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Abstract: Images captured during marine engineering operations suffer from color distortion and
low contrast. Underwater image enhancement helps to alleviate these problems. Many deep learning
models can infer multi-source data, where images with different perspectives exist from multiple
sources. To this end, we propose a multichannel deep convolutional neural network (MDCNN) linked
to a VGG that can target multi-source (multi-domain) underwater image enhancement. The designed
MDCNN feeds data from different domains into separate channels and implements parameters by
linking VGGs, which improves the domain adaptation of the model. In addition, to optimize perfor-
mance, multi-domain image perception loss functions, multilabel soft edge loss for specific image
enhancement tasks, pixel-level loss, and external monitoring loss for edge sharpness preprocessing
are proposed. These loss functions are set to effectively enhance the structural and textural similarity
of underwater images. A series of qualitative and quantitative experiments demonstrate that our
model is superior to the state-of-the-art Shallow UWnet in terms of UIQM, and the performance
evaluation conducted on different datasets increased by 0.11 on average.

Keywords: underwater image enhancement; multi-domain machine learning; DCNN; domain
adaptability; perceptual loss

1. Introduction

With the increasing demand for ocean cognition and situational awareness, exploring
the mystery of ocean depths and obtaining high-quality underwater images are urgently
needed by many marine enterprises [1,2]. Maritime enterprises rely on thousands of
Internet of Things (IoT) sensors scattered underwater to collect data on the activity status
of underwater creatures and moving images of seabed plates. This information is used
to improve awareness of the continuous situation of the ocean. Owing to breakthroughs
in key technologies such as big data, cloud computing, and the IoT, maritime enterprise
information management can realize a clear perception of the entire underwater domain,
providing important support for ocean exploration, national defense, and security [3].

In recent years, to solve engineering problems such as marine environmental monitor-
ing, submarine surveying and mapping, submarine archaeological exploration, garbage
collection, and underwater rescue, nations worldwide have vigorously developed under-
water detection applications [4]. These applications require the real-time interpretation
of images/videos so that underwater robots based on vision guidance can intelligently
perceive the environment and set future execution tasks [5]. For example, Ref. [6] proposed
an underwater image enhancement network named Ucolor, which uses medium transmis-
sion guidance, multicolor space embedding, and a combination of physical models and
learning methods to solve the color deviation and low-contrast problems of underwater
images. The authors of [7] proposed an underwater image enhancement method based on
generative adversarial networks using a multiscale generator to generate clear underwater
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images, effectively correcting color casts and contrast problems while protecting detailed
information. In, [8] an L2UWE framework is proposed to efficiently enhance low-light
underwater images by relying on local contrast and multiscale fusion technology to im-
prove the clarity and brightness of the image. The authors of [9] constructed an underwater
image enhancement benchmark (UIEB) and proposed the WaterNet underwater image
enhancement network that can effectively correct color casts and restore image details. The
authors of [10] proposed a generative adversarial network based on Pix2Pix and introduced
technologies such as deep residual learning and multilayer perceptrons to remove the fog
effect, correct color shift, and increase image details. Although these methods have made
significant progress in improving the color cast, contrast, and brightness of underwater
images, they fail to fully consider the relationship between the contrast, brightness, and
color of underwater images and fail to adaptively balance these factors. Future research
should continue to address this issue to improve the effectiveness of underwater image
enhancement.

Contrast deterioration and color distortion in underwater images limit the application
of underwater vision tasks [11]. In addition, the wavelength decays exponentially in deep
water, resulting in the absorption of red wavelengths, leading to the dominance of green
or blue hues in underwater images. These problems severely degrade the visual effects of
underwater images. Consequently, the same scene in underwater images presents different
background lights, forming a multi-domain problem [12]. For example, a dimly lit image
is considered to be from the same domain and a well-lit image is considered to be from
another domain.

Underwater images from different viewpoints or light backgrounds, as shown in
Figure 1, can be regarded as data from different domains. Multi-domain machine learning
shares model parameters through the model training of data in different domains to
improve the model learning efficiency, which enables the enhancement of models for
underwater images in different domains. However, most multi-domain machine learning
methods assume the same distribution of data in different domains, ignoring non-IIDs, and
such neglect leads to the inability of the model to make its image enhancement ability the
strongest in each domain.
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Figure 1. Multi-domain underwater image enhancement.

