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Abstract
Climate change is the most important problem of the earth in the current century. In this 
study, the effects of climate change on precipitation, temperature, wind speed, relative 
humidity and surface runoff in Saghez watershed in Iran investigated. The main methods 
were using the Coupled Model Intercomparison Project phase 6 (CMIP6), the Soil and 
Water Assessment Tool (SWAT) and the Artificial Neural Network (ANN) model under the 
Shared Socio-economic Pathway scenarios (SSPs) using the Linear Scaling Bias Correction 
(LSBC) for the future period (2021–2050) compared to the base period (1985–2014). Addi-
tionally, MAE, MSE, RMSE and R2 indices used for model calibration and validation. The 
average projected precipitation was forecasted to decrease by 6.1%. In terms of the tempera-
ture, 1.4 Cº, and 1.6 Cº increases were predicted for minimum and maximum temperatures, 
respectively. Prediction of surface runoff using the SWAT model also illustrated that based 
on SSP1-2.6, SSP3-7.0 and SSP5-8.5 scenarios, runoff will decrease in the future period, 
which based on three mentioned scenarios is equals to 17.5%, 23.7% and 26.3% decrease, 
respectively. Furthermore, the assessment using the artificial neural network (ANN) also 
showed that the parameters of precipitation in the previous two days, wind speed and maxi-
mum relative humidity have the greatest effect on the watershed runoff. These findings may 
be helpful to reduce the impacts of climate change, and make the suitable long-term plans 
for management of the watersheds and water resources in the region.

Keywords  Climate change · Saghez watershed · CMIP6 · SSPs · SWAT and machine learning

1  Introduction

Among atmospheric and hydrological variables, precipitation is the most important 
one. Hence, prediction of this parameter in different areas is necessary (Goudarzi et al. 
2016). Asif et al. (2023) investigated the effects of climate change on water resources 
and water management in North America. The results represented that, unpleasant 
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events such as destructive floods, excruciating droughts, changing in precipitation, 
which happening in many parts of North America due to the climate change cause the 
serious problems in water supplying and affecting water flows and water quality in the 
Southwestern United States and flat places in Canada and Mexico.

Global circulation models (GCMs) are the strongest models for assessment of the 
climate change influence and simulating the different atmospheric systems, land, the 
level of ice-sea, and ocean (Fowler et  al. 2007). Zhu et  al. (2020) to simulate climate 
extremes over China evaluated the importance of CMIP6 and CMIP5 models. The 
results illustrated the progress of CMIP6 models in assessment of climate extremes over 
China. Palmer et al. (2023) used CMIP6 models for evaluation in Europe. Their research 
demonstrated that the individual models are suitable and have good abilities for large-
scale processes, which representing the Europe’s current climate. Majdi et  al. (2022) 
used CMIP6 models and SSP scenarios to predict precipitation and temperature changes 
in Middle East and North Africa (MENA). According to the results of this study, tem-
perature will increase, while precipitation will decrease in the future.

Malmir et  al. (2016) evaluated the effects of climate change on temperature, pre-
cipitation, and flow of the Qarasu River in Kermanshah province in Iran. In this study, 
the Statistical Downscaling Models  (SDSM), Hadley Centre Coupled Model, version 
3 (HadCM3), and ANN model were used. The results showed an increase in tempera-
ture and a decrease in rainfall and runoff in the future period. Heydari et  al. (2019) 
investigated the effects of temperature and precipitation changes on the flow rate in the 
Urmia Lake catchment. For this purpose, the Hadley Centre Global Environment Model 
version 2 (HadGEM2) and the Representative Concentration Pathway (RCP) scenarios 
were used. The results showed that precipitation will decrease by 4.5% in the future 
period (2041–2060), while the minimum and maximum temperature will decrease 2.6 
ºC and 1.3 ºC, respectively. Hejazizadeh et  al. (2022) assessed the changes trend in 
precipitation extremes over MENA in a future period (2021–2050). The results dem-
onstrated that the amount of precipitation will decrease, but the precipitation extremes 
and their intensities will have an increase trend. Alehu and Bitana (2023) evaluated the 
effect of climate change on the water balance of the Lake Hawassa basin in southern 
Ethiopia using Hadley Global Environment Model 2-Earth System (HadGEM2-ES) and 
SWAT model under the RCP scenarios. According to the results, precipitation, tempera-
ture and evapotranspiration will increase, but water balance, surface runoff and water 
yield will decrease in the coming decades. Liu et  al. (2023) studied the influence of 
climate change on the shortage of water and hydrological extremes in the Yellow River 
Watershed. The used methods in this research were SSPs and Representative Concentra-
tion Pathways (RCPs). The findings of this research illustrated that the Yellow River 
will expose the lack of water, and more flash floods and extreme droughts will happen 
in the 20st century.

