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The detection of somatic DNA variants in tumor samples with low tumor purity or sequencing depth remains a daunting challenge
despite numerous attempts to address this problem. In this study, we constructed a substantially extended set of actual positive
variants originating from a wide range of tumor purities and sequencing depths, as well as actual negative variants derived from
sequencer-specific sequencing errors. A deep learning model named AIVariant, trained on this extended dataset, outperforms
previously reported methods when tested under various tumor purities and sequencing depths, especially low tumor purity and
sequencing depth.
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INTRODUCTION
Somatic DNA variants are the primary cause of cancer biogenesis
and progression. Accurate detection of somatic variants within a
cancer genome is essential for understanding the comprehensive
landscape of cancer genetics and the fundamental basis for cancer
diagnosis and treatment. Despite its significance, the detection of
somatic variants remains challenging for the following reasons.
One of the main obstacles is tumor purity, which refers to the
proportion of tumor cells in an obtained tumor sample. The
presence of normal cells such as stromal and immune cells within
the tumor microenvironment can make it difficult to collect a pure
sample of tumor cells1–3. Previous studies have reported that
tumor tissue samples often contain normal cells and exhibit various
tumor purities4–7. Samples with low tumor purity generally have a
low proportion of sequencing reads supporting true somatic
variants, making the detection of these variants difficult. Accord-
ingly, a variant detector that can accurately detect variants with
low tumor purities would greatly facilitate cancer diagnosis and
treatment. This is especially important for cancer types, such as
lung squamous-, kidney renal clear-, and head and neck squamous-
cell carcinoma, as well as lung and pancreatic adenocarcinoma5,6,
where low tumor purity samples are frequently discovered. Similar
to low tumor purity, a low sequencing depth results in a small
number of reads supporting true somatic variants and thus makes
somatic variant detection more difficult. Despite advances in next-
generation sequencing technology, whole genome sequencing
(WGS) of a tumor sample with a higher sequencing depth often
leads to an inhibitory sequencing cost8. Another challenge stems
from sequencing errors introduced by distinct biases specific to a
particular sequencer. For example, the widely used Illumina

sequencers are known to have various sequencer-specific errors.
It has been reported that higher sequencing error rates are
observed near certain sequence motifs9,10, homopolymers11, and
read ends10,12. Bases with similar fluorophore emission spectra can
be miscalled10. Sequencing errors have been found to accumulate
in a specific strand direction12, and reverse reads tend to be more
error-prone than forward reads in paired-end sequencing13.
Furthermore, low confidence in Illumina short-read sequencing in
low-complexity regions, such as tandem repeats, has been
reported14. Collectively, these sequencer-specific errors may be
misinterpreted as true somatic variants, resulting in numerous false
positives if not properly addressed. A large number of methods
have been developed to detect somatic variants from sequencing
data, including Mutect215, Strelka216, MuSE17, VarScan218, Soma-
ticSniper19, and NeuSomatic20,21. However, while these methods
accurately detect somatic variants with high tumor purity and
sequencing depth, all of these methods suffer from low accuracy
for low tumor purity or sequencing depth. Moreover, most of these
methods do not fully address sequencer-specific sequencing errors,
although some employ naïve heuristics to address this issue. In this
study, we developed a new somatic variant detector, AIVariant, by
training a deep learning model with an extended set of somatic
variants originating from a wide range of tumor purities,
sequencing depths, and sequencer-specific sequencing errors.
We demonstrated that systematically constructing a comprehen-
sive dataset that encompasses actual positive and negative
variants is crucial for the development of an accurate somatic
variant detector. AIVariant exhibits both high precision and
sensitivity for somatic variant detection, especially for low tumor
purity and sequencing depth.
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MATERIALS AND METHODS
Somatic variant detection
The detection process consisted of four key steps: preprocessing,
candidate search, image generation, and somatic variant calling. During
preprocessing, low-quality sequencing reads of tumor/normal binary
alignment MAP (BAM) files were filtered to exclude erroneous sequencing
results. Subsequently, normalized base quality scores were calculated for
the base quality scores of the remaining reads. The candidate search step
identified probable somatic variant candidates by scanning tumor/normal
paired sequencing data. These candidates were identified based on the
base qualities of the variant alleles, the number of reads aligned with the
position of interest, and a Bayesian classifier score. In the image generation
step, two types of input data matrices were generated for each candidate:
the first data matrix, termed an AIVariant image, represents raw alignment
features of up to 100 sequencing reads around a variant, including
nucleotide compositions, qualities of alignments, and epigenetic features.
The second data matrix, termed an AIVaraint stat image, represents
statistically summarized alignment features of all the aligned reads around
a variant (Supplementary Fig. 2a). In the somatic variant calling step, a
deep neural network was employed to calculate the posterior probability
for a somatic variant at the candidate positions with the generated images
and Bayesian classifier scores. For a detailed description of each step, see
Supplementary Materials and Methods.

Generation of simulated whole genome sequencing data with
an extended set of variants (eWGS)
eWGS data were generated by using Illumina WGS datasets from three
sources. The FASTQ files of the NA12877 200x WGS data22 (https://
www.ebi.ac.uk/ena/browser/view/PRJEB3246) and CHM1/CHM13 WGS
data23 (https://www.ebi.ac.uk/ena/browser/view/PRJEB13208) were
obtained from the European Nucleotide Archive (ENA), while the 81
WGS tumor BAM files from 78 patients with cancer were obtained from the
International Cancer Genome Consortium (ICGC)24 (https://dcc.icgc.org/
repositories). Aligned reads of the BAM files were extracted to generate
FASTQ files. To match the different sequencing read lengths of WGS data
to a uniform read length, the reads of the FASTQ files were trimmed from
the 3’ end to a length of 100 bp. The trimmed reads were then aligned to
the reference genome using ‘BWA MEM (v0.7.8)’ with default options. From
aligned reads, the filtering process removed low-quality reads: unmapped
reads, PCR or optically duplicated reads, reads with secondary alignments,
and reads with a mapping quality of 0. The generated BAM files from the
previous steps were then downsampled to a sequencing depth (SD) of 30.
For NA12877, the BAM file was split into three BAM files with no
overlapping sequencing reads, each of which was downsampled to an SD
of 30, resulting in normal, tumor backbone, and normal simulation WGS
data. Actual positive (AP) and actual negative (AN) somatic single
nucleotide variants (SNVs) were spiked into the tumor backbone WGS
data to generate tumor WGS data. This process utilized WGS data from
patients with cancer and CHM1/CHM13. First, the reads overlapping the
±50 nt flanking regions of the spiked-in SNVs were removed from the
tumor backbone WGS BAM file. Second, reads overlapping the identical
±50 nt flanking regions were extracted from the preprocessed BAM files of
patients with cancer or CHM1/CHM13. Finally, the extracted reads were
spiked into the tumor backbone WGS data. ICGC tumor WGS data with a
tumor purity of nearly 100% were identified based on the distribution of
variant allele frequencies (VAFs) for somatic SNVs. More specifically, tumor
WGS data with median VAFs for somatic SNVs between 0.4 and 0.6 were
selected (although the theoretical median VAF of tumor tissue samples
with 100% tumor purity (TP) is 0.5 and the distribution of VAF for a 100%
TP tumor tissue sample has two peaks at 0.5 and 1.0 with a much higher
peak for 0.5, several factors such as low TP or SD and subclonality can
affect the ideal distribution of VAFs and result in a slightly different median
VAF value). We identified 9 ICGC WGS datasets with almost 100% TP from
each of 9 ICGC projects (each project accounted for a specific cancer type):
PACA-AU (pancreatic cancer), PAEN-AU (pancreatic cancer endocrine
neoplasms), PBCA-DE (pediatric brain cancer), LIRI-JP (liver cancer), OV-
AU (ovarian cancer), PRAD-UK (prostate adenocarcinoma), THCA-US (head
and neck thyroid carcinoma), MALY-DE (malignant lymphoma), and MELA-
AU (skin cancer). To simulate various TPs in the tumor WGS data, the initial
tumor WGS data with almost 100% TP and normal simulation WGS BAM
files were downsampled using the ‘Samtools view (v1.9)’ in a manner that
reflected the target TP, N%. For example, to generate a tumor WGS dataset
with 40% TP, 40% of the reads from the tumor WGS data and 60% of the
reads from the normal simulation WGS data were downsampled and

merged using ‘Picard MergeSamFiles (v2.18.1)’. Note that during the
simulations, the value of SD did not change, so if we began with data
showing an SD of 30, the simulation resulted in data with the desired TP
and an SD of 30. To simulate various SDs, the BAM files for normal WGS
data with an SD of 30 and tumor WGS data with an SD of 30 were
downsampled to target SDs of 25, 20, and 15, for example, by
downsampling 50% of the reads from the BAM file with an SD of 30 to
generate an SD of 15. The resulting eWGS dataset, which includes both
normal and tumor WGS data with nine different TPs at four different SDs,
was further split into two datasets: the training eWGS and test eWGS
datasets. The training eWGS dataset consisted of sequencing reads aligned
to odd-numbered chromosomes (chr1, 3, 5,…, and 21), whereas the test
eWGS dataset consisted of sequencing reads aligned to even-numbered
chromosomes (chr2, 4, 6,…, and 22).

Identification of actual positive variants
The AP variants were identified using somatic SNVs in ICGC WGS data of 9
different cancer types and germline SNVs in CHM1/CHM13 WGS data23. For
ICGC WGS data, we downloaded Variant Call Format (VCF) files that include
the list of somatic SNVs identified by ICGC projects from the ICGC Data
Portal (https://dcc.icgc.org/repositories). We used only somatic SNVs that
had been consensually called by all four somatic variant detectors
employed in the ICGC project. For the AP variants, which should include
only highly probable somatic SNVs, we further filtered these variants based
on base qualities and the number of sequencing reads aligned at a variant
position, a filtering process referred to as the candidate search (see
Supplementary Materials and Methods). For the CHM1/CHM13 WGS data,
we downloaded relevant VCF files that included two germline SNV lists for
WGS data generated by Illumina and Pacific Bioscience (PacBio)
sequencers (https://github.com/lh3/CHM-eval/release). To obtain the AP
variants in the CHM1/CHM13 WGS data, we collected only the germline
variants supported by both sequencers and applied the aforementioned
filtering process for the ICGC WGS data to these variants (see
Supplementary Materials and Methods).

