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Abstract:We propose high order conforming and nonconforming immersed hybridized difference (IHD) meth-
ods in two and three dimensions for elliptic interface problems. Introducing the virtual to real transformation
(VRT), we could obtain a systematic and unique way of deriving arbitrary high order methods in principle. The
optimal number of collocating points for imposing interface conditions is proved, and a unique way of con-
structing the VRT is suggested. Numerical experiments are performed in two and three dimensions. Numerical
results achieving up to the 6th order convergence in the L2-norm are presented for the two dimensional case,
and a three dimensional example with a 4th order convergence is presented.
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1 Introduction

Elliptic interface problems with a discontinuous coefficient and jump in solution appear in many engineer-
ing applications such as composite materials, fluid mechanics, biological sciences. For the last decades there
has been extensive progress in developing efficient numerical schemes for these problems in the scientific
computing society [14, 16, 21]. The immersed interface type methods have been one of popular choices in the
fields of scientific computing and computational engineering. Some of them include the immersed boundary
(IB) method [13, 20, 21], immersed interface method (IIM) [7, 14, 16], matching interface and boundary (MIB)
method [25, 26], extended finite element method (XFEM) [2], immersed finite element method [1, 5, 6, 17] and
kernel free boundary integral method [23, 24].

In this paper we propose a novel immersed finite difference method with theoretical justification, which
we call the immersed hybridized difference method (IHD method). Novel ideas lie in choosing a proper number
of collocation points for interface conditions and introduction of the polynomial space for nonconforming in-
terpolation with arbitrary degrees. Those discoveries made the implementation issue of higher order methods
clearer and generalize the earlier version of the IHDmethod in [9, 12] in which two dimensional methods up to
the 4th order are presented, but three dimensional and higher order methods can not be clearly stated.

Let us consider a simple elliptic interface equation:

L(u) = −∇ · (κ∇u) = f in Ω (1.1a)
u = 0 on ∂Ω (1.1b)

together with the jump conditions on the interface

[[u]]Γ = w, [[κ∂νu]]Γ = v. (1.2a)

Here, Ω = Ω− ∪ Ω+, Γ = ∂Ω− ∩ ∂Ω+, and the vectors ν± denote the unit outward normal vectors on Γ from Ω±,
respectively. Let κ± = κ|Ω± , where κ± are given positive constants, then [[κ∂νu]] = κ−∂u− /∂ν− +κ+∂u+ /∂ν+ and
[[u]] = u+ − u− with u± = u|Ω± .

The hybridized finite difference method is composed of two different finite differences. Let us consider a
decomposition of the domain into rectangular (or square) cells, Th so that Ω =

⋃︀
R∈Th

R. Then, the problem (1.1)
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Fig. 1: One dimensional illustration of the extended solutions u±(x) in the in-
terface cell: the solid lines represent ureal(≡ u) and the dotted lines represent
uvirt.

satisfies the following localization; for u ∈ C(Ω) ∩ C2(Ω±) it satisfies the cell equation,

−∇ · (κ∇u) = f on R ∈ Th (1.3)

and the local solutions are patched together by the intercell flux continuity on cell edges,

[[κ∂νu]]e = κ∂νu|e + κ′∂ν′u|e = 0 on e = ∂R ∩ ∂R′. (1.4)

Here, ν and ν′ are the outward unit normal vectors from R and R′, respectively. The finite difference approxi-
mations of equations (1.3) and (1.4) yield the hybridized differencemethod (HDM) [10, 22]. Let us consider a one
dimensional case for a brief description of the immersed hybridized method. If u or its normal derivative ∂νu
has discontinuity as in Fig. 1 the standard finite difference does not yield a good approximation. Therefore, we
introduce the virtual to real transformation to accommodate jumps in solution and its flux on interface cells.

In Fig. 1 we would like to define a linear relation between ureal = {u−2k , u
−
2k+1 , u

+
2k+2} and u

virt = {u+2k , u
+
2k+1 ,

u−2k+2} so that u
virt ≈ Mureal + C. Here,M is a 3 × 3 matrix and C is a correction 3-vector. This linear relation is

called the virtual to real transformation (VRT). The VRT will be obtained from the interface conditions and the
governing differential equation, i.e.,

u+(Γ) = u−(Γ) + w, κ+∂ν+u+(Γ) = κ−∂ν−u−(Γ) + v

− (κ+u+x)x(x2k+1) = − (κ−u−x)x(x2k+1) + (f +(x2k+1) − f −(x2k+1))

by assuming u± ∈ span{1, x, x2}. Then, one can obtain a finite difference approximation in terms of ureal as
follows:

Dh
xxu−2k+1 =

u−2k+2 − 2u
−
2k+1 + u

−
2k

(hk /2)2
= ω1u−2k + ω2u−2k+1 + ω3u+2k+2 + ̃︀C

(hk /2)2

with hk = x2k+2 − x2k as in the immersed interface method [14–16]. The VRT is comparable with the difference
equation in the correction function method (CFM) [18, 19]. The difference equation in the CFM can be obtained
from the VRT here by setting d = u+ − u− for the case κ− = κ+. Moreover, the VRT can be understood as a finite
difference version of the Cauchy mapping in the latest papers of the IFEM [1, 5].

Our method is also comparable with the MIB (matched interface and boundary) method [25, 26].
In the immersed interface method the weight and correction {ω1 , ω2 , ω3 , ̃︀C} are obtained by the Taylor

expansion of u± around Γ and the method of undetermined coefficients. On the process analytic differentiation
of interface conditions and the governing PDE in a local coordinate system on the interface-manifold is neces-
sary, which can be cumbersome and requires elaborated efforts to obtain a high order method in two and three
dimensional cases. However, it is possible to obtain a high order method, and the compact finite difference im-
mersed interface method achieve the 4th and 6th order convergences in the L2-norm [3, 4]. In principle an IHD
method with arbitrary order convergence is possible as well, and a 2D numerical result of the IHDmethod with
a 6th order convergence is presented in addition to a 3D example with a 4th order convergence in Section 5.