Maurya et al. (2023) assessed the effects of climate change on the streamflow in the 
near future (2011–2040).The methods, which used in this study, were the bias corrected, 
statistically downscale models of NASA, Earth Exchange Global Daily Downscaled 
Projections–Coupled Model Intercomparison Project Phase 5 (NEX-GDDP-CMIP5). 
The results demonstrated that the streamflow will increase in the future period.

According to many previous researches, climate change effects will be stronger in the 
future and will threaten the water resources, environment, industry, human health, agri-
culture, etc. Hence, doing projects in different regions in order to predict and reduce the 
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impact of climate change in the future is necessary. Therefore, in this study the climatic 
parameters and surface runoff changes using CMIP6, SWAT and ANN models under dif-
ferent SSP scenarios, were predicted in Saghez watershed in Iran for the future period 
(2021–2050). Based on the results of this study, despite the decrease of the precipitation 
and runoff in the future period, the runoff flow, loss of soil moisture and torrential rains 
which caused by the increase in temperature will increase and the flash floods will hap-
pen. The results of this research would help to develop the required strategies in order to 
reduction of climate change impacts, and making serious decisions, and work out long-
term plans for management of the watersheds and water resources to control the floods, 
improve water supply and water quality, soil and vegetation management, reduce the air, 
soil and water pollution, etc.

2 � Data and Methodology

2.1 � Study Area

The study area is Saqez watershed in the north of Saghez city in Iran. The geographic loca-
tion of this area is between 35º 40′ 45" to 36º25′ 46" north latitudes and 45º.46′ 28" to 46º 
46′ 55" east longitude. This watershed, which covers an area of about 4550 square kilo-
meters, is one of the important sub-basins of the Urmia Lake in Iran. The average annual 
rainfall of the watershed is 430.5 mm and the region has a temperate mountain climate. 
The geographic location of the study area and the investigated stations are shown in Fig. 1, 
and their geographic characteristics are presented in Table 1. Also, Fig. 2 shows the flow-
chart of the process in this study.

2.2 � GCM Models

Different CMIP6 models to check the daily temperature and precipitation data were used. 
Due to the different accuracy of the models in different regions and various parameters, the 
different models that were available for all three our investigated scenarios evaluated and 
the best model used for forecasting each parameter. The investigated models are given in 
Table 2.

Daily data of CMIP6 models for both the historical (1985–2014) and the future 
(2021–2050) periods downloaded from the Earth System Grid Federation (ESGF) center 
(https://​esgf-​node.​llnl.​gov/​search/​cmip6/).

After obtaining the data, the observed and historical parameter values for the study 
stations extracted by preparing a program in MATLAB using the GCMs data in the base 
period (1985–2014). The linear downscaling method used for data downscaling. The dif-
ference between the values of observed and historical parameters evaluated using four 
indices. The temperature, precipitation, wind speed, relative humidity and surface run-
off changes predicted under three different scenarios using the best models for the future 
period (2021–2050), and their changes compared to the historical period (1985–2014). The 
reason for choosing the used models from the set of CMIP6 models is the validity, accu-
racy and availability of parameters and required scenarios for the study.

https://esgf-node.llnl.gov/search/cmip6/
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2.3 � Scenarios

The scenarios related to CMIP6 have been presented under the title of Shared Socio-
economic Pathway scenarios (SSPs). The SSP quantities are a common effort between 
the IAV and the IAM associations, which held in a series of meetings and have defined 
a limited set of five SSP story lines. The story lines describe the main features of the 
future development paths of the SSP. There are five SSP scenarios from SSP1 to SSP5, 

Fig. 1   The geographic location of the Saghez watershed and the meteorological and hydrometric stations

Table 1   Geographic characteristics of the studied stations

Row Station Station type Lon Lat Alt

1 Saghez Synoptic 46.16 36.15 1522.8
2 Ghabaghloo Rain gauge/Hydrometric 46.1 36.1 1500
3 Darehpanbedan Rain gauge/Hydrometric 46.19 36.16 1470
4 Sonateh Rain gauge/Hydrometric 46.33 36.09 1434
5 Gheshlaghpol Rain gauge/Hydrometric 46.2 36.05 1436
6 Poladinan Rain gauge/Hydrometric 46.25 36.12 1460
7 Rostaman Rain gauge 46.29 36.06 1900
8 Ghomchiyan Rain gauge 46.45 35.33 1650
9 Khor Khoreh Rain gauge 46.48 36.06 1570
10 Iran Khah Rain gauge 46.73 36.13 1600
11 Sad-Zarinehroud Rain gauge 46.51 36.4 1383
12 Hajimamdan Rain gauge 46.35 35.55 1920
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which respectively represent passing through the green road, the middle of the road, the 
stone road, the divided road, and the completion of the highway (Zahraei and Hosseini 
2020). The study scenarios in this research are SSP1-2.6, SSP3-7.0 and SSP5-8.5.

2.4 � Downscaling

Using the raw data of the models creates many errors; on the other hand, these data 
are grid. Therefore, in order to use these data for a station point it is necessary to do 
downscaling, evaluate and correct them based on the observation data. In this research 
the linear downscaling method used for downscaling the GCMs data. The downscaling 
is the mean difference between the observed monthly time series and the time series of 
the historical period of GCM/RCM over the same period of the observed time series. 
Then these differences applied to the simulated climate data to obtain the climate vari-
ables with corrected bias (Shrestha et al. 2016). The linear scaling approach (LSBC), 
which works with the corrected monthly values, based on the difference between 
observed and simulated values was used in this study. By applying the downscaling 
method on the simulated data, the performance of the model in the long-term simula-
tion of precipitation and temperature variables increases a lot.

Fig. 2   The flowchart of the 
process in this study 8GCMs from 

CMIP6

Linear Scaling Bias Correction (LSBC)

Performance analysis of 

models

Calibration and

Validation

SWAT

Base period 

(1985-2014)

Future period 

(2021-2050)

Projection of Runoff

ANN

Table 2   The investigated CMIP6 
models

Row Model

1 BCC-CSM2-MR
2 CanESM5
3 CESM2
4 FGOALS-g3
5 GFDL-ESM4
6 MIROC6
7 MPI-ESM1-2-LR
8 MRI-ESM2-0
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2.5 � Performance Criteria of GCM Models

One of the criteria for evaluating the success of this research is using GCM models 
and new scenarios called SSP, which are currently the most accurate and up-to-dated 
global scenarios and models that have been using globally. In addition, in order to 
evaluate and analyze the performance of the investigated models, there are various per-
formance indicators. The used indicators in this research are explained briefly in the 
following part.

The coefficient of determination (R2) is a dimensionless standard and its best value 
is equals to one. Equation  (1) shows how to calculate R2 (Sedaghatkerdar and Fatahi 
2008). Mean Square Error (MSE), which can vary from zero in high performance to 
infinity, which defined as relation (2) (Karamooz et al. 2006). The Root Mean Square 
Error (RMSE) is used as an analogy to show the difference between the simulated val-
ues and the measured values, which is defined as the Eq. (3) and it is used as the most 
common error index (Lin et  al. 2006). The Mean Absolute Error (MAE) is used to 
compare the relative error of the simulated values with respect to the measured values, 
which is presented in the form of Eq. (4) (Hu et al. 2001).

In the above relationships, Xo is the observation data, Xs is the simulated data and N 
is the number of data.

2.6 � ANN

Artificial neural networks are one of the most efficient and broad types of intelligent sys-
tems (Amjadi 2002). The normal structure of an artificial neural network usually consists 
of an input layer, hidden layers, and an output layer. The input layer is a transmission layer 
and a means of providing the data. The output layer contains the values predicted by the 
network and the hidden layer is the place of data processing (Moghadam et al. 2008). In 
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terms of the type of network, neural networks divided into two groups of feedforward and 
feedback networks, and in this study, feedforward networks and Multi-Layer Perceptron 
structures (MLP) used due to their more application in climate problems (Hosseini 2009).

For this purpose, the meteorological statistics of meteorological and hydrometric sta-
tions of Saghez watershed was used. The inputs of the multi-layer perceptron neural net-
work were precipitation, minimum and maximum relative humidity, average wind speed 
and average, minimum and maximum temperatures on a daily basis and in different delays 
of several days. The output of the network was the amount of runoff from the total avail-
able meteorological and hydrometric data, 75% of the data used for network training and 
25% used for network testing phase. In order to increase the speed of the network, the 
data standardized in the range of 0.1 and 0.9, and after determining the network structure, 
the network continued using Levenberg–Marquardt training algorithm and starting with the 
smallest number of neurons in the hidden layer and epoch until the network converges to 
the desired solution. When the network with any number of input layers, hidden neurons 
and epoch reached the desired result, that network selected as the optimal network. All 
these steps were done using MATLAB 2018 and SPSS 2023.

2.7 � SWAT​

SWAT is the semi-distributed hydrological model, which developed by Jeff Arnold for the 
United States Agricultural Research Service and since its creation in the early 1990s; its 
capabilities have been continuously developed. This model developed to predict the effects 
of land management activities on water, sedimentation and agricultural chemical factors at 
the watershed scale with soil diversity, land use and management conditions in a long time 
in the complex and vast watersheds. Furthermore, this model is more suitable for predic-
tion of future climate change based on scenarios. The smallest working unit in this model 
is the hydrological response unit (HRU2), which is obtained from combining the slope 
classes, soil and land use maps (Goudarzi et al. 2016).

The model input data are meteorological data, watershed topography, soil characteris-
tics, vegetation and land management. Other comprehensive meteorological data include 
effective factors on surface flow and channel, underground water, water harvesting, land 
management, reservoirs and lakes and water quality (Neitsch et al. 2011). The water in the 
soil, surface runoff, sediment and chemical elements are calculated first for each HRU and 
then for each sub-basin and finally for the entire watershed.

2.7.1 � Simulation of Hydrological Features of the Study Watershed

In order to simulate the hydrological features with the SWAT model, first the digital height 
model with the separation of 30  m and the map of the waterway network of the study 
watershed added into the model. In the next step, using land use and soil maps and slope 
classes, hydrological response units defined. In this step, the watershed divided into 12 
sub-basins and 412 hydrological response units. Daily data of the synoptic meteorological 
station of the watershed used to run the model. The used data include precipitation, daily 
minimum and maximum temperature, daily relative humidity and evaporation. In order to 
run this model for the study period, the climatic data separated into two separate periods 
for the calibration and validation of the model.
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2.7.2 � Calibration and Analysis of Uncertainty of the Model

In order to compare the simulated outputs of SWAT model with real data and calibration 
and validation of the model, the river flow data of the hydrometric stations near the outlet 
of the watershed used.

One of the issues, which occurs while calibrating this model, is the uncertainty in the simula-
tion, which caused by the uncertainty in the model inputs and causes the uncertainty in the con-
ceptual model and model parameters. In these models, due to the multiplicity of model param-
eters and the compensatory or intensifying effect of parameters on each other, often several sets 
of completely different parameters can lead to similar and acceptable results (Abbaspour 2013). 
In this research, SWAT Calibration and Uncertainty Programs (SWAT-CUP) and SUFI-2 Algo-
rithm used for accurate calibration. SWAT-CUP is a program for calibration of SWAT model. 
This program also used for calibration, validation, uncertainty analysis, and sensitivity analysis.

SUFI‑2 Algorithm  SURF-2 is a semi-automatic inverse modeling algorithm. In this 
method, the uncertainty that includes all sources of uncertainty evaluated and expressed 
quantitatively. In the SURF-2 method, the degree of uncertainty calculated by two criteria: 
P-factor and R-factor. P-factor is the percentage of observed data that are in the uncer-
tainty estimation band of 12%. This band calculated at the levels of 2.5% and 97.5% of the 
cumulative distribution function of the output variable obtained by Latin Hypercube Sam-
pling (LHS), which is a statistical method for generating a near-random sample of param-
eter values from a multidimensional distribution. Since the effect of all sources of uncer-
tainty is reflected in the output variables, in this method all uncertainties are considered.