Identification of actual negative variants
AN SNVs derived from Illumina sequencer-specific errors were collected
by comparing two CHM1/CHM13 WGS datasets generated by the
Illumina and PacBio platforms. PacBio sequencer is based on long-read
sequencing and is useful for complementing the limitations of the short-
read sequencing of Illumina sequencer23. We identified highly probable
somatic variants in the Illumina-generated WGS data based on base
qualities and the number of sequencing reads aligned at a variant,
termed the candidate search (see Supplementary Materials and
Methods). Among these variants, we selected variants that were not
called as germline variants both in the Illumina-generated WGS data and
the PacBio-generated WGS data based on downloaded VCF files for
CHM1/CHM13 (see section “Identification of actual positive variants”).
These chosen variants were spiked into the tumor backbone WGS data to
simulate AN variants derived from Illumina sequencer-specific errors.
Another type of AN variant reflects the false positive somatic variants
derived from the random nature of the tumor and normal tissue
sampling and sequencing. More specifically, when both tumor and
normal tissues have a germline variant or sequencing errors at a certain
genomic position, sampling and sequencing can result in the sequencing
data in which the tumor WGS holds a higher number of reads that
include the variant than the normal WGS data, and this position can be
falsely identified as a somatic variant. This type of AN variant was
simulated during eWGS data generation. For certain positions at which
tumor eWGS data were not spiked in with any AP variants or AN variants
derived from Illumina sequencer-specific errors, the sequencing reads
from the high-coverage normal WGS data (200x NA12877 WGS data)
were randomly shuffled and divided into two groups to conform the
reads aligned to these positions in the tumor eWGS and normal eWGS
datasets, respectively. Due to the random nature of shuffling and
division, the tumor eWGS data may include a higher number of
sequencing reads with alternate alleles than the normal eWGS data at
some positions. While this creates alignments around these positions
that resemble somatic variants, these positions cannot be considered
true somatic variants since the aligned reads for both the tumor eWGS
and normal eWGS data were originally extracted from the same normal
WGS data with high sequencing depth. Therefore, these positions likely
represent sequencing errors or germline variants and are considered AN
variants.

H. Jeon et al.

1735

Experimental & Molecular Medicine (2023) 55:1734 – 1742

https://www.ebi.ac.uk/ena/browser/view/PRJEB3246
https://www.ebi.ac.uk/ena/browser/view/PRJEB3246
https://www.ebi.ac.uk/ena/browser/view/PRJEB13208
https://dcc.icgc.org/repositories
https://dcc.icgc.org/repositories
https://dcc.icgc.org/repositories
https://github.com/lh3/CHM-eval/release


Measuring the accuracy of somatic variant detection
To evaluate the accuracy of the somatic variant detection methods, we
calculated the area under the precision-recall (PR) curve (PR-AUC). For a
fair comparison, PR curves were extrapolated with a linear line toward a
precision of 0.0 and recall of 1.0 point (see Supplementary Materials and
Methods) before calculating PR-AUC. For the accuracy evaluation of
other somatic variant detectors, we used the default settings of
Mutect215 (v4.1.8.1), Strelka216 (v2.9.10), NeuSomatic21 (v0.1.4), MuSE17

(v1.0rc), VarScan218 (v2.4.4), and SomaticSniper19 (v1.0.5.0). For NeuSo-
matic, we used ‘NeuSomatic_v0.1.4_standalone_SEQC-WGS-GT50-Spi-
keWGS10.pth' (https://github.com/bioinform/neusomatic) as the model.
For accuracy evaluation, we utilized 34 TP and SD cases with nine TPs
(20–100% with a step size of 10%) and four SDs (30, 25, 20, and 15x). TPs
of 20% and 30% at an SD of 15 were excluded from the accuracy
evaluation because of insufficient variant-supporting reads for a
significant proportion of AP variants. To assess the test eWGS data for
a specific cancer tissue type, we masked AP variant positions from the
evaluation of the other eight cancer tissue types. For the evaluation of
pancreatic cancer, we used AP variants from two ICGC projects, PACA-AU
and PAEN-AU.

Public somatic variant benchmark dataset
We obtained the ICGC-TCGA DREAM Somatic Variant Calling Challenge
Synthetic Data325 BAM files (https://www.ncbi.nlm.nih.gov/sra/SRX1026041)
and truth somatic variant VCF files (https://www.synapse.org/#!
Synapse:syn2177211). Read trimming, read alignment, low-quality read
filtering, downsampling to an SD of 30, and simulation of various TPs and
SDs were performed on the extracted reads from the two downloaded BAM
files in a manner identical to that for the eWGS data (see Generation of
simulated WGS data with an extended set of variants). The 6391 AP variant
positions were obtained from the SNV positions in the downloaded truth
somatic variant VCF files. We obtained 50x NA12877 and NA12878 BAM
files22 (https://www.ebi.ac.uk/ena/browser/view/PRJEB3381) along with Plati-
num variant call VCF files (https://www.ebi.ac.uk/ena/browser/view/
PRJEB8596). The preprocessing, 30x downsampling, and simulation of
various TPs and SDs were performed identically to the construction of the
DREAM-Challenge dataset. AP variants were simulated by considering the
NA12878 BAM file as tumor sequencing data and the NA12877 BAM file as
normal sequencing data, identical to the procedure in previous studies16,20.
Specifically, the AP variants were derived from germline SNV positions of
NA12878, which are non-germline variant positions in NA12877. The
accuracy evaluation for somatic variant detection was restricted to the chr1
confidence regions of NA12877 and NA12878 with 92,748 AP variants.