Our approach does not need analytic handling of interface conditions and the governing PDE to obtain
higher order methods in higher dimensions. In this sense our approach shares some common motivation with
the MIB method. In the MIB method they introduce fictitious values, which correspond to the virtual values in
the IHD. The fictitious values are solved in terms of real values by using the interface conditions, and higher
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order methods can be obtained by adding fictitious values and repeating this process. On the other hand we
utilize the governing PDE and interface conditions to set up the VRT.

The immersed hybridized difference method is a hybridized difference method (HDM), where the finite
differences in interface cells are modified to accommodate jumps in solutions by utilizing the above mentioned
VRT. There are two kinds of the hybridized difference methods, the conforming (Qm) and nonconforming (Q*

m)
versions. Here, Qm is the space of polynomials of degreem in each variable for either two or three dimensional
spaces. In this paper we consider both the conforming and nonconforming versions of the IHD methods, how-
ever, numerical experiments are more focused on the Q*

m method. In the HDM we need a rectangular (cubic in
3D) mesh generation of a domain as in the finite element method, and the hybridized difference is composed
of two kinds of finite differences, the cell finite difference and intercell finite difference. The terms, conforming
and nonconforming finite difference methods are unconventional to the computational mathematics commu-
nity, but they look inevitable in our case. By the nonconforming HDM it means that the computational nodes
are composed of the Gaussian points within rectangular cells and those in their faces [8]. Therefore, the repro-
duced polynomial solution belongs to nonconforming elements. On the other hand the conformingHDM induces
a conforming solution since the computational nodes are augmented by the corner points of mesh cells [22].

The hybridized difference methods (HDM) are developed by the author and his colleagues [8, 10, 11, 22],
and it is locally conservative and has an embedded static condensation property. Bearing the structure of the hy-
bridized finite elementmethod, the HDMderives a bilinear formwhichmakes numerical analysis handy [8, 11].
The IHD is obtained by adopting the VRT on interface cells into the existing hybridized finite differencemethod.

The paper is organized as follows. In Section 2we introduce the 1-d IHDmethod. This will provide some pre-
liminary ideas on the high dimensional IHD, andwe refer to the paper [9] for some elementary one dimensional
stability and convergence analysis. For a high dimensional IHD the number of collocation points to impose in-
terface conditions is non trivial. To establish high order methods in two and three dimensional problems it is
essential to have knowledge on how many degrees of freedom can be consumed by interface conditions. The
number of collocations of interface conditions should not be less than the nullity of the Laplace operator on
Qm(x, y) and Qm(x, y, z). This issue is covered in Section 3. In here, the dimension of the harmonic polynomial
space in Qm are analyzed through two theorems and one corollary. In Section 4 higher dimensional IHD meth-
ods of the conforming (Qm) and nonconforming (Q*

m) versions are introduced. Since the hybridized difference
method can be easily understood we will mainly discuss on construction of the VRT. For the Q*

m method a gen-
eral formula for constructing the Q*

m polynomial space is suggested. The Q*
m method has some advantages over

the Qm method in the sense that (1) the former has much less degrees of freedom in the VRT and global stiffness
system and (2) it can manage problems with a complicated geometric shape of an interface more stably. Sec-
tion 5 is devoted to numerical experiments. Two and three dimensional examples with simple and complicated
geometric shapes of interface are considered. Numerical results show satisfactory convergence for two dimen-
sional cases. For the three dimensional problem, although computation can not be performed up to a fine scale
because of very high computational cost involved, we observe promising numerical results. A brief discussion
is presented in the final section.

2 Review of one dimensional IHD method

We begin with introducing the lowest order IHD method in one dimensional space (it corresponds the case
m = 2), and it will give a preliminary idea for higher dimensional problems. Consider a unit interval [0, 1] with
an interface point Γ and its partition into N-cells so that [0, 1] =

⋃︀N−1
j=0 Ij with Ij = [x2j , x2j+2] and Γ ∈ Ik for

some k. The regular cell is meant by a non-interface cell and the interface cell contains an interface point Γ as
in Fig. 2.

Let us consider an elliptic interface equation with the Dirichlet condition on I = [0, 1]:

− (κux)x = f on I \ Γ , u(0) = 0, u(1) = 0 (2.1)
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Fig. 2: One dimensional cell configuration: cell-point, interface, intercell point.
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Fig. 3: An illustration of the extended solutions U±(x) in the interface cell: the solid lines represent Ureal(≡ U) and the dotted lines repre-
sent Uvirt.

with the jump conditions at the interface point Γ ,

[[u]]Γ = u+(Γ) − u−(Γ) = w, [[κ∂νu]]Γ = κ+D−xu+(Γ) + κ−Dxu−(Γ) = v. (2.2)

Here, D−x = − Dx and

u(x) =
{︃
u−(x), x ∈ [0, Γ]
u+(x), x ∈ (Γ , 1].

Our new approach is based on the virtual extension of u− and u+ within the interface cell Ik = [x2k , x2k+2].
The virtual extension means fictitiously extended solutions within the interface cell Ik . This approach will fa-
cilitate derivation of high order methods for interface problems as in the MIB method ([25, 26]). The interface
conditions (2.2) will be contained in the process of the virtual extension (an inner process).

In the IHD method we seek the unique relation between the real solution (ureal) and the virtual solution
(uvirt) via the virtual to real (VR) transformation on the interface cell Ik = [x2k , x2k+2], where

ureal =
{︃
u−(x), x ∈ [x2k , Γ]
u+(x), x ∈ [Γ , x2k+2],

uvirt =
{︃
u+(x), x ∈ [x2k , Γ]
u−(x), x ∈ [Γ , x2k+2].

Note that u = ureal on Ik . Let U be the approximate solution of u and U± those of u±. We are going to have the
six function values for the extended solutions as follows (see the interval Ik in Fig. 3):

{U−
2k , U

−
2k+1 , U

−
2k+2 , U

+
2k , U

+
2k+1 , U

+
2k+2}.

Among them Ureal = {U−
2k , U

−
2k+1 , U

+
2k+2} are the real values, and U

virt = {U+
2k , U

+
2k+1 , U

−
2k+2} the virtual values.

We suggest the following set of equations that relate Ureal and Uvirt:

U+(Γ) = U−(Γ) + w : U-jump (2.3a)
κ+U+

−x(Γ) = −κ−U−
x (Γ) + v : flux jump (2.3b)

− κ+U+
xx(x2k+1) = −κ−U−

xx(x2k+1) + g : consistency (2.3c)

with g = f +(x2k+1) − f −(x2k+1). Note that we have g = 0 if f is smooth across the interface.
Let U− = U−

2kφ1 + U
−
2k+1φ2 + U

−
2k+2φ3 and U

+ = U+
2kφ1 + U

+
2k+1φ2 + U

+
2k+2φ3, where {φ1 , φ2 , φ3} ⊂ P2(Ik) =

[1, x, x2] are the Lagrange basis. From here on, [1, x, . . . , xn] ≡ span{1, x, . . . , xn}. It is easy to see that (2.3) can
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be written in a matrix–vector form as follows:⎡⎢⎣ φ1(Γ) φ2(Γ) φ3(Γ)
−κ+φ1′ (Γ) −κ+φ2′ (Γ) −κ+φ3′ (Γ)

−κ+φ1′′ (x2k+1) −κ+φ2′′ (x2k+1) −κ+φ3′′ (x2k+1)

⎤⎥⎦
⎡⎢⎣ U+

2k
U+
2k+1

U+
2k+2

⎤⎥⎦ (2.4)

=

⎡⎢⎣ φ1(Γ) φ2(Γ) φ3(Γ)
−κ−φ1′ (Γ) −κ−φ2′ (Γ) −κ−φ3′ (Γ)

−κ−φ1′′ (x2k+1) −κ−φ2′′ (x2k+1) −κ−φ3′′ (x2k+1)

⎤⎥⎦
⎡⎢⎣ U−

2k
U−
2k+1

U−
2k+2

⎤⎥⎦ +

⎡⎢⎣wv
g

⎤⎥⎦ .

Separating the real and virtual variables, equation (2.4) can be rewritten as⎡⎢⎣ φ1(Γ) φ2(Γ) −φ3(Γ)
−κ+φ1′ (Γ) −κ+φ2′ (Γ) κ−φ3′ (Γ)

−κ+φ1′′ (x2k+1) −κ+φ2′′ (x2k+1) κ−φ3′′ (x2k+1)

⎤⎥⎦
⎡⎢⎣ U+

2k
U+
2k+1

U−
2k+2

⎤⎥⎦
=

⎡⎢⎣ φ1(Γ) φ2(Γ) −φ3(Γ)
−κ−φ1′ (Γ) −κ−φ2′ (Γ) κ+φ3′ (Γ)

−κ−φ1′′ (x2k+1) −κ−φ2′′ (x2k+1) κ+φ3′′ (x2k+1)

⎤⎥⎦
⎡⎢⎣ U−

2k
U−
2k+1

U+
2k+2

⎤⎥⎦ +

⎡⎢⎣wv
g

⎤⎥⎦
or

A[U+
2k , U

+
2k+1 , U

−
2k+2]

T = B[U−
2k , U

−
2k+1 , U

+
2k+2]

T + [w, v, g]T

in a symbolic form. Then, we can obtain the VRT such that

[U+
2k , U

+
2k+1 , U

−
2k+2]

T = M[U−
2k , U

−
2k+1 , U

+
2k+2]

T + L[w, v, g]T (2.5)

whereM = A−1B and L = A−1. Even though equation (2.5) is the final form of the VRT, equations (2.3) also will
be referred to under the same name.

WithM = [Mij] and L = [Lij], U−
2k+2 = M31U−

2k + M32U−
2k+1 + M33U+

2k+2 + L31w + L32v + L33g. Then, the cell
difference becomes

− κ−Dh
xxU−

2k+1 = −κ− U−
2k − 2U

−
2k+1 + U

−
2k+2

(hk /2)2

= −κ− ω1U−
2k + ω2U−

2k+1 + ω3U+
2k+2 + C

(hk /2)2

with

ω1 = 1 +M31 , ω2 = − 2 +M32 , ω3 = M33 , C = L31w + L32v + L33g .

By a similar way, using that

U+
2k = M11U−

2k +M12U−
2k+1 +M13U+

2k+2 + L11w + L12v + L13g
U+
2k+1 = M21U−

2k +M22U−
2k+1 +M23U+

2k+2 + L21w + L22v + L23g

the intercell difference satisfies

(Dh
x + Dh

−x)U+
2k+2 = U+

2k − 4U
+
2k+1 + 3U

+
2k+2

hk
+ 3U

+
2k+2 − 4U

+
2k+3 + U

+
2k+4

hk+1

= γ1U−
2k + γ2U

−
2k+1 + γ3U

+
2k+2 + D

hk
+ 3U

+
2k+2 − 4U

+
2k+3 + U

+
2k+4

hk+1

where

γ1 = M11 − 4M21 , γ2 = M12 − 4M22 , γ3 = M13 − 4M23 + 3

D = (L11 − 4L21)w + (L12 − 4L22)v + (L13 − 4L23)g .
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The VRT will facilitate the process of obtaining high order finite differences especially for higher dimensional
problems.

Once the finite differences are obtained on the interface cell and regular cells, the (immersed) hybridized
difference method for PDE (2.1) with reference to the mesh Fig. 2 goes as follows. The hybridized difference is
composed of two kinds of finite differences; cell finite difference and intercell finite difference. At the cell point
x = x2j+1 the cell finite difference approximates the PDE as

− κ−Dh
xxU2j+1 = f2j+1 , j = 0, 1, . . . , N − 1

and the intercell finite difference approximates flux continuity as

(Dh
x + Dh

−x)U2j = 0, j = 1, 2, . . . , N − 1

with the boundary condition U0 = U2N = 0.
To obtain the Pm method we will consider the interface cell Ik = [xmk , xm(k+1)] with the interior cell points

{xmk+1 , xmk+2 , . . . , xmk+m−1} that are the Gauss points on Ik . Then, the VRT is obtained by solving the two inter-
face conditions and (m − 1)-consistency conditions as follows.

U+(Γ) = U−(Γ) + w : U-jump (2.6a)
κ+U+

−x(Γ) = −κ−U−
x (Γ) + v : flux jump (2.6b)

− κ+U+
xx(xmk+j) = −κ−U−

xx(xmk+j) + gj (j = 1, . . . ,m − 1) : consistency (2.6c)

with gj = f +(xmk+j) − f −(xmk+j). Convergence and ellipticity analysis for one dimensional IHD method can be
found in [9]. It is not comfortable to derive a high order method in the immersed interface method(IIM) even
though there have been developed high order methods lately [3, 4]. The reason is that artificial interface con-
ditions must be induced to get enough number of constraints, which involves tangential derivatives (along the
interface for 2 or 3 dimensional problems) of the jump conditions and repeated differentiation of the governing
PDE. In the VRT approach we do not need any artificial interface condition, and that will facilitate the construc-
tion of high order methods. The very similar idea was adopted to develop high order immersed finite element
methods [1, 5]. The VRTwith the homogeneous jump conditions corresponds to the Cauchymapping in the IFEM
and the non-homogeneous jump conditions can be treated through an enhanced shape function.

We finish this section by commenting on the generation of high order finite difference stencils.

Remark 2.1. Generation of high order finite difference stencils by using the Lagrange interpolation can be cum-
bersome because it needs analytic differentiation of the Lagrange basis. In our programing we use another
approach that minimizes analytic manipulation.

Suppose u(x) =
∑︀m

i=0 cix
m and let uj = u(ηj), j = 0, . . . ,m. Then, the coefficient vector c = (c0 , c1 , . . . , cm)T

satisfies ⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 η0 · · · ηm0
1 η1 · · · ηm1
· · · · · · · · · · · ·
1 ηj · · · ηmj
· · · · · · · · · · · ·
1 ηm · · · ηmm

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c0
c1
· · ·
ci
· · ·
cm

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u0
u1
· · ·
uj
· · ·
um

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (2.7)

In a symbolic form let’s write it as Ac = u, and the followings are straightforward

u(x) = [1 x x2 · · · xm] A−1u
Dxu(x) = [0 1 2x · · · mxm−1] A−1u

Dxxu(x) = [0 0 2 · · · m(m − 1)xm−2] A−1u.

Therefore, the finite difference stencils are obtained as follows in a vector form:

[Dh
xu(xj)]stencil = [0 1 2xj · · · mxmj ]A

−1 , [Dh
xxu(xj)]stencil = [0 0 2 · · · m(m − 1)xm−1j ]A−1 .
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3 Interface conditions in higher dimensions

In this section we discuss howmany collocation points are needed to implement the interface conditions in the
VRT for two and three dimensional cases. To find the number of collocation points on the interface it is necessary
to know the nullity of the Laplacian operator. LetNm be the null space for the Laplacian operator Δ : Qm → Qm ,
where Qm is the 2D or 3D polynomial spaces of degree m for each variable.

Theorem 3.1 (2D case). LetNm = {p ∈ Qm(x, y) : Δp = 0}. Then,

dim(Nm) =
{︃
2m + 1, m : even
2m + 2, m : odd.

Proof. Let u(x) =
∑︀m

j=0 uj(x)y
j with uj ∈ Pm(x). Then,

Δu = Dxxu0 + Dxxu1y +
m∑︁
j=2

(Dxxujyj + uj j(j − 1)yj−2)

=
m−2∑︁
j=0

(Dxxuj + (j + 2)(j + 1)uj+2)yj + Dxxum−1ym−1 + Dxxumym = 0.

This yields a system of differential equations:

Dxxum = 0, Dxxum−1 = 0 (3.1a)
Dxxum−2 + m(m − 1)um = 0, Dxxum−3 + (m − 1)(m − 2)um−1 = 0 (3.1b)

· · ·
Dxxu1 + 6u3 = 0, Dxxu0 + 2u2 = 0 (3.1c)

for m = 2k + 1, and

Dxxum = 0, Dxxum−1 = 0 (3.2a)
Dxxum−2 + m(m − 1)um = 0, Dxxum−3 + (m − 1)(m − 2)um−1 = 0 (3.2b)

· · ·
Dxxu2 + 12u4 = 0, Dxxu1 + 6u3 = 0,

Dxxu0 + 2u2 = 0 (3.2c)

for m = 2k.
When m = 2k + 1, equations (3.1) imply

Dxxum = 0, Dxxum−1 = 0 (3.3a)
D2
xxum−2 = 0, D2

xxum−3 = 0 (3.3b)
· · ·

Dk+1
xx u1 = 0, Dk+1

xx u0 = 0. (3.3c)

Remember the notation, [1, x, . . . , xj] = span{1, x, . . . , xj}. The left column of equations (3.3) can be solved as

um ∈ [1, x], um−2 ∈ [1, x, x2 , x3], . . . , u1 ∈ [1, x, . . . , xm].

Once, u1 is known, then {u3 , . . . , um} are determined sequentially by (3.1). By the same way, the right column
of equations (3.3) can be solved as

um−1 ∈ [1, x], um−3 ∈ [1, x, x2 , x3], . . . , u0 ∈ [1, x, . . . , xm].

The solution u0 determines {u2 , u4 , . . . , um−1} sequentially. Therefore, the dimension of harmonic polynomials
in Qm(x, y) is 2m + 2.
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For m = 2k by a similar way,

Dxxum = 0, Dxxum−1 = 0 (3.4a)
D2
xxum−2 = 0, D2

xxum−3 = 0 (3.4b)
· · ·

Dk
xxu2 = 0, Dk

xxu1 = 0 (3.4c)

Dk+1
xx u0 = 0. (3.4d)

Let us look at the left column of equations (3.4), we should take um ∈ [1] instead of um ∈ [1, x]. If um ∈ [1, x],
u0 ∈ [1, x, . . . xm+1] and we will have u /∈ Qm(x, y). Therefore,

um ∈ [1], um−2 ∈ [1, x, x2], . . . , u0 ∈ [1, x, . . . , xm].

For the right column we have

um−1 ∈ [1, x], um−3 ∈ [1, x, x2 , x3], . . . , u1 ∈ [1, x, . . . , xm−1].

Then, the dimension of harmonic polynomials in Qm(x, y) is 2m + 1.

Now, we proceed to the 3D case. It is important to note that the dimension of harmonic polynomials in Qm(x, y)
is 2 × nullity(Dk+1

xx ) for m = 2k + 1 and nullity(Dk+1
xx ) + nullity(Dk

xx) for m = 2k, where the null is taken in Pm(x).
Let us introduce the space of the k-harmonic binomials:

Mm,k = {p ∈ Qm(x, y) : Δkp = 0}.

Theorem 3.2. ForNm = {p ∈ Qm(x, y, z) : Δp = 0},

dim(Nm) =
{︃
2 dim(Mm,k+1), m = 2k + 1
dim(Mm,k+1) + dim(Mm,k), m = 2k.

Proof. Let u(x, y, z) =
∑︀m

j=0 uj(x, y)z
j ∈ Qm(x, y, z) with uj ∈ Qm(x, y). Then, u ∈ Nm implies

Δu =
m−2∑︁
j=0

(Δzuj + (j + 2)(j + 1)uj+2)zj + Δzum−1zm−1 + Δzumzm = 0

where Δzu = uxx + uyy . As in the two dimensional case this yields that

Δzum = 0, Δzum−1 = 0 (3.5a)
Δzum−2 + m(m − 1)um = 0, Δzum−3 + (m − 1)(m − 2)um−1 = 0 (3.5b)

· · ·
Δzu1 + 6u3 = 0, Δzu0 + 2u2 = 0 (3.5c)

for m = 2k + 1, and

Δzum = 0, Δzum−1 = 0 (3.6a)
Δzum−2 + m(m − 1)um = 0, Δzum−3 + (m − 1)(m − 2)um−1 = 0 (3.6b)

· · ·
Δzu2 + 12u4 = 0, Δzu1 + 6u3 = 0

Δzu0 + 2u2 = 0 (3.6c)

for m = 2k. When m = 2k + 1, equations (3.5) satisfy

Δzum = 0, Δzum−1 = 0
Δ2zum−2 = 0, Δ2zum−3 = 0

· · ·
Δk+1z u1 = 0, Δk+1z u0 = 0.
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When m = 2k, equations (3.6) satisfy

Δzum = 0, Δzum−1 = 0
Δ2zum−2 = 0, Δ2zum−3 = 0

· · ·
Δkzu2 = 0, Δkzu1 = 0

Δk+1z u0 = 0.

Then, the theorem is immediate.

Corollary 3.1. For Qm(x, y, z),

dim(Nm) =

⎧⎪⎨⎪⎩
13, m = 2
24, m = 3
37, m = 4.

Proof. For Q2(x, y) = [1, x, y, x2 , xy, y2 , x2y, xy2 , x2y2],

ΔQ2(x, y) = [1, x, y, (x2 + y2)], Δ2Q2(x, y) = [1].

Then, dim(M2,1) = 5 and dim(M2,2) = 8. Hence, dim(N2) = 13.
For Q3(x, y) = [1, x, y, x2 , xy, y2 , x3 , x2y, xy2 , y3 , x3y, x2y2 , xy3 , x3y2 , x2y3 , x3y3],

Δ2Q3(x, y) = [1, x, y, xy].

Therefore, dim(M3,2) = 12. Hence, dim(N3) = 24.
For Q4(x, y) we have

Δ2(Q4(x, y)) = [1, x, y, xy, x2 , y2 , x3 + 6xy2 , 6x2y + y3 , x4 + 12x2y2 + y4], Δ3(Q4(x, y)) = [1, x, y, x2 + y2].

Then, dim(M4,2) = 16 and dim(M4,3) = 21. Therefore, dim(N4) = 37.

Theorems 3.1 and 3.2 tell us howmany interface conditions are needed to define a VR-transformation uniquely,
that is, #(interface conditions) = dim(Nm). Then, we impose the interface conditions as follows⎧⎨⎩ ( J + 1) U-jump⊕ J flux-jump when dim(Nm) = 2J + 1

( J + 1) U-jump⊕ ( J + 1) flux-jump when dim(Nm) = 2J + 2.

It is very natural to choose ( J +1)-collocation points on the interface to impose the interface conditions for either
case.

4 IHD methods in higher dimension

With the help of Theorems in §3 we extend one dimensional schemes to higher dimensional ones. Since the IHD
method for the regular(non-interface) cell is trivial, we mainly discuss the IHD formulation on interface cells
and the related two and three dimensional VRTs. From here on we assume f is smooth throughout the domain
for simplicity, then we can put [[f ]] = 0.

4.1 Hybrid difference method on the Q2-grid cell

With reference to the cell configuration in Fig. 4 the cell finite difference is

− κ+ΔhU+(x22) = − κ+ U+
32 − 2U+

22 + U+
12

(h1 /2)2
− κ+ U+

23 − 2U+
22 + U+

21
(k1 /2)2

= f (x22) (4.1)
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τ1

τ2

τ3

Γ
κ−

κ+

x11 x21 x31 x41 x51

x12 x22 x32 x42 x52

x13 x23 x33 x43 x53

x14 x24 x34
x15 x25 x35

R1 R2

R3

τ1

τ2

τ3

Γ
κ−

κ+

x21 x41

x12 x22 x32 x42 x52

x23 x43

x14 x24 x34
x25

R1 R2

R3

Fig. 4: The Q2(left) and Q*2-grids: |R1| = h1 × k1, |R2| = h2 × k1, |R3| = h1 × k2.

on the cell R1, and the intercell finite differences satisfy

[[∂hνU+]]x =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
h1 (3U

+
32 − 4U+

22 + U+
12) + 1

h2 (3U
+
32 − 4U+

42 + U+
52) = 0, x = x32

1
k1 (3U

+
23 − 4U+

22 + U+
21) + 1

k2 (3U
+
23 − 4U+

24 + U+
25) = 0, x = x23

1
h1 (3U

+
33 − 4U+

23 + U+
13) + 1

h2 (3U
+
33 − 4U+

43 + U+
53) = 0, x = x33 .