Scholars have proposed a variety of underwater image-enhancing methods, such as
nonphysical and physical model-based methods [13]. The nonphysical model improves im-
age quality by adjusting the image pixel value without relying on the underwater imaging
model. However, nonphysical and physical models ignore the attenuation characteristics
of underwater images in different domains and cannot achieve multi-domain underwater
image enhancement. Data-driven methods use deep learning to learn nonlinear feature
maps and enhance the underwater images. Convolutional neural networks (CNNs), which
are widely used in computer vision tasks, are invariant to displacement and distortion,
and have good recognition capabilities [14]. Many models based on CNNs (e.g., Shallow
UWnet [15] and Uresnet [16]) and generative adversarial networks (GANs) (e.g., FUnIE
GAN [17], Water Net [18], and Cycle-GAN [19]) have been used to enhance image quality
by learning from a large amount of data. Significant progress has been made in image
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super-resolution, denoising, deblurring, and dehazing techniques. However, deep learning
models have a weak inference ability for solving multi-domain problems because they
cannot effectively use the similarity of images between domains and ignore the local in-
formation of images in different domains, for example, the luminosity change in the same
target [20].

This paper proposes a multi-domain underwater image fast enhancement model based
on a multichannel deep convolutional neural network (DCNN) combined with a VGG
network to improve the inference ability of multi-domain underwater image models called
the MDCNN-VGG. The MDCNN-VGG has more layers and a more complex structure than
the CNN. The DCNN can avoid the performance degradation of the network model caused
by the data heterogeneity of underwater images in multiple domains. It uses DCNNs of
different channels to mine the texture and color of underwater images in different domains,
and this information is fed into the VGG. The VGG recognizes and classifies data elements
in multiple domains to obtain specific feature representations in each domain, thereby
achieving the rapid enhancement of underwater images.

The contribution of this study is as follows:
We designed a multi-domain underwater image enhancement model with a multi-

channel DCNN linked to a VGG; specifically, the different network streams designed in the
DCNN shared parameters through back-and-forth passing to enhance domain adaptation.
The importance of different model parameters is also selected in the soft mask configuration
model, such that important model parameters (e.g., texture structure and color) are input to
the VGG, which in turn yields a specific feature representation in each domain to enhance
underwater images.

To optimize the performance of the MDCNN-VGG, we designed a perceptual loss
function for multi-domain underwater image enhancement. Multilabel soft-margin loss is
used for specific tasks, and VGG perceptual loss is used for external supervision to achieve
pixel-level loss and for preprocessing edge sharpness, thereby enhancing the structure and
texture similarity of underwater images. In turn, we can optimally adjust the coefficients in
the perceptual loss function to control the involvement of different functional loss terms
in the model-training process to detect the focal region of the input image for target class
enhancement.

Qualitative and quantitative experiments showed that the enhancement effect of this
model on underwater image quality was better than that of the benchmark model.

2. Literature Review
2.1. Deep Learning

Image enhancement is a topic of significant interest within the fields of computer
vision, signal processing, and others. Earlier works used artificially created filters to
enhance local colors for contrast/brightness improvement and global enhancement based
on scene assumptions (e.g., fog lines, dark channels, etc.). With the development of deep
learning and driven by large-scale datasets, image enhancement has been remarkably
successful. For example, deep CNN-based models have achieved superior performance
in solving image coloring, color/contrast adjustment, and de-cluttering [21]. The recently
proposed Shallow UWnet is a gated fusion CNN trained on the UIEB dataset for underwater
image enhancement [22]. UResnet, a CNN-based residual network, is proposed in [23] as a
more comprehensive supervised learning method for underwater image enhancement. In
addition, GAN-based image style transformation or generation has achieved great success.
For example, the recently proposed FUnIE GAN is assumed to perform nonlinear mapping
between distorted and enhanced images, and it removes image blurring by constructing
an image enhancement problem [24]. The conditional GAN proposed in [25] learns image
enhancement through generalized training on large-scale datasets. In contrast, bidirectional
GANs (e.g., CycleGAN, DualGAN [26], etc.) address the practical application of image
enhancement by using a cyclic consistency loss. However, the above studies do not take
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full advantage of the similarity of multi-domain images taken from different angles of the
same target.

2.2. Physical-Based Methods

Traditional physics-based methods use atmospheric scattering models to estimate light
transmission and ambient temperature scenes to recover the true pixel intensity [27,28].
The underwater image-defogging algorithm proposed in [29] reduces information loss in
the output image [30]. In addition, multiband fusion-based enhancement [31] and blurred
line-based color recovery (Uw-HL [32]) have been used to recover underwater image
quality.

2.3. Nonphysical-Based Methods

Nonphysical-based methods directly modify image pixel values to produce satisfactory
results without using a physical degradation model. In citeancuti2012 enhancing, a fusion-
based method was proposed that can improve contrast and visual effects; however, an
over-enhancement phenomenon exists. Recently, Ref. [33] modified [34] by introducing a
novel white-balancing method to reduce over- and under-enhancement. Another study is
based on the retinex model, [35] and uses color correction, post-enhancement, and layer
decomposition to improve the underwater image quality.

In summary, deep learning techniques have achieved state-of-the-art performances in
image enhancement tasks and can automatically learn relevant features from large datasets,
thereby reducing the need for handcrafted features. However, deep learning models often
require substantial computational resources and large training datasets. Overfitting can be
a concern if the training data are not representative of the target domain [36].

Physics-based methods provide a solid theoretical foundation for image enhancement,
allowing for accurate modeling of physical degradation. Physics-based methods are sensi-
tive to the accuracy of assumed physical models, and deviations from these models can
lead to errors.

Nonphysical-based methods are versatile and do not rely on explicit physical models,
making them more flexible in a wider range of scenarios. An overreliance on nonphysical
methods may lead to image artifacts or unrealistic enhancements.

3. MDCNN-VGG Hybrid Model Architecture
3.1. Overall

In this study, the MDCNN-VGG is proposed to make full use of the differential distri-
bution of information in different domains while combining it with its parameter-sharing
mechanism to enhance domain adaptability [29]. Extensive qualitative and quantitative
experimental results demonstrate that the MDCNN-VGG has better underwater image
quality enhancement than the benchmark model.

As shown in Figure 2, the proposed MDCNN-VGG consists of a multichannel DCNN
with a VGG-16 model that combines the advantages of neural network classifiers and
VGG [33] perceived loss.

The MDCNN consists of multiple DCNNs in parallel, and the specific structure of each
DCNN, which consists of multiple fully connected CNN layers, is shown in Figure 2. DC-
NNs are applied using the same principles as traditional CNNs, which employ alternating
convolutional layers and pooling in their network structure with fully connected network
ends. The most distinguishable features are extracted from the original input images using
supervised learning. The effective subregions are computed from the original underwater
images of different domains using the perceptual field features of the DCNN [37]. To
enhance the model domain adaptation capability, two DCNN network streams are used to
share parameters between them, and the importance of different parameters of the model
is configured using a soft mask to enhance the information of the network stream. Infor-
mation such as the texture, structure, and color of the underwater images from different
domains are mined and fed into the subsequent VGG. We set different CNN channels so
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that in order to better extract underwater images in different domains, we map different
channels to underwater images in different domains, and then perform feature fusion after
different channels, so that the model can better obtain specially issued useful images, as
well as better differentiation of different areas of underwater images.
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The VGG-16 identifies and classifies data elements belonging to different underwater
background categories to obtain a feature representation of an underwater image for each
domain. Specifically, the MDCNN-VGG identifies and classifies data elements belonging
to different underwater background categories (e.g., water bodies appearing blue–green
or dark blue, rocks underwater appearing silver) based on VGG perceptual loss for each
domain.

3.2. Single-Channel DCNN

The architecture of the single-channel DCNN model is illustrated in Figure 3. The
network model contains two network streams: Scl and Scom. Scl was developed with
the goal of searching for regions that contribute to the identification of target objects in
underwater images, and Scom ensures that all regions favorable for identification are found.
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The network stream Scl contains classical optimization techniques such as pooling,
dropout, and other settings. The CNN is immediately followed by three fully connected
layers. The parameters of this fully connected layer are shared with those of the fully
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connected tail layer. Immediately thereafter, the soft mask feature (see attention mecha-
nism [35]) is used to configure the importance of the different model parameters, allowing
attention operations to be performed on different domain underwater images in the DCNN
for the task of interest. In other words, the soft mask of the network is trained in an end-to-
end manner to achieve precise enhancement of the attention content (e.g., the specific color
enhancement of the corresponding target), and the soft mask has an enhancing effect on the
information of the previous network stream, whose activation function uses Mish [38]. The
results are fed into the subsequent network stream based on the idea of Resnet [39] that
links the two network streams before and after, thereby avoiding gradient disappearance
and sharing the model parameters of the CNN of the preceding network stream Scl into the
CNN of the following network stream. The specific implementation of parameter sharing
in the model structure is shown by linking Scl and Scom in Figure 3.

Specifically, in network stream Scl , for a given domain of underwater images, I, fl,k is
represented as the activation function of unit k in the lth layer of the soft mask. It can be
seen that fl,k obtains the classification probability corresponding to domain category c for
each underwater image to be enhanced, and the gradient obtained based on the activation
function is used to update the weight, ωc

l,k, of the neurons through global average pooling,
as shown in Equation (1).

ωc
l,k = GAP

(
∂ωc

∂ fl,k

)
(1)

where GAP(·) denotes the global average pooling operation; at this time, there is no need to
use the backward pass method to obtain ωc

l,k. ωc
l,k denotes the importance of fl,k support

c-class underwater image enhancement in the soft mask. To enhance the generalization
ability of the overall network model, the weight is used to represent the importance of
c-class image probability, the 2D convolution operation is performed on all fls to integrate
the soft mask with the activation output of all layers, and then the Mish [38] operation is
performed to obtain the soft mask (AC)

AC = Mish(conv( fl , ωc)) (2)

The soft mask applied to the original input underwater image is obtained through AC

using Equation (3) to obtain I∗c, which represents the semantic information in the c-class
underwater image on which the network model is currently focused.

I∗c = I − (T(Ac)� I) (3)

where T(Ac) is a masking factor based on a threshold, and the sigmoid function is used as
an approximation, as defined in Equation (4).

T(Ac) =
1

1 + exp(−ω(Ac − σ))
(4)

where ω is the scaling parameter. It is then used as an input to the network stream to
obtain enhanced information regarding the different domains of the underwater image.
The attention mechanism in the designed model guides the network to focus on all regions
of interest; that is, the high-response region in the soft mask contains an image quality that
can be enhanced. The loss function uses the pixel MSE to calculate the difference between
images I and I∗c.

LMSE =
1
n∑

c
sc(Ii − I∗ci )2 (5)

To minimize the prediction probability error, we redesigned the MSE by adding sc(•)
to the constraint, which denotes the prediction probability of class c, where n is the number
of images, I.

Considering the need to share model parameters for multi-domain underwater images,
we set Lself for the multi-domain underwater image enhancement objective function using
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multilabel soft marginal loss [40]. Alternative loss functions can be used for specific tasks
to better separate individual domain categories. One of the simplest methods is to add
margins to each domain, shown in Equation (6).

Lcl = −
1
|Q| ∑

(x,y)∈Q
log

eD(sc(Ii−I∗ci ),rc)

eD(sc(Ii−I∗ci ),rc) + ∑
k∈C

eD(sc(Ii−I∗ci ),rk)+m
(6)

where Q is the test set, and the representative points of each domain are represented by
r1, . . . , rc (e.g., the centroids of all samples in the support set of each domain are used as
representative points). D( ) is the metric module used to measure the cosine similarity
of two feature vectors. The same margin, m, was added between two different domains,
forcing a certain distance between the samples of different domains.

Subsequently, the overall loss function Lself of the model is the sum of the objective
functions Lself and LMSE of the multi-domain underwater image deep learning, as defined
in Equation (7).

Lself = Lcl + αLMSE (7)

where α is a weighting parameter, set empirically, and α = 1 is used for all experiments
in this study. Guided by Lself updates to the model weights, the network model learns
to extend as much as possible the focal region of the input image that contributes to the
target class enhancement, thus allowing the soft mask to be tailored to the task of interest
(i.e., underwater image enhancement). The model was trained using a multinomial loss
function that considered the resulting pixel-level loss to preprocess the sharpness of the
edges and enhance the structural and textural similarity of underwater images.

3.3. MDCNN-VGG

In addition to allowing the network model to explore its own model weights, the
network model itself can also employ additional supervised learning similar to the soft
mask to make it suitable for the task of interest. We introduce the VGG [41] to integrate
additional supervision into a supervised learning framework seamlessly.

There is a multi-domain phenomenon in underwater images in the application scenario
studied in this paper; that is, there are multi-domain underwater images caused by factors
such as different viewing angles or background light intensities. In our study, the multiple
DCNNs described in Section 2.2 are used to integrate into multiple channels, and the
advantages of the designed CNN model are described in Section 3.1. Based on the concept
of ensemble learning [42], we set up multiple channels to learn the background types
of underwater images in different domains. The model mines the effective information
of underwater images of different domains from a local perspective with the help of
DCNNs of different channels, while delivering this effective information to the VGG for
accurate underwater image enhancement. The MDCNN-VGG effectively exploits the
differential distribution of different domain information and applies a parameter-sharing-
based mechanism to improve domain adaptation. In this study, the model learns the
distribution bias of underwater image data from different domains to make it highly robust
and to improve its generalization capability. The architecture of the designed MDCNN-
VGG model is illustrated in Figure 3.