Training models to analyze the impact of the extended
dataset of actual positive and negative variants
Three analyses were designed to assess the impact of three factors that
were simulated on the extended set of variants: (1) various TPs, (2) various
SDs, and (3) sequencer-specific sequencing errors. For each analysis, we
trained two models with the same architecture: the extended and baseline
models. In the analysis regarding various TPs, we trained a model on 9
different TPs ranging from 20–100% with a step size of 10% to create the
extended model. To compare the accuracies, the baseline model was
trained on a 100% TP. Both training datasets for the two models were
matched to a size of 49,000 AP and AN variants through downsampling for
a fair comparison. Similarly, in the analysis of the impact of various
sequencing depths, the extended model was trained on four different SDs,
15, 20, 25, and 30, while the baseline model was trained on only an SD of
30. The training datasets were downsampled to 33,500 samples each. For
sequencer-specific sequencing errors, the baseline model was trained on a
subset of AP and AN variants that were not derived from sequencer-
specific sequencing errors. In contrast, the extended model was trained on
the entire set of AP and AN variants, including those derived from
sequencer-specific sequencing errors. Both training datasets were down-
sampled to 137, 500 samples each.

RESULTS
Generation of a substantially extended dataset of actual
positive and negative variants and training of a deep
learning model
To generate a high-quality dataset of actual positive (AP) variants,
we obtained tumor WGS data for a large number of patients with

cancer from the International Cancer Genome Consortium (ICGC).
We then identified a subset of tumor WGS data with a tumor
purity (TP) close to 100% by observing the overall distribution of
variant allele frequencies (see section “Materials and methods”)
and regarded the detected somatic variants in the WGS data as AP
variants (Fig. 1a). As discussed earlier, WGS data generally include
a large number of false positives originating from sequencer-
specific sequencing errors. We collected Illumina sequencer-
specific sequencing errors by comparing a pair of WGS data
generated for a single sample both by Illumina and Pacific
Bioscience (PacBio) sequencers and regarded these as actual
negative (AN) variants (Fig. 1b). These AN variants showed a
unique triplet nucleotide distribution compared to other variants
(Supplementary Fig. 1). This finding suggests that a distinct and
sequencer-specific process is likely responsible for the occurrence
of these AN variants. By spiking a group of sequencing reads that
encompassed the collected AP and AN variants into a single 30x
WGS backbone, we generated simulated WGS data that included
AP and AN variants as well as their paired normal WGS data. For
each WGS pair, an in silico simulation, by serially mixing the tumor
WGS data and their paired normal WGS data for various simulated
relative fractions between two WGS datasets, was performed to
generate simulated tumor WGS data that accurately reflected
various TPs. Similarly, simulated tumor WGS data precisely
accounting for various sequencing depths (SDs) were generated
(Fig. 1c). Accordingly, these simulated WGS data included an
extended set of AP variants that covers a wide range of TPs and
SDs, as well as an extended set of AN variants derived from
sequencer-specific sequencing errors. We named these simulated
WGS data with an extended set of variants eWGS data. The eWGS
data were expected to be enriched for AP and AN variants
identified in tumor samples obtained from patients with actual
cancer. By training a deep learning model on an extended set of
variants from the eWGS dataset, AIVariant learned these complex
and realistic features of actual tumor samples. AIVariant used two
types of data matrices as inputs to the deep learning model. The
first data matrix, termed an AIVariant image, included raw features
of sequencing reads around a variant, representing a complete
picture of alignments around the variant, but the number of reads
that can be represented is limited by a certain fixed height, 100 in
the current version of AIVariant, of the data matrix. On the other
hand, the second data matrix, termed an AIVariant stat image,
included summarized features of sequencing reads around a
variant, designed to compensate for the limitation of the first data
matrix by statistically summarizing features of all the aligned reads
around the variant (Supplementary Fig. 2a). The deep learning
model of AIVariant utilized residual network26 encoders for each of
two data matrices and merged the encoded information with a
fully connected network (Supplementary Fig. 2b).

Accurate detection of somatic variants under low tumor purity
and low sequencing depth
To evaluate the somatic variant detection accuracy of AIVariant,
we compared its accuracy with that of previously developed and
widely used detectors, including Mutect215, Strelka216, MuSE17,
VarScan218, SomaticSniper19, and NeuSomatic20,21, on test eWGS
data (see section “Materials and methods”). AIVariant outper-
formed the other detectors across all the examined TPs and SDs
(Fig. 2a, b, and Supplementary Fig. 3a–d). Notably, AIVariant
exhibited substantially high accuracy at low TPs and SDs. For
instance, with 40% TP and an SD of 15, AIVariant achieved an area
under the precision-recall curve (PR-AUC) of 0.794, whereas the
other detectors achieved PR-AUC values of 0.048 to 0.524 (Fig. 2b).
The difference in accuracy between AIVariant and the other
detectors tended to increase as TP or SD decreased. With an SD of
30 and TPs of 100, 80, 60, 40, and 20%, the PR-AUCs of AIVariant
were 0.010, 0.022, 0.043, 0.086, and 0.165 higher, respectively,
than that of the second best-performing detector in each case.
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Similarly, with a 100% TP and SDs of 30, 25, 20, and 15, the PR-AUC
difference between AIVariant and the second best-performing
detector in each case was 0.010, 0.018, 0.044, and 0.090,
respectively (Fig. 2a, b and Supplementary Fig. 3a–d). When
evaluating test eWGS data for a specific cancer tissue type,
AIVariant still demonstrated the highest PR-AUC across all the
examined TPs and SDs, regardless of the tissue type. With a 100%
TP and an SD of 30, AIVariant achieved PR-AUCs of ≥0.999 for each
tissue type. With a 40% TP and an SD of 15, AIVariant achieved PR-
AUCs of 0.804, 0.801, 0.763, 0.755, and 0.755 for pancreatic, liver,
skin, ovarian, and pediatric brain cancers, respectively (Supple-
mentary Fig. 3e, f).