2.7.3 � SWAT Model Performance Evaluation

The SWAT model efficiency evaluation process is done by R2, NSE, P-FACTOR and 
R-FACTOR criteria. The coefficient of determination (R2) shows the dispersion ratio 
between the predicted and measured values and its value is variable between zero and one, 
if the predicted and measured values are equal, the value of R2 is equals to one, which is 
the best amount of it. R-factor is equals to the thickness of the 95ppu band divided by the 
standard deviation of the measured data, the closer value to zero represents the better simu-
lation. P-factor indicates how many of the observed data are in the range of uncertainty, 
and the closer number to one shows the better result. The NSE coefficient shows the rela-
tive difference between the observed and simulated values. The value of this coefficient 
varies between one and negative infinity. The closer number to one represents the better 
simulation of the model. NSE and R2 coefficients calculated using the following relation-
ships (Goudarzi et al. 2016):
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Qm	� The average observed discharge (m3/s)
Qs	� The average simulated discharge (m3/s)
Qm,i	� The observed discharge (m3/s)
Qs,i	� The simulated discharge (m3/s)

3 � Results and Discussion

3.1 � Evaluation of the Performance of CMIP6 Models Based on the Linear Scaling 
Bias Correction (LSBC) Method

In this research, some GCM models from CMIP6 evaluated according to their high resolu-
tion and available meteorological data. After the bias correcting using the LSBC method, the 
performance of these models evaluated in simulating of the investigated parameters in the 
historical period (1985–2014) of these models. An example of the bias correction on the pre-
cipitation and temperature data of the study synoptic station is shown in Figs. 3 and 4, respec-
tively. The data corrected by LSBC method compared to the raw data are much closer to the 
observed data and it has caused accuracy in the simulation of the mentioned parameters.

The results of evaluating the observed and simulated rainfall data by LSBC showed that 
the accuracy of the models is different. Based on the RMSE values, the BCC_CSM2_MR 
model and then the MPI-ESM1-2-LR model have higher accuracy than other models for 
simulating the precipitation of Saghez synoptic station. The RMSE of these models using 
the observed rainfall data is equals to 4.3 and 4.9, respectively. In general, based on various 
indices, BCC_CSM2_MR model is suitable for simulating rainfall in the study area, and its 
coefficient of determination is equals to 0.99. The performance results of the investigated 
models in simulating the rainfall of the study area are given in Table 3.

The comparison of observed and simulated rainfall values during the base period 
(1985–2014) based on BCC_CSM2_MR model and the  Linear Scaling Bias Correction 
(LSBC) in the study stations is given in Fig. 5. The results indicated the appropriate accu-
racy of the selected model in simulating the rainfall of the study area.
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Fig. 3   Observed, raw and modified values of precipitation by LSBC method for Saghez synoptic station in 
the base period (1985–2014)
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In general, the results of evaluating the performance of CMIP6 models and downscal-
ing of LSBC indicated that there is no significant difference between the simulated ​​and 
observed values of the meteorological parameters with a critical error of 0.05. The results 
of various error measurement indices also indicated that the LSBC method has a suitable 
accuracy for the downscaling of the investigated parameters in the study area and the per-
formance of this method evaluated for the study models. In sum, the evaluation of different 
models showed that BCC_CSM2_MR model for precipitation and wind speed simulation 
and MRI-ESM2-0 and CanESM5 models for temperature and relative humidity simulation, 
respectively, are more accurate than other models.

3.2 � Forecasting the Climate Change in the Future

In order to investigate and analyze the climate change, the climate variables, which 
obtained from the global models using the selected models and applying the LSBC method 
were predicted in the future period (2021–2050). Then the changes in the study climate 
parameters using three Shared Socio-economic Pathway scenarios (SSPs) in the study area 
in the future period (2021–2050) compared to the base period (1985–2014) investigated.
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Fig. 4   Observed, raw and modified values of temperature by LSBC method for Saghez synoptic station in 
the base period (1985–2014)

Table 3   The performance 
evaluation of CMIP6 models 
based on LSBC in simulating of 
precipitation

Row Model MSE RMSE MAE R2

1 BCC_CSM2_MR 18.6 4.3 3.8 0.99
2 MPI-ESM1-2-LR 24.2 4.9 4.2 0.99
3 MRI-ESM2-0 98.9 9.9 8.1 0.97
4 MIROC6 144.8 12 9.2 0.88
5 FGOALS-g3 64.8 8.1 6.7 0.99
6 CanESM5 74.4 8.6 6.8 0.98
7 CESM2 85.4 9.2 7.5 0.97
8 GFDL-ESM4 143.7 12 7.8 0.92
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The long-term average changes of climatic parameters in the base and future statistical 
periods based on the studied scenarios are presented in Table 4. The results showed that the 
amount of precipitation decreases by 6.1% in the future period. Average relative humidity 
and wind speed will increase 1.2% and 2.4%, respectively. In terms of the minimum tem-
perature parameter, the results indicated an increase of 1.4 ºC in the minimum temperature 
in the future period. The maximum temperature will increase as well as the minimum tem-
perature by 1.6 ºC.

3.3 � Evaluation of Climatic Elements Affecting Runoff Using the ANN

A combination of study climatic elements (e.g., temperature, humidity, wind speed) and the 
amount of precipitation in different delays inputted the ANN model. The results showed 
that the runoff of the study area with six parameters of minimum temperature, maximum 
temperature, minimum relative humidity, maximum relative humidity, wind speed and pre-
cipitation in the previous two days had the greatest effect and correlation (Table 5).

Studying the different neural network structures showed that a three-layer percep-
tron model (MLP) with hyperbolic tangent active function (Tansig) in the hidden layer 
and identity active function in the output layer and Levenberg–Marquardt algorithm 
and 2000 rounds of training (EPOCH) has the best possible result. The neurons in 
the three-layer perceptron model include 6 neurons in the first layer or the input layer 
(precipitation in the previous two days, minimum temperature, maximum temperature, 
minimum humidity, maximum humidity and wind speed), 4 neurons in the hidden 
layer and 1 neuron in the output layer (runoff) which shown in Fig. 6.

The precipitation variable has the greatest effect on the network output (surface 
runoff). Wind speed, maximum relative humidity, maximum temperature, minimum 
temperature and minimum relative humidity, respectively, have the next greatest effect 
on runoff (Fig. 7). In Table 6, the weight and percentage of importance of the atmos-
pheric variables affecting the surface runoff in the study area are presented.

Figure 8 shows the values of observed and estimated flow using the different struc-
tures of the artificial neural network. The observed and estimated parameters with a 
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ing the base period (1985–2014)
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two-day rainfall delay (n-2), were closer to each other than other structures. Addition-
ally, here n is the number of days of runoff delay. The neural network model did not 
have the necessary ability to simulate very high and low flow values and it does not 
have the appropriate accuracy in simulating the limit values.

3.4 � Runoff Simulation Using the SWAT Model

3.4.1 � Initial Implementation of the Model

The Digital Elevation Model (DEM), land use and soil maps and data, and climatic data of 
the study area were given as inputs of the model. From the combination of the mentioned 
maps, Saghez watershed divided into 12 sub-basins and 412 Hydrological Response Units 
(HRU), the results of that used as SWAT-CUP input.

3.4.2 � Sensitivity Analysis, Calibration and Validation

Sensitivity Analysis  The SUFI-2 program applied for sensitivity analysis. The relative 
sensitivity values evaluated in the parameter estimation process based on 25 effective 
parameters on runoff and 16 sensitive parameters identified as shown in Table 7.

Table 4   The climate parameters changes in the future period compared to the base period based on different 
scenarios

Parameter The average 
in the base 
period

Future period(2021–2050) The average 
in the future 
period

Changes rate Percentage 
of changes

SSP1-2.6 SSP3-7.0 SSP5-8.5

Precipitation 434 401.7 415.5 410.3 409.2 -24.9 -6.1
Relative 

humidity
53.7 54.1 54.3 54.7 54.4 0.6 1.2

Wind speed 2.1 2.2 2.2 2.2 2.2 0.1 2.4
Maximum 

temperature
18.9 20.1 20.6 20.8 20.5 1.6 7.8

Average tem-
perature

10.9 12.6 12.4 12.1 12.3 1.5 11.8

Minimum 
temperature

2.8 4.0 4.2 4.4 4.2 1.4 32.3

Table 5   The formed structures by artificial neural network based on different climatic parameters

Model Network structure The number of 
neurons in the hidden 
layer

Relative 
percentage 
error

1 Q = Rain + Tmin + Tmax + RHmin + RHmax + Wind 2 0.76
2 Q = Rainn-1 + Tmin + Tmax + RHmin + RHmax + Wind 4 0.75
3 Q = Rainn-2 + Tmin + Tmax + RHmin + RHmax + Wind 4 0.71
4 Q = Rainn-3 + Tmin + Tmax + RHmin + RHmax + Wind 2 0.72
5 Q = Rainn-4 + Tmin + Tmax + RHmin + RHmax + Wind 6 0.74
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Calibration and Validation  Calibration is the adjustment and correction of the input 
parameters of the model in such a way that it has the best fit with the observational data 
and in this way leads to the reduction of the uncertainty caused by the input parameters 
(Abbaspour et  al. 2015). For this purpose, the SWAT-CUP software and SUFI-2 pro-
gram were used. The data of Darehpanbedan hydrometric station was used at the outlet 
for the statistical period (1997–2014), which was chosen for the calibration of monthly 

Fig. 6   The structure of the artificial neural network with the best performance in this research

Fig. 7   Atmospheric variables affecting surface runoff on priority order in the study area

Table 6   Presenting the weight 
and percentage of importance 
of the atmospheric variables 
affecting the surface runoff in the 
studied area

Variable Importance Normalized 
Importance

Rain .269 100.0%
Tmin .122 45.4%
Tmax .139 51.7%
RHmin .112 41.7%
RHmax .160 59.7%
Wind .198 73.9%
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runoff data, from 1997 to 2008, the first three years were used for Warm Up (NYSKLP) 
the model, and it also was considered for the validation of the model from 2009 to 2014 
(Fig. 9). In Fig. 10, the distribution diagram of the observed and simulated values and their 
correlation are shown, which shows an acceptable agreement among the data.

3.4.3 � Model Performance Evaluation

During calibration, NSE and R2 values were 0.82 and 0.84, respectively, and P-factor and 
R-factor values were 0.75 and 0.61, respectively, which they showed the appropriate accu-
racy. In the validation period, the model has a good performance, although its accuracy is a 
little lower than the calibration period, but the accuracy and efficiency of the model in sim-
ulating the runoff of Saghez watershed was evaluated as appropriate (Table 8). The graphi-
cal comparisons of the average observed and simulated runoff values of the watershed on 
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Fig. 8   Observed and simulated runoff in different precipitation delays using the ANN model

Table 7   Calibrated model parameters, initial limits and final limits obtained by SUFI-2 method

Row Parameter’s names Initial range Optimal range

Minimum Maximum Minimum Maximum

1 r__GWQMN.gw 0.80 1.70 1.64 2.61
2 r__SLSUBBSN.hru 0.09 0.18 0.16 0.24
3 r__SMTMP.bsn 0.89 2.93 1.27 2.05
4 r__RCHRG_DP.gw -0.01 -0.06 -0.03 -0.04
5 r__CN2.mgt 0.06 0.02 0.06 0.05
6 v__SOL_AWC().sol 0.10 0.36 0.01 0.19
7 v__ESCO.hru 0.94 1.00 0.98 1.03
8 v__OV_N.hru 0.39 0.72 0.49 0.60
9 v__SURLAG.bsn -18.27 2.07 -19.55 -8.93
10 v__EPCO.hru -0.33 0.64 0.58 1.60
11 v__ALPHA_BF.gw 0.15 0.44 -0.15 0.18
12 v__GW_REVAP.gw 0.00 0.08 0.04 0.07
13 v__GW_DELAY.gw 262.45 343.77 222.75 284.59
14 v__CH_N2.rte 0.16 0.22 0.20 0.24
15 v__CH_K2.rte 78.42 105.47 76.72 90.86
16 v__SFTMP.bsn 3.10 6.52 6.04 9.34
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monthly and annual scales in the base period (1997–2014) are shown in Figs. 11 and 12, 
respectively.

Based on the results of comparing the observed and simulated flow values, the model 
has not had the appropriate ability to simulate high and flood flows, while it is more suit-
able for low flow or in other words low discharge.

Watershed Runoff  The main inputs for SWAT model were the 2014 land use map and the 
predicted future climate data (2021–2050) for each study scenario. The recalibrated model 
implemented with constant conditions of other parameters. The results of each investigated 
scenario compared with the base period, and the amount of runoff changes was determined 
according to the climate change. The amount of flow in the future period compared to 
the base period based on all three investigated scenarios decreased drastically in February, 
March, and April when it had high rainfall and flow. In other months especially during the 
hot season, the amount of flow increased compared to the base period (Fig. 13).