The design of the MDCNN-VGG fully considers the different background environ-
ments of different underwater images, and considers the situation of different domains
(e.g., different shooting perspectives, different light intensities, etc.). Different channels
input different domains of underwater image data, which enhances the model domain
adaptation capability through the parameter-sharing mechanism [32], and designs the
DCNN to effectively extract the underwater image features.
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The objective function of our model is Le for a newly designed externally supervised
VGG-based loss function, in addition to Lcl and LMSE, and is defined as

Le =
1
n∑

c
(Ac − Hc)2 (8)

where Hc denotes additional multi-domain supervision, for example, the multi-domain
segmentation mask for Figure 1. Owing to the high time complexity of generating pixel-
level segmentation maps, the model designed in this study was expected to use a small
amount of data under external supervision to meet the requirements of practical scenarios.

The VGG was introduced into the model, and all parameters were shared between the
two network streams and the VGG. The error values of the enhanced and real images were
passed to the VGG to obtain the corresponding feature representations; that is, the distance
between the two types of images, I and I*, was calculated based on perceptual loss.

Naturally, the final MDCNN-VGG loss function, L, can be obtained using Equation (9).

L = Lcl + αLMSE + βLe (9)

where Lcl and LMSE are shown in Section 3.2; α, β are coefficients that control the degree
of involvement of the DCNN and additional supervision in the MDCNN-VGG training.
The MDCNN-VGG can be easily improved for other vision tasks [33,34]. When the final
network output fl,k is obtained, Le is used to direct the network model to the key regions of
the task of interest.

4. Experimental Design and Result Analysis

The main contents of the experiments in this section include the dataset and ex-
perimental setup, qualitative evaluation, quantitative evaluation, ablation experiment,
multi-domain scenario, visual perception effect experiment, and inference time complexity.

4.1. Dataset and Experimental Setup
4.1.1. Dataset

We tested the MDCNN-VGG on real image datasets to demonstrate its ability to
enhance underwater images from different datasets. The datasets used can be considered
multi-domain underwater images, and the specific datasets are described as follows:

UFO-120 [43]: Clear images were collected from ocean soundings for different water
types. The corresponding underwater images were generated using style transformation,
where a subset of 120 images was used as the test set.

EUVP Dark [13]: A large collection of 10 K paired and 25 K unpaired images collected
by data producers during ocean soundings under various visibility conditions, with both
poor and good perceptual quality. It contains 5500 pairs of images with dark underwater
backgrounds. In this study, 1000 images were used to test the model.

UIEBD [18]: Comprises 890 pairs of underwater images captured under different
lighting conditions with different color ranges and contrasts.

4.1.2. Experimental Configuration

The model in this study was trained using the Adam optimizer, with the learning
rate set to 0.0001, dropout set to 0.5, and batch size set to 1000. Approximately 10 h was
required to optimize the model with more than 50 cycles. The experiment was run on an
Intel(R) Core (TM) i7-107000k CPU with a 16 GB RAM and an NVIDIA GTX 1080 GPU.

4.1.3. Baseline

Shallow UWnet [4]: A shallow CNN for underwater image enhancement. Three
methods, white balance, gamma correction, and histogram equalization, were used to pre-
process the WaterNet enhancement input for the characteristics of the blurred background
environment of underwater images.
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UResnet [9]: A CNN-based residual network is a more comprehensive supervised
learning method for underwater image enhancement.

FUnIE GAN [10]: Assumes nonlinear mapping between distorted and enhanced
images, and the blurring of images is removed by constructing image enhancement.

CycleGAN [12]: A technique that automatically performs image-to-image transfor-
mation without pairwise examples, using a batch of images from the source and target
domains that do not need to be correlated and trained in an unsupervised manner.

UGAN-P [34]: Underwater GAN with gradient penalty.
Uw HL [44]: Color recovery based on fuzzy lines. This method was based on a

physical model design scheme.