Validation of somatic variant detection accuracy on
independent public datasets
To demonstrate the generalizability of AIVariant, we evaluated its
accuracy on two publicly available benchmark datasets, DREAM-
Challenge25 and Platinum Genomes22. Both are widely used for
the evaluation of somatic variant detection accuracy16,20 and are
completely independent of AIVariant because they are not used in
its training step. Again, AIVariant outperformed the other
detectors across all the examined TPs and SDs on the DREAM-
Challenge dataset evaluation (Fig. 3a, b and Supplementary Fig.
4a–d). For example, with a 100% TP and an SD of 30, AIVariant
achieved a PR-AUC of 0.930, whereas the other detectors achieved
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Fig. 1 Generation of a substantially extended dataset of actual positive and negative variants. a The identification of actual positive single
nucleotide variants (SNVs) from patients with cancer. Consensually-called somatic SNVs from ICGC tumor WGS data were utilized to identify
the actual positive SNVs (see section “Materials and methods”). Sequencing reads derived from tumor cells are shown in light blue, while
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dataset with an extended set of variants (eWGS). By spiking a group of sequencing reads that encompassed actual positive and negative SNVs
into a single 30x WGS backbone, the tumor WGS dataset was generated. For normal and tumor WGS data, various TP and SDs were simulated.
The eWGS dataset was split into two independent datasets, the training and test eWGS data (see section “Materials and methods”).

H. Jeon et al.

1737

Experimental & Molecular Medicine (2023) 55:1734 – 1742



PR-AUCs of 0.601–0.928 (Fig. 3a). With a 40% TP and an SD of 15,
AIVariant achieved a PR-AUC of 0.580, whereas the other detectors
achieved PR-AUCs ranging from 0.087 to 0.547 (Fig. 3b). AIVariant
demonstrated the best accuracy for 17 out of 34 cases in the
Platinum Genomes dataset evaluation. Although AIVariant was not
always the top performer, the measured accuracy difference
between AIVariant and the best-performing detector in each case
was negligible (Fig. 3c, d and Supplementary Fig. 4e–h). Most
detectors exhibited high accuracy on the Platinum Genomes
dataset compared to the test eWGS and DREAM-Challenge
datasets. This is perhaps due to inflated precision caused by the
unrealistically high number of AP variants in the Platinum
Genomes dataset (see section “Discussion”).

The impact of the extended dataset of actual positive and
negative variants on somatic variant detection
We designed three analyses to investigate the impact of crucial
factors that were systematically simulated in the extended set of
variants: (1) various TPs, (2) various SDs, and (3) sequencer-specific
sequencing errors. Each analysis compares the accuracy of two
models: the extended model that incorporates all three factors and
the baseline model that takes only two of the three factors into
account (see section “Materials and methods”). Using PR-AUC as the
accuracy metric, we compared two models on the test eWGS data in
various cases: SD of 30 and 100% TP, SD of 30 and 20% TP, SD of 15
and 100% TP, and SD of 15 and 40% TP. In the first analysis, the
extended model that took various TPs into account exhibited
significantly better accuracies for low TPs than the baseline model,
while the accuracies of the two models for high TPs showed

marginal differences (Fig. 4a). This illustrates the effectiveness of the
extended set, as the training dataset of the extended model had a
significantly lower number of AP and AN variants from high TPs than
the baseline model, which exclusively consisted of AP and AN
variants from high TPs. The second analysis yielded similar results:
the extended model, which considered various SDs, exhibited
significantly better accuracies for low SDs than the baseline model,
while the differences in accuracies for high SDs were marginal (Fig.
4b). The third analysis showed that including AN variants derived
from sequencer-specific errors led to a detectable improvement in
accuracy, as the extended model had better accuracies across all the
evaluated cases (Fig. 4c). Taken together, these results explicitly
illustrate that the extended set of variants, which encompasses a
broad range of TPs, SDs, and sequencing errors specific to the
sequencer, enhances the overall detection accuracy for somatic
variants, particularly in tumor samples with lower TPs or SDs.

DISCUSSION
The observed higher detection accuracy of AIVariant emphasizes the
significance of a more comprehensive training dataset that consists
of a wide range of TPs, SDs, and sequencer-specific sequencing
errors, reflected in the extended set of variants for AIVariant. In
particular, the high accuracy of AIVariant for low SDs suggests a cost-
effective solution for cancer diagnosis by allowing the use of lower
SDs when generating WGS data without a sacrifice in detection
accuracy, highlighting the potential clinical utility of our method.
AIVariant incorporated Illumina sequencer-specific sequencing
errors in comparison with PacBio WGS data, improving the detection

a

b

0.00
0.25
0.50
0.75
1.00

AU
C

0.
95

0
0.

83
8

0.
83

1
0.

76
6

0.
86

0
0.

50
6

0.
64

4

0.00
0.25
0.50
0.75
1.00

AU
C

0.
93

0
0.

