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Multi-class semantic segmentation
of breast tissues from MRI images
using U-Net based on Haar wavelet
pooling

Kwang Bin Yang?, Jinