doi.org/10.1088/0953-8984/24/13/135303
https://doi.org/10.1143/JPSJ.57.1365
https://doi.org/10.1143/JPSJ.57.1365
https://doi.org/10.1103/PhysRevA.80.053606
https://doi.org/10.1103/PhysRevA.80.053606
https://doi.org/10.1016/j.physa.2015.04.029
https://doi.org/10.1016/j.physa.2015.04.029
https://doi.org/10.1103/PhysRevB.52.231
https://doi.org/10.1103/PhysRevB.52.231
https://doi.org/10.1038/nature05623
https://doi.org/10.1038/nature05623
https://doi.org/10.1038/nature07071
https://doi.org/10.1038/nature07071
https://doi.org/10.1103/PhysRevLett.66.1651
https://doi.org/10.1103/PhysRevLett.66.1651
https://doi.org/10.1103/PhysRevLett.73.3379
https://doi.org/10.1103/PhysRevLett.73.3379

	Transport and localization properties of excitations in one-dimensional lattices with diagonal disordered mosaic modulations
	1. Introduction
	2. Model
	3. Numerical results
	3.1. Wave transmittance
	3.2. Participation ratio
	3.3. Time-dependent wave packet dynamics
	3.3.1. Mean-square displacement and spatial probability distribution.
	3.3.2. Participation number and return probability.


	4. Conclusion
	References