75
5

0.
74

6
0.

73
2

0.
80

5
0.

31
5

0.
52

8

0.00
0.25
0.50
0.75
1.00

AU
C

0.
88

7
0.

62
3

0.
59

2
0.

64
7

0.
71

1
0.

13
3

0.
35

1

0.00
0.25
0.50
0.75
1.00

AU
C

0.
79

4
0.

41
6

0.
36

7
0.

47
4

0.
52

4
0.

04
8

0.
12

7

NeuSomatic

Strelka2

SomaticSniper

VarScan2

Mutect2

MuSE

AIVariant

0.00
0.25
0.50
0.75
1.00

AU
C

1.
00

0
0.

99
0

0.
98

7
0.

91
7

0.
98

4
0.

91
9

0.
89

0

0.00
0.25
0.50
0.75
1.00

AU
C

0.
99

7
0.

97
5

0.
97

2
0.

91
2

0.
97

5
0.

82
9

0.
82

9

0.00
0.25
0.50
0.75
1.00

AU
C

0.
98

5
0.

93
7

0.
93

8
0.

88
0

0.
94

2
0.

61
1

0.
68

7

0.00
0.25
0.50
0.75
1.00

AU
C

0.
94

5
0.

84
8

0.
82

5
0.

78
9

0.
85

9
0.

23
5

0.
35

7

0.00
0.25
0.50
0.75
1.00

AU
C

0.
75

9
0.

54
1

0.
59

4
0.

44
2

0.
54

6
0.

01
5

0.
02

7

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n
TP:100%

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

TP:80%

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

TP:60%

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

TP:40%

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

TP:20%

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

TP:100%

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

TP:80%

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
is

io
n

TP:60%

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

TP:40%

SD:30

SD:15

Fig. 2 Somatic variant detection accuracy on test eWGS data. Evaluation of somatic variant detection accuracy on test eWGS data. The PR
curve (top) and PR-AUC (bottom) are shown for each TP and SD case (see Supplementary Fig. 3 for cases not shown). a SD of 30 and TPs of
100, 80, 60, 40, and 20%; b SD of 15 and TPs of 100, 80, 60, and 40%.

H. Jeon et al.

1738

Experimental & Molecular Medicine (2023) 55:1734 – 1742



a

b

c

d

0.00
0.25
0.50
0.75
1.00

AU
C

0.
93

0
0.

92
8

0.
91

0
0.

89
3

0.
90

4
0.

60
1

0.
66

0

0.00
0.25
0.50
0.75
1.00

AU
C

0.
90

9
0.

89
3

0.
87

3
0.

87
8

0.
86

6
0.

55
4

0.
54

5

0.00
0.25
0.50
0.75
1.00

AU
C

0.
87

3
0.

83
6

0.
81

4
0.

84
1

0.
80

2
0.

47
5

0.
39

3

0.00
0.25
0.50
0.75
1.00

AU
C

0.
80

0
0.

74
0

0.
71

1
0.

76
4

0.
70

6
0.

35
0

0.
17

8

0.00
0.25
0.50
0.75
1.00

AU
C 0.

64
6

0.
57

6
0.

50
5

0.
60

2
0.

56
5

0.
17

3
0.

02
9

0.00

0.25

0.50

0.75

1.00

AU
C

0.
76

6
0.

69
7

0.
59

9
0.

67
8

0.
70

3
0.

26
5

0.
44

1

0.00

0.25

0.50

0.75

1.00

AU
C

0.
72

5
0.

65
2

0.
53

9
0.

64
9

0.
66

8
0.

25
8

0.
34

2

0.00

0.25

0.50

0.75

1.00

AU
C

0.
66

2
0.

58
6

0.
45

6
0.

60
0

0.
61

1
0.

25
0

0.
21

5

0.00

0.25

0.50

0.75

1.00

AU
C 0.

58
0

0.
50

7
0.

34
0

0.
52

6
0.

54
7

0.
25

0
0.

08
7

0.00
0.25
0.50
0.75
1.00

AU
C

0.
97

9
0.

93
3

0.
95

5
0.

97
4

0.
97

9
0.

97
3

0.
98

6

0.00
0.25
0.50
0.75
1.00

AU
C

0.
97

8
0.

93
3

0.
95

2
0.

97
3

0.
97

5
0.

96
3

0.
98

2

0.00
0.25
0.50
0.75
1.00

AU
C

0.
97

3
0.

92
7

0.
94

0
0.

96
7

0.
96

5
0.

91
2

0.
96

8

0.00
0.25
0.50
0.75
1.00

AU
C

0.
95

7
0.

90
3

0.
89

7
0.

94
7

0.
92

4
0.

74
9

0.
89

5

0.00
0.25
0.50
0.75
1.00

AU
C

0.
86

3
0.

78
6

0.
75

9
0.

82
8

0.
75

5
0.

55
5

0.
66

2

0.00
0.25
0.50
0.75
1.00

AU
C

0.
90

8
0.

92
1

0.
90

5
0.

94
3

0.
93

5
0.

92
2

0.
97

5

0.00
0.25
0.50
0.75
1.00

AU
C

0.
90

0
0.

91
5

0.
87

7
0.

93
7

0.
90

8
0.

89
5

0.
95

8

0.00
0.25
0.50
0.75
1.00

AU
C

0.
88

3
0.

89
8

0.
82

0
0.

91
7

0.
85

4
0.