4.1.4. Evaluation Metrics

The standard metrics used in this study, namely the peak signal-to-noise ratio (PSNR)
and structural similarity index metric (SSIM), were quantitatively evaluated for the output
images of the proposed model. The PSNR and SSIM quantify the reconstruction quality
and structural similarity of the output images with regard to the corresponding reference
images [45]. In addition, the output image quality was analyzed in this study using the
non-reference underwater image quality metric (UIQM). The UIQM is composed of three
attribute metrics: image color (UICM), sharpness (UISM), and contrast (UIConM), where
each attribute assesses the quality of the underwater image from a single dimension.

4.2. Multi-Domain Scenarios

In this study, the image enhancement effect of the model was verified through multi-
domain underwater image enhancement experiments. The enhancement effects of the
different models and algorithms for different domain images are shown in Figures 4 and 5,
respectively.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 18 
 

 

In this study, the image enhancement effect of the model was verified through multi-
domain underwater image enhancement experiments. The enhancement effects of the dif-
ferent models and algorithms for different domain images are shown in Figures 4 and 5, 
respectively. 

 
Figure 4. Submarine target scene. 

 
Figure 5. Submarine coral group scene. 

From Figure 4, it is clear that the different methods have some enhancement effect, 
but poor performance for different domain images. As shown in Figure 4, the Shallow 
UWnet caused overexposure, whereas the FUnIE GAN deepened the background color 
of the water body. However, the physics-based scheme, Uw-HL, exhibits image oversat-
uration, which makes the contrast of underwater images in different domains too high. 
The reason for the failure of these schemes is that they ignore the correlation between 
underwater images in different domains. The proposed model has the best enhancement 
effect for images in different domains, where the targets are still clearly visible, even for 
images in different viewpoints. The success of the model in this study can be attributed to 
the designed multichannel and fusion of different loss terms that are used to achieve a 

Figure 4. Submarine target scene.



Sensors 2023, 23, 8983 10 of 18

Sensors 2023, 23, x FOR PEER REVIEW 10 of 18 
 

 

In this study, the image enhancement effect of the model was verified through multi-
domain underwater image enhancement experiments. The enhancement effects of the dif-
ferent models and algorithms for different domain images are shown in Figures 4 and 5, 
respectively. 

 
Figure 4. Submarine target scene. 

 
Figure 5. Submarine coral group scene. 

From Figure 4, it is clear that the different methods have some enhancement effect, 
but poor performance for different domain images. As shown in Figure 4, the Shallow 
UWnet caused overexposure, whereas the FUnIE GAN deepened the background color 
of the water body. However, the physics-based scheme, Uw-HL, exhibits image oversat-
uration, which makes the contrast of underwater images in different domains too high. 
The reason for the failure of these schemes is that they ignore the correlation between 
underwater images in different domains. The proposed model has the best enhancement 
effect for images in different domains, where the targets are still clearly visible, even for 
images in different viewpoints. The success of the model in this study can be attributed to 
the designed multichannel and fusion of different loss terms that are used to achieve a 

Figure 5. Submarine coral group scene.

From Figure 4, it is clear that the different methods have some enhancement effect, but
poor performance for different domain images. As shown in Figure 4, the Shallow UWnet
caused overexposure, whereas the FUnIE GAN deepened the background color of the
water body. However, the physics-based scheme, Uw-HL, exhibits image oversaturation,
which makes the contrast of underwater images in different domains too high. The reason
for the failure of these schemes is that they ignore the correlation between underwater
images in different domains. The proposed model has the best enhancement effect for
images in different domains, where the targets are still clearly visible, even for images
in different viewpoints. The success of the model in this study can be attributed to the
designed multichannel and fusion of different loss terms that are used to achieve a better
enhancement effect for underwater images from different viewpoints. In other scenarios,
such as those shown in Figure 5, the enhancement performance of the model in this study
remained the best.

Figure 6 shows qualitative comparisons of the different underwater image enhance-
ment schemes.
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As shown in Figure 6, FUnIE GAN and CycleGAN often appear oversaturated,
whereas UResnet and Shallow UWnet usually fail to correct the green tones in the im-
ages, owing to the greater depth of the above network models and the tendency of the
model to overfit. UGAN-P and Uw-HL performed better and their enhancement perfor-
mances were similar to those of the MDCNN-VGG. However, the UGAN-P and Uw-HL
models are susceptible to the influence of bright objects in the scene, and the oversaturation
phenomenon, particularly Uw-HL, fails to enhance the global brightness in some cases,
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which shows that the above two schemes cannot explicitly pre-estimate the targets in
underwater images and fail to improve the visual perception of the images. However, it can
be observed from Figure 6 that the multichannel setup of the MDCNN-VGG achieves color
consistency and hue correction, and enhances the reference color or texture information
in the loss function using the multichannel fusion processing of underwater images from
different domains. Overall, the multi-domain underwater image enhancement scheme
achieves the same performance as the physical-based model without using scene depth or
unknown water body information and outperforms other baselines [46].