(4.2)

Here,

Ureal = [U−
11 , U−

21 , U+
31 , U−

12 , U+
22 , U+

32 , U+
13 , U+

23 , U+
33]T

Uvirt = [U+
11 , U+

21 , U−
31 , U+

12 , U−
22 , U−

32 , U−
13 , U−

23 , U−
33]T .

In this case we will obtain the VRT as follows:

Uvirt = MUreal + L[w(τ1),w(τ2),w(τ3), v(τ1), v(τ2), 0, 0, 0, 0]T (4.3)

by (4.4).

Remark 4.1.
– The intercell finite difference (4.2) is defined at all the other intercell points {x11 , x12 , x13 , x21 , x31} of R1 as

well if it is not a boundary point.
– According to [22] the intercell finite difference can be taken in either the x-axis direction or the y-axis

direction at corner points. In (4.2) at x33 the x-axis parallel finite difference is used.

Then, the virtual values Uvirt in (4.1) and (4.2) are replaced by the real values via the VRT (4.3). Moreover, the
equation (4.3) is derived from the following equations. By Theorem 3.1 we have dim(N2) = 5, therefore, the VRT
should be composed of five interface conditions (threeU-jumps and twoflux jumps) as shown in equations (4.4a)
and (4.4b). Again by Theorem 3.1 the system (4.4c) will be reduced to a linear system of rank four. Then, the total
rank becomes nine, and the VRT is uniquely solvable. The Q2-VRT is obtained by solving the following equations
in an interface cell:

U+(τj) = U−(τj) + w(τj), j = 1, 2, 3 : U-jump (4.4a)

κ+∂ν+U+(τj) = − κ−∂ν−U−(τj) + v(τj), j = 1, 2 : flux jump (4.4b)

− κ+ΔU+(xkl) = − κ−ΔU−(xkl), k, l = 1, 2, 3 : consistency (4.4c)

for U± ∈ Q2(x, y), which yields an overdetermined system, and it is solved by the QR factorization method.

4.2 Hybrid difference method on the Q*
2-grid cell

With reference to the cell configuration in Fig. 4 the cell finite difference is

− κ+ΔhU+(x22) = − κ+ U+
32 − 2U+

22 + U+
12

(h1 /2)2
− κ+ U+

23 − 2U+
22 + U+

21
(k1 /2)2

= f (x22) (4.5)
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x11 x21 x31

x12 x22 x32

x13 x23 x33
τ1

τ2

τ3

κ−
κ+

x11 x21 x31 x41

x12 x22 x32 x42

x13 x23 x33 x43

x14 x24 x34 x44
τ1

τ2

τ3

τ4

κ−
κ+

x21 x31

x12 x22 x32 x42

x13 x23 x33 x43

x24 x34
τ1

τ2

τ3

τ4

Fig. 5: The Q2-grid (left), Q3-grid cells (center), and Q*3-grid cells (right). The red solid curve represents a section of the interface. As the
black line in the right plot, the interface that cut through an interface cell without dividing computational nodes is in the Q*m method.

on the cell R1, and the intercell finite difference is

[[∂hνU+]]x =

⎧⎨⎩
1
h1 (3U

+
32 − 4U+

22 + U+
12) + 1

h2 (3U
+
32 − 4U+

42 + U+
52) = 0, x = x32

1
k1 (3U

+
23 − 4U+

22 + U+
21) + 1

k2 (3U
+
23 − 4U+

24 + U+
25) = 0, x = x23 .

(4.6)

Remark 4.2.
– The intercell finite difference (4.6) is defined at all the (interior) intercell points x21 and x12 of R1 as well.
– At corner points the intercell finite difference is not defined.

In the Q*
2 method we will obtain a smaller VRT and the total degrees of freedom for the global linear system

is reduced as well. In three dimensional case we will have much more reduction in degrees of freedom both
in the VRT and global stiffness system. We use Q*

2(x, y) = [1, x, y, x2 , y2]. Then, we need a VRT of rank five. In
equations (4.7) it would be better to impose only two of the U-jump conditions in (4.7a), but we will keep it
and solve the overdetermined system (4.7) for consistency of presentation with other higher order and higher
dimensional methods. With reference to Fig. 4 we have

Ureal = [U−
21 , U−

12 , U+
22 , U+

32 , U+
23]T

Uvirt = [U+
21 , U+

12 , U−
22 , U−

32 , U−
23]T .

In this case we will obtain the VRT as follows:

Uvirt = MUreal + L[w(τ1),w(τ2),w(τ3), v(τ1), v(τ2)]T .

Then, the virtual values Uvirt in (4.5) and (4.6) are replaced by the real values via the VRT.
The Q*

2-VRT is obtained from the following equations in an interface cell:

U+(τj) = U−(τj) + w(τj), j = 1, 2, 3 : U-jump (4.7a)

κ+∂ν+U+(τj) = − κ−∂ν−U−(τ1) + v(τj), j = 1, 2 : flux jump (4.7b)

− κ+ΔU+(xkl) = − κ−ΔU−(xkl) : consistency (4.7c)

for (k, l) = (2, 1), (1, 2), (2, 2), (3, 2), (2, 3) and U± ∈ Q*
2(x, y) = [1, x, y, x2 , y2].

Equations (4.4) and (4.7) are almost the same except the nodal points for the consistency condition.

4.3 Higher order VRTs on the Qm and Q*
m-cells

Wemention again that the interior grids are the Gauss points in a cell.
For the Q3-grid interface cell Rank(ΔQ3(x, y)) = 8 by Theorem 3.1. Therefore, we impose 8(= 16−8)-interface

conditions on four collocation points, that are composed of four U-jump and four flux-jump conditions. With
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reference to Fig. 5 the Q3-VRT is obtained by solving the overdetermined system

[[U]]p = w(p), [[κ∂νU]]p = v(p), [[−κΔU]]x = 0 (4.8)

for p ∈ {τ1 , τ2 , τ3 , τ4} ⊂ Γ , x = xij for i, j = 1, 2, 3, 4 and U ∈ Q3(x, y), and Q*
3-VRT is obtained from

[[U]]p = w(p), [[κ∂νU]]p = v(p), [[−κΔU]]x = 0 (4.9)

for p ∈ {τ1 , τ2 , τ3 , τ4} ⊂ Γ , x ∈ Q*
3-grid, where Q*

3-grid ={xij : i, j, = 1, 2, 3, 4} \ {x11 , x14 , x41 , x44} and U ∈
Q*
3(x, y) = P3(x, y)⊕ [x3y, xy3].
Since Qm(x, y) is a well-known polynomial space we pay our attention to Q*

m(x, y). Since deg(Q*
m) =

deg(Qm) − 4, the Q*
m(m ⩾ 3)-polynomial space is given as follows

Q*
m(x, y) ≡ Qm(x, y) \ [xm−1ym−1 , xmym−1 , xm−1ym , xmym] (4.10)

so that it satisfies:
– deg(Q*

m(x, y)) = deg(Qm(x, y)) − 4;
– deg(ΔQ*

m(x, y)) + deg(Nm) ⩾ deg(Q*
m(x, y));

– Pm(x, y) ⊂ Q*
m(x, y) for m ⩾ 3.

By Theorem 3.1 we obtain the Q*
m-VRT as follows:

[[U]]p = w(p), [[κ∂νU]]q = v(q), [[−κΔU]]x = 0 (4.11)

forx = xij for xij ∈ Q*
m-grid and U ∈ Q*

m(x, y). Here, p, q ∈ {τ1 , . . . , τm+1}whenm = odd, and p ∈ {τ1 , . . . , τm+1}
and q ∈ {τ1 , . . . , τm} when m = even.

4.4 Three dimensional VRTs on the Q*
m-cell

Here, we only provide the Q*
m-VRT and the Q*

m(x, y, z) polynomial space. By Theorem 3.2 the Q*
m-VRT is obtained

by solving the following overdetermined system:

[[U]]p = w(p), [[κ∂νU]]q = v(q), [[−κΔU]]x = 0 (4.12)

for x ∈ Q*
m-grid and U ∈ Q*

m(x, y, z). Here, #(p) = #(q) when m = odd, and #(p) = #(q) + 1 when m = even, while
#(p) + #(q) = dim(Nm).

To define three dimensional VRT on the Q*
m-cell the following properties are required to be satisfied by

Q*
m(x, y, z):

– deg(Q*
m(x, y, z)) = deg(Qm(x, y, z)) − 12m + 4;

– deg(ΔQ*
m(x, y, z)) + deg(Nm) ⩾ deg(Q*

m(x, y, z));
– Pm(x, y, z) ⊂ Q*

m(x, y, z) for m ⩾ 3.

We provide a systematic way of choosing Q*
m(x, y, z) as follows:

Q*
m(x, y, z) = span {xiyjzk | i, j, k = 0, . . . ,m, max

(︀
min(i, j), min(j, k), min(i, k)

)︀
< m − 1}.

For an example,

Q*
3(x, y, z) = P3(x, y, z)⊕ [x3y, xy3 , y3z, yz3 , z3x, zx3 , x2yz, xy2z, xyz2 , x3yz, xy3z, xyz3].

Remark 4.3. In the right plot of Fig. 5 the black cut is ignored in the Q*
m method, but it will not be ignored in the

Qmmethod. As its length becomes smaller theQm-VRT can bemore ill-conditioned since the interface conditions
are imposed on a small section of an interface, and it eventually becomes singular if this intersection becomes
one point. Therefore, we prefer to use the Q*

m method to avoid possible occurrence of instability. Moreover, the
Q*
m method yields a much smaller linear system in the 3D case.
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Uniform Gaussian Q
3
 grid mesh Uniform Gaussian Q

3
 grid mesh

Fig. 6: The ellipse, four-leafed flower and ellipsoid.
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Fig. 7: The L2 error and convergence rate for the Qm(top) and Q*m(bottom) methods for Example 5.1. Here, (κ1 , κ2) = (κ− , κ+). The bold
black line segment represents the theoretically expected rate of convergence with slope m + 1.

5 Numerical experiments

We provide two and three dimensional numerical examples with the three interfaces as in Fig. 6. Numerical
experiments were performed on the Qm and Q*

m grids with m = 3, 4, 5. Errors are measured in the discrete L2
and H1-norms.

In the IHD one wish to use a fixed mesh (especially, a uniform mesh), independently of the shape of an
interface. Then, it is inevitable to have some segments of interface ignored in the Q*

m method. An interface cell
is called a coherent interface cell if the interface divides computational nodes into two nonempty sets. If there
are toomany non-coherent interface cells it can cause some poor convergence in numerical solution. According
to our numerical experiments the ratio, for a broad class of interfaces,

coherence ratio = #(coherent interface cells)
#(total interface cells)

is high enough to guarantee the optimal order of convergence of numerical solutions if m ⩾ 3. For a detailed
discussion see [9].

Example 5.1. An elliptic equation on the domain with an elliptic interface Γ = {(x, y) : k(x, y) = 1}, k(x, y) =
9
4 x

2 + 25y2 is solved on the uniform Qm and Q*
m mesh grids with m = 3, 4, 5. The exact solution is given as

u(x, y) =

⎧⎨⎩ sin(k(x, y) − 1)/κ− + x + y, k(x, y) < 1

sin(k(x, y) − 1)/κ+ , k(x, y) ⩾ 1
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Fig. 8: The H1-norm error and convergence rate for the Qm(top) and Q*m(bottom) methods for Example 5.1. The bold black line segment
represents the theoretically expected rate of convergence with slope m.
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Fig. 9: The L2 and H1-norm errors and convergence rates for the Q*m methods for Example 5.2. The bold black line segment represents
the rate of the theoretically expected convergence with slopes m + 1 and m for the L2 and H1-errors, respectively.

with (κ− ,κ+) = (0.01, 1), (1, 1), (100, 1). The solution satisfies the elliptic equation

−∇ · (κ∇u) = f on [−1, 1] × [−1, 1]

with a smooth f (therefore, [[f ]] = 0) and the interface conditions,

[[u]]Γ = − (x + y), [[κ∂νu]]Γ = κ−(ν1 + ν2)

where ν = (ν1 , ν2) are the outward unit normal vector on Γ from Ω−. Figures 7, 8, and 10 represent numerical
results for Example 5.1.

In Example 5.1 the interface is an ellipse and both the Qm and Q*
m methods are tested. As shown in Figs. 7 and 8

convergence orders concord very well with the theoretically expected ones, O(hm+1) and O(hm) in the L2 and
H1-norms, respectively. We can not find any difference in convergence and numerics between the Qm and Q*

m
methods. As shown in Fig. 10 the error is concentrated around the domain boundary rather than the interface.
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Fig. 10: The solution and error distribution for Example 5.1. Here, (κ− , κ+) = (0.01, 1) and computation is performed with the Q*4 method
and N = 32.

Fig. 11: The solution and error distribution for Example 5.2. Here, (κ− , κ+) = (100, 1) and computation is performed with the Q*4 method
and N = 32.

Example 5.2. The elliptic interface problem is solved on the domain with the interface; r = 1
2 +

1
11 cos(4ϑ) in the

polar coordinate system. The exact solution is given as

u(x, y) =

⎧⎨⎩ exp(x2 + y2)/κ− + exp(x) cos( y), r < 1
2 +

1
11 cos(4ϑ)

exp(x2 + y2)/κ+ , otherwise.

Hence, [[f ]] = 0, and the solution satisfies the interface conditions,

[[u]]Γ = exp(x2 + y2)
(︂

1
κ+ −

1
κ−

)︂
− exp(x) cos( y), [[κ∂νu]]Γ = κ− exp(x)(ν1 cos( y) − ν2 sin( y)).

For this problem only the Q*
m (m = 3, 4, 5) method is tested with (κ− ,κ+) = (0.01, 1), (1, 1), (100, 1). Figures 9

and 11 represent numerical results for Example 5.2.

In Example 5.2 the interface is non-convex and ofmore complicated geometric shape than an ellipse. For this we
performnumerical experiments onlywith theQ*

mmethod. The geometry of interface seems to have influence on
convergence in the sense that convergence is less regular than that of Example 5.1. The H1-norm convergence is
more regular than that of the L2-norm,which is commonly observed in finite differencemethods. The errors are
much less since the test function is much regular than that of Example 5.1. In this case error is more distributed
around the interface as shown in Fig. 11.

Example 5.3. Consider three dimensional interface problem. The ellipsoidal interface satisfies x2
a2 +

y2
b2 +

z2
c2 = 1

with a = 16/23, b = c = 8/23. The exact solution is given as

u(x, y, z) =

⎧⎨⎩ exp(x + y + z)/κ− + (x2 + y2 + z2)/κ− , x2
a2 +

y2
b2 +

z2
c2 < 1

exp(x + y + z)/κ+ , otherwise.

Then, it satisfies [[f ]] = 6 and the interface conditions,

[[u]]Γ = exp(x + y + z)
(︂

1
κ+ −

1
κ−

)︂
− x2 + y2 + z2

κ− , [[κ∂νu]]Γ = 2(xν1 + yν2 + zν3).
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Tab. 1: Convergence history of the Q*3 method for Example 5.3.

(0.1, 1) (10, 1)
N L2 rate H1 rate L2 rate H1 rate

4 6.0273e-03 — 2.3046e-02 — 5.4947e-02 — 1.0448e-01 —
8 1.6511e-03 1.87 8.0410e-03 1.52 5.1551e-03 3.41 1.3469e-02 2.96
10 6.7181e-04 4.03 5.1157e-03 2.03 1.6795e-03 5.03 4.7311e-03 4.69
14 1.5021e-04 4.45 1.0410e-03 4.73 9.2579e-05 8.61 6.7791e-04 5.77
16 7.2805e-05 5.42 6.0831e-04 4.02 2.9291e-05 8.62 3.9419e-04 4.06

Tab. 2: Comparison of the degrees of freedom for the 3D case. The number 20/27 represents an asymptotic ratio for a big N.

VRT Total

Qm (m + 1)3 (mN + 1)3

Q*m (m + 1)3 − 12m + 4 (mN − N)2(mN + 2N + 3)
Q*3/Q3 1/2 20/27

(a) 3-ints. pts. (b) 4-ints. pts. (c) 5-ints. pts.

(d) 5-ints. pts. (e) 6-ints. pts. (f) non-coherent

Fig. 12: Common cell-wise patterns of the ellipsoidal interface. The digit in the subcaption is the number of intersections with cell edges.
The black markers represent the 12-collocation points where the interface conditions are applied.

Only the Q*
3 method is tested with (κ− ,κ+) = (0.1, 1), (10, 1).

For Example 5.3 we consider only the Q*
3 method on an ellipsoid. The test function is chosen to have non-

homogeneous jump in the consistency condition. As shown in Table 1, because of heavy computational cost
numerical experiment is performed only for up to h = 1/8, therefore, we could not observe a saturated order
of convergence. However, we expect a theoretically expected convergence when the number of subdivision is
increased. Table 2 shows that the Q*

m method has much less degrees of freedom than the Qm method for three
dimensional problems. In the case of the Q*

3 method the degrees of freedom in the VRT become a half and the
global system size is reduced by almost a quarter. Therefore, it is strongly recommended to use theQ*

mmethod as
a stable and effective numerical solver for three dimensional problems. Figures 12 shows some major cell-wise
patterns of the ellipsoidal interface. Non-coherent interface cell (the bottom right in Fig. 12) seems to happen
more frequently as the mesh becomes finer, in which case clustering of collocation points can be a source of
instability in the VRT for the Qm method.
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6 Conclusion

The immersed hybrid difference method with high order convergence for two and three dimensional elliptic
interface problems is introduced and related numerical experiments are performed. The key contributions of
the paper are (1) finding the exact number of collocation points for interface conditions (2) finding a unique
way of constructing the Q*

m-polynomial space. The Q*
m and Qm methods with m ⩾ 3 have almost the same con-

vergence property, while the Q*
m method contains much less degrees of freedom (especially in three dimension)

and it looks more reliable for interfaces of complicated geometric shapes. A less desirable feature of the IHD
method, compared to the MIB method, is that the VRT becomes of a large size especially for three dimensional
problems with high order methods. However, the VRT is independent from a cell to a cell, hence this process
can be parallelized by nature.
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