83
0

0.
91

1

0.00
0.25
0.50
0.75
1.00

AU
C

0.
83

6
0.

85
0

0.
72

4
0.

86
1

0.
75

2
0.

71
0

0.
80

1

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

TP:100%

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

TP:80%

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

TP:60%

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

TP:40%

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

TP:20%

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

TP:100%

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

TP:80%

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

TP:60%

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

TP:40%

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

TP:100%

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

TP:80%

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

TP:60%

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

TP:40%

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

TP:20%

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

TP:100%

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

TP:80%

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

TP:60%

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

TP:40%

NeuSomatic

Strelka2

SomaticSniper

VarScan2

Mutect2

MuSE

AIVariant

NeuSomatic

Strelka2

SomaticSniper

VarScan2

Mutect2

MuSE

AIVariant

SD:30

SD:30

SD:15

SD:15

Fig. 3 Validation of somatic variant detection accuracy on public benchmark datasets. Evaluation of somatic variant detection accuracy on
the DREAM-Challenge and Platinum Genomes datasets (see Supplementary Fig. 4 for cases not shown). Accuracy for the DREAM-Challenge
dataset. a SD of 30 and TPs of 100, 80, 60, 40, and 20%; b SD of 15 and TPs of 100, 80, 60, and 40%. Accuracy for the Platinum Genomes
dataset. c SD of 30 and TPs of 100, 80, 60, 40, and 20%; d SD of 15 and TPs of 100, 80, 60, and 40%.

H. Jeon et al.

1739

Experimental & Molecular Medicine (2023) 55:1734 – 1742



accuracy across various TPs and SDs. This approach can be easily
applied to include frequent sequencing errors from other sequen-
cers such as PacBio, MGI, and Oxford Nanopore by using WGS data
from these sequencing platforms. To the best of our knowledge,
previous methods have not incorporated sequencer-specific

sequencing errors in such a systematic and scalable manner. While
AIVariant outperformed the other methods on most of the
examined datasets, a few methods showed better accuracy, albeit
marginal, on the Platinum Genomes dataset. This could be
attributed to the presence of an unrealistically high number of AP
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variants in the Platinum Genomes dataset, ~1.2 million AP variants
per sample in contrast to ~5000 AP variants per sample for the
ICGC/TCGA Pan-Cancer Analysis of Whole Genome Consortium24,
which may have allowed other methods to leniently predict as many
variants as possible, thereby overly inflating precision. Methods that
apply this kind of strategy would experience deteriorating precision
on datasets with more realistic numbers of AP variants. Indeed,
these methods exhibited lower detection precisions and overall
accuracies when evaluated on our test eWGS data and the DREAM-
Challenge dataset, which include more realistic numbers of AP
variants than the Platinum Genomes dataset. Both the eWGS and
DREAM-Challenge datasets have ~6000 AP variants per sample. In
this study, our method focused on single nucleotide variations
(SNVs), since SNVs are the most frequently discovered and thus most
responsible type of somatic variants in cancer genomes27,28.
However, other types of somatic variants, such as small insertions/
deletions and structural variations, may additionally hold crucial
information for the cancer genome landscape. Because our current
deep-learning approach that constructs an extended set of variants
can be easily applied to other variant types, we are planning to
expand our approach to other types of variants to make AIVariant
more comprehensive and accurate than the current version. In
conclusion, AIVariant demonstrates state-of-the-art accuracy for
somatic variant detection and therefore is expected to be useful for
cancer research, diagnosis, and therapeutics.

DATA AVAILABILITY
The source code and data are available on GitHub (https://github.com/Genome4me/
AIVariant).

CODE AVAILABILITY
The source code and data are available on GitHub (https://github.com/Genome4me/
AIVariant).

REFERENCES
1. Joyce, J. A. & Pollard, J. W. Microenvironmental regulation of metastasis. Nat. Rev.

Cancer 9, 239–252 (2009).
2. Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells

recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012).
3. Labani-Motlagh, A., Ashja-Mahdavi, M. & Loskog, A. The Tumor microenviron-

ment: a milieu hindering and obstructing antitumor immune responses. Front.
Immunol. 11, 940 (2020).

4. Carter, S. L. et al. Absolute quantification of somatic DNA alterations in human
cancer. Nat. Biotechnol. 30, 413–421 (2012).

5. Aran, D., Sirota, M. & Butte, A. J. Systematic pan-cancer analysis of tumour purity.
Nat. Commun. 6, 8971 (2015).

6. Zheng, X., Zhang, N., Wu, H. J. & Wu, H. Estimating and accounting for tumor purity in
the analysis of DNA methylation data from cancer studies. Genome Biol. 18, 17 (2017).

7. Li, Y. et al. Putative biomarkers for predicting tumor sample purity based on gene
expression data. BMC Genomics 20, 1021 (2019).

8. Gordon, L. G. et al. Estimating the costs of genomic sequencing in cancer control.
BMC Health Serv. Res. 20, 492 (2020).

9. Nakamura, K. et al. Sequence-specific error profile of Illumina sequencers. Nucleic
Acids Res. 39, e90 (2011).

10. Schirmer, M. et al. Insight into biases and sequencing errors for amplicon
sequencing with the Illumina MiSeq platform. Nucleic Acids Res. 43, e37 (2015).

11. Stoler, N. & Nekrutenko, A. Sequencing error profiles of Illumina sequencing
instruments. NAR Genom. Bioinform. 3, lqab019 (2021).