Fig. 9   Comparison of observed and simulated runoff on a monthly scale in the calibration and validation 
periods

Fig. 10   Distribution and correlation of observed and simulated discharge values of the model in the calibra-
tion and validation periods
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The study of different scenarios in the long term in the watershed showed that accord-
ing to SSP1-2.6, SSP3-7.0 and SSP5-8.5 scenarios in the future period, the amount of flow 
will decrease which the amount of that according to the mentioned scenarios is equals 
to 17.5%, 23.7% and 26.3% decrease, respectively. The amount of discharge in the study 
watershed decreased by 22.8% on average, which is caused by the decrease in precipitation 
and the increase in temperature, wind speed and the rate of evaporation and transpiration 
(Fig. 14).

Table 8   Evaluating the efficiency 
of the model in simulating 
the monthly flow in Saghez 
watershed

Periods P-factor R-factor NSE R2

Calibration 0.75 0.61 0.82 0.84
Validation 0.72 0.58 0.78 0.82
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Fig. 11   Monthly observed and simulated runoff in the base period (1997–2014)

Fig. 12   Average annual observed and simulated runoff in the base period (1997–2014)
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Fig. 13   The surface runoff changes on a monthly basis based on different scenarios in the future period 
(2021–2050) compared to the base period
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Fig. 14   Long-term runoff changes in the future period compared to the base period based on different sce-
narios in the study watershed
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Scenarios  The study of river discharge changes during the study statistical period (1997–
2050) indicated a decreasing trend of runoff based on all three study scenarios in Saghez 
watershed. The highest and the lowest changes are related to SSP5-8.5 and SSS1-2.6 sce-
narios, respectively (Fig. 15).

4 � Conclusion

The purpose of this study was predicting the climatic parameters and runoff changes 
using CMIP6, SWAT and ANN models under three SSP scenarios in Saghez watershed 
for the future period (2021–2050). After the evaluation of the models for the base period 
(1985–2014) and determining the accuracy of these models, the climate parameters and 
runoff changes were forecasted for the future period (2021–2050). The results of fore-
casting the temperature, precipitation, wind speed and relative humidity in the study area 
based on selected models showed that the amount of precipitation in the forecasted future 
period (2021–2050) will have a decrease of 1.6%. In terms of the temperature parameter, 
the assessment indicated that the minimum and maximum temperatures will increase 1.4 
ºC and 1.6 ºC, respectively. Also, the average temperature will have an increase of 1.5 ºC. 
The study of relative humidity and wind speed also showed that these two parameters will 
increase by 1.2% and 2.4%, respectively. Based on the results of the CMIP6 models and the 
Linear Scaling Bias Correction (LSBC), the temperature had a warming trend that leads 
to evaporation and transpiration, a decrease in snowfall, and an increase in torrential rains 
and floods. This can also lead to a decrease in the storage and supply of water resources in 
the watershed, an increase in torrential rains damages and washing away the fertile soils. 
Therefore, emphasis and attention to natural resources, watershed, reservoirs and strength-
ening of pastures is so important to reduce the effects of heavy rains.

The analysis of the parameters affecting the runoff of the study watershed using the 
artificial neural network showed that the precipitation parameter with a delay of two days, 
the wind speed and maximum relative humidity parameters,respectively, have the greatest 
effect on the runoff of the study area.

The results of the SWAT model based on different scenarios showed that the long-term 
average annual runoff in the future period will decrease by 22.8% compared to the base 
period. In the future period, although the amount of precipitation and relative humidity 
will not decrease much, but the minimum and maximum temperature and the wind speed 
will increase significantly in this period. Therefore, an increase in temperature and wind 
speed leads to an increase in evaporation and transpiration, and as a result, a decrease in 
river flow. In conclusion, the decrease in the amount of runoff can be considered as a result 
of the increase in temperature, which followed by the increase in the rate of evaporation 
and transpiration and decrease in rainfall. When the amount of rainfall decreases and the 
temperature increases, the amount of runoff will decrease in the future period. Despite 
the decrease in the total volume of runoff in the future period, this decrease is related to 
high and medium flows, but in low flows the volume of runoff in the future periods will 
decrease less. This phenomenon is due to the greater effect of temperature variable on low 
flows and the greater effect of rainfall variable on high flows.

The findings of this research can help to reduce the climate change impacts in order to 
management of water resources, prevent the reduction of soil fertility and increase agricul-
tural and industrial products to improve human life economically and socially because in 
many areas people’s social lives rely on the economy and the economy relies on the agri-
culture products.
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