4.3. Qualitative Evaluation

Table 1 presents a comparison of the average PSNR, structural similarity (SSIM), and
UIQM of the test images for each model. The results demonstrate that the MDCNN-VGG
achieves the best UIQM values in UFO-120; however, the PSNR and SSIM values are 0.30
relatively.

Table 1. Quantitative metrics of underwater image enhancement.

PSNR SSIM UIQM

EUVP
Dark UFO-120 UIEB EUVP

Dark UFO-120 UIEB EUVP
Dark UFO-120 UIEB

Shallow UWnet 20.83 18.45 21.24 0.90 0.73 0.90 2.71 2.56 2.50

UResnet 27.61 21.24 24.98 0.97 0.78 0.95 2.40 2.27 2.38

FUnIE GAN 28.68 30.38 38.75 0.96 0.81 1.00 2.95 2.89 3.08

CycleGAN 8.79 16.23 17.24 0.84 0.68 0.79 2.95 2.89 2.77

UGAN-P 27.61 15.23 24.96 0.97 0.67 0.95 2.40 2.73 2.38

Uw HL 39.91 30.38 38.75 1.00 0.81 0.99 2.71 2.56 2.50

MDCNN-VGG 27.49 25.27 19.09 0.82 0.74 0.75 3.00 2.88 2.80

Weak in the paired EUVP dataset. The UGAN-P and UResNet produced better results
for the paired data. Similar analyses were performed in [38,39], which quantified the
sharpness, clarity, and contrast of underwater images. The UIQM results presented in
Table 1 show that the MDCNN-VGG outperforms state-of-the-art methods, and the best
UIQM values show that the resulting image has balanced color, clarity, and contrast. In
this paper, we hypothesize that the global similarity loss in the MDCNN-VGG and FUnIE
GAN, or the gradient penalty term in UGAN-P contributes to such enhancement tasks,
owing to the fact that all the above methods add L1 terms to the adversarial objective. It
is evident from Table 1 that the MDCNN-VGG contributes to an average improvement
over the state-of-the-art Shallow Uwnet in the UIQM metric for different datasets by 0.30,
where comparable statistics of performance improvement are observed for the PSNR and
SSIM [47,48].

CNNs have a wide range of applications in computer vision, and owing to their ad-
vantages, they have been promoted for applications in underwater imaging. The MDCNN-
VGG maintained excellent quantitative performance. The enhancement capability of the
MDCNN-VGG for underwater images in different datasets is shown in Figures 7–9. No-
tably, the MDCNN-VGG can test its generalization capability on different datasets, making
it more widely applicable to various types of underwater scenes with different degradation
levels.



Sensors 2023, 23, 8983 12 of 18

Sensors 2023, 23, x FOR PEER REVIEW 12 of 18 
 

 

UGAN-P 27.61 15.23 24.96 0.97 0.67 0.95 2.40 2.73 2.38 
Uw HL 39.91 30.38 38.75 1.00 0.81 0.99 2.71 2.56 2.50 

MDCNN-VGG 27.49 25.27 19.09 0.82 0.74 0.75 3.00 2.88 2.80 

Weak in the paired EUVP dataset. The UGAN-P and UResNet produced better re-
sults for the paired data. Similar analyses were performed in [38,39], which quantified the 
sharpness, clarity, and contrast of underwater images. The UIQM results presented in Ta-
ble 1 show that the MDCNN-VGG outperforms state-of-the-art methods, and the best 
UIQM values show that the resulting image has balanced color, clarity, and contrast. In 
this paper, we hypothesize that the global similarity loss in the MDCNN-VGG and FUnIE 
GAN, or the gradient penalty term in UGAN-P contributes to such enhancement tasks, 
owing to the fact that all the above methods add L1 terms to the adversarial objective. It 
is evident from Table 1 that the MDCNN-VGG contributes to an average improvement 
over the state-of-the-art Shallow Uwnet in the UIQM metric for different datasets by 0.30, 
where comparable statistics of performance improvement are observed for the PSNR and 
SSIM [47,48]. 