12. Minoche, A. E., Dohm, J. C. & Himmelbauer, H. Evaluation of genomic high-
throughput sequencing data generated on Illumina HiSeq and genome analyzer
systems. Genome Biol. 12, R112 (2011).

13. Tan, G., Opitz, L., Schlapbach, R. & Rehrauer, H. Long fragments achieve lower
base quality in Illumina paired-end sequencing. Sci. Rep. 9, 2856 (2019).

14. Treangen, T. J. & Salzberg, S. L. Repetitive DNA and next-generation sequencing:
computational challenges and solutions. Nat. Rev. Genet. 13, 36–46 (2011).

15. Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and
heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013).

16. Kim, S. et al. Strelka2: fast and accurate calling of germline and somatic variants.
Nat. Methods 15, 591–594 (2018).

17. Fan, Y. et al. MuSE: accounting for tumor heterogeneity using a sample-specific
error model improves sensitivity and specificity in mutation calling from
sequencing data. Genome Biol. 17, 178 (2016).

18. Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration
discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).

19. Larson, D. E. et al. SomaticSniper: identification of somatic point mutations in
whole genome sequencing data. Bioinformatics 28, 311–317 (2012).

20. Sahraeian, S. M. E. et al. Deep convolutional neural networks for accurate somatic
mutation detection. Nat. Commun. 10, 1041 (2019).

21. Sahraeian, S. M. E. et al. Achieving robust somatic mutation detection with deep
learning models derived from reference data sets of a cancer sample. Genome
Biol. 23, 12 (2022).

22. Eberle, M. A. et al. A reference data set of 5.4 million phased human variants
validated by genetic inheritance from sequencing a three-generation 17-member
pedigree. Genome Res. 27, 157–164 (2017).

23. Li, H. et al. A synthetic-diploid benchmark for accurate variant-calling evaluation.
Nat. Methods 15, 595–597 (2018).

24. The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer
analysis of whole genomes. Nature 578, 82–93 (2020).

25. Ewing, A. D. et al. Combining tumor genome simulation with crowdsourcing to
benchmark somatic single-nucleotide-variant detection. Nat. Methods 12,
623–630 (2015).

26. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In:
2016 IEEE conference on computer vision and pattern recognition (CVPR), pp.
770–778, https://doi.org/10.1109/CVPR.2016.90 (IEEE, Las Vegas, NV, USA, 2016).

27. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).
28. Nik-Zainal, S. et al. Landscape of somatic mutations in 560 breast cancer whole-

genome sequences. Nature 534, 47–54 (2016).

ACKNOWLEDGEMENTS
We express our gratitude to Sangho Park from Genome4me Inc. for valuable advice
and fruitful discussions regarding software development and optimization for
AIVariant. This study was supported by the National Research Foundation of Korea
(NRF), funded by the Ministry of Science and ICT, Republic of Korea (NRF-
2014M3C9A3063541, NRF-2019M3E5D3073104, NRF-2020R1A2C3007032, NRF-
2020R1A5A1018081, and NRF-2022M3A9I2082294), by the Korea Health Industry
Development Institute (KHIDI), funded by the Ministry of Health and Welfare,
Republic of Korea (HI15C3224), by the Technology development Program, funded by
the Ministry of SMEs and Startups, Republic of Korea (RS-2023-00258711), and by
KREONET (Korea Research Environment Open NETwork), managed and operated by
KISTI (Korea Institute of Science and Technology Information).

AUTHOR CONTRIBUTIONS
Conceptualization by D.B.; Software development by H.J., J.A., B.N., and S.H.;
Investigation, formal analysis, and data curation by H.J. and J.A.; Writing by H.J., J.A.,
and D.B.; Visualization by J.A.; Supervision and project administration by L.S., S.K., S.Y.,
and D.B.; Resources and funding acquisition by D.B.

COMPETING INTERESTS
Patent applications on this invention, of which H.J., J.A., and D.B. are the inventors,
have been filed. The remaining authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s12276-023-01049-2.

Correspondence and requests for materials should be addressed to Daehyun Baek.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

H. Jeon et al.

1741

Experimental & Molecular Medicine (2023) 55:1734 – 1742

https://github.com/Genome4me/AIVariant
https://github.com/Genome4me/AIVariant
https://github.com/Genome4me/AIVariant
https://github.com/Genome4me/AIVariant
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1038/s12276-023-01049-2
http://www.nature.com/reprints
http://www.nature.com/reprints


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023, corrected publication 2025

H. Jeon et al.

1742

Experimental & Molecular Medicine (2023) 55:1734 – 1742

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	AIVariant: a deep learning-based somatic variant detector for highly contaminated tumor samples
	Introduction
	Materials and methods
	Somatic variant detection
	Generation of simulated whole genome sequencing data with an extended set of variants (eWGS)
	Identification of actual positive variants
	Identification of actual negative variants
	Measuring the accuracy of somatic variant detection
	Public somatic variant benchmark dataset
	Training models to analyze the impact of the extended dataset of actual positive and negative variants

	Results
	Generation of a substantially extended dataset of actual positive and negative variants and training of a deep learning model
	Accurate detection of somatic variants under low tumor purity and low sequencing depth
	Validation of somatic variant detection accuracy on independent public datasets
	The impact of the extended dataset of actual positive and negative variants on somatic variant detection

	Discussion
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