CNNs have a wide range of applications in computer vision, and owing to their ad-
vantages, they have been promoted for applications in underwater imaging. The 
MDCNN-VGG maintained excellent quantitative performance. The enhancement capa-
bility of the MDCNN-VGG for underwater images in different datasets is shown in Fig-
ures 7–9. Notably, the MDCNN-VGG can test its generalization capability on different 
datasets, making it more widely applicable to various types of underwater scenes with 
different degradation levels. 

 
Figure 7. Underwater image enhancement results of UFO-120.



Sensors 2023, 23, 8983 13 of 18

Sensors 2023, 23, x FOR PEER REVIEW 13 of 18 
 

 

Figure 7. Underwater image enhancement results of UFO-120. 

 
Figure 8. Underwater image enhancement results of EUVP. Figure 8. Underwater image enhancement results of EUVP.



Sensors 2023, 23, 8983 14 of 18Sensors 2023, 23, x FOR PEER REVIEW 14 of 18 
 

 

 
Figure 9. Underwater image enhancement results of UIEB. 

4.4. Ablation Experiments  
In this study, we first qualitatively analyzed the enhanced the color and sharpness of 

images generated with the MDCNN-VGG and compared them with their respective cor-
responding baselines. As shown in Figure 10, the enhanced underwater images mainly 
recover their true colors and sharpness. In addition, the color correction and global con-
trast enhancement results plotted for underwater images of different hues, as shown in 
Figure 11, clearly show the distinct texture and vivid colors of the local images after un-
derwater image enhancement with the proposed model. This is due to the additional 
multi-domain supervised VGG setup that allows for the pixel-level segmentation masking 
of underwater images, using Le to guide the network model to focus on the critical tasks 
of interest regions [49]. 

Figure 9. Underwater image enhancement results of UIEB.

4.4. Ablation Experiments

In this study, we first qualitatively analyzed the enhanced the color and sharpness
of images generated with the MDCNN-VGG and compared them with their respective
corresponding baselines. As shown in Figure 10, the enhanced underwater images mainly
recover their true colors and sharpness. In addition, the color correction and global contrast
enhancement results plotted for underwater images of different hues, as shown in Figure 11,
clearly show the distinct texture and vivid colors of the local images after underwater
image enhancement with the proposed model. This is due to the additional multi-domain
supervised VGG setup that allows for the pixel-level segmentation masking of underwater
images, using Le to guide the network model to focus on the critical tasks of interest
regions [49].
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Figure 11. Underwater image detail enhancement results.

To verify the contribution of each loss term to the underwater image enhancement
(see Figure 12), we have looked at their effect on the image enhancement with and without
these loss terms. Figure 12 shows that the different loss terms clearly contribute to the
image.

Enhancement can be analyzed more intuitively via a direct comparison using the
UIQM values. The calculation shows that in the top row of Figure 12, the UIQM value in
Figure 12c is higher than the UIQM result of Figure 12b by 0.038, whereas the UIQM result
in Figure 12d is higher than that of Figure 12b by 0.321. The UIQM result of the model
utilizing all loss terms is higher than that of Figure 12b by 0.546. This clearly shows that
the different loss terms designed in this study can result in better image enhancement and
compensate for each other’s deficiencies. The image in the bottom row of Figure 12 shows
the effect of the above analysis.
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5. Conclusions

In this study, we propose a deep learning model, the MDCNN-VGG, which is an
underwater image enhancement technique based on a hybrid model, to achieve the fast
enhancement of multi-domain underwater images. In the MDCNN-VGG, a DCNN using
different channels can effectively mine the local information of underwater images in
different domains and pass the above local information to the VGG to enhance underwater
images accurately. In this study, the model was based on the global color and structural
content of the image, the local texture, and style information, and the perceived loss function
was established by evaluating the image quality. We performed extensive qualitative and
quantitative evaluations as well as multi-domain image enhancement studies. The results
show that the MDCNN-VGG contributes a 0.11 average improvement over the state-of-the-
art Shallow UWnet for different datasets in terms of UIQM values, and other performance
metrics are similarly improved.

In the future, we believe that (1) we can improve the design structure of the model
to further enhance its application inference capability, such as considering image pair
applications for underwater images in a small sample drive [47]; (2) even though the model
in this study enhances image texture and color enhancement capability through different
domains of underwater images collaboratively, there are still problems such as blurred
details, color bias, and overexposure. For the different loss terms in this study, robust
optimization through adversarial learning was used to enhance the model’s ability to deal
with these detailed problems and further suppress the perturbation of samples to the model
through robust optimization.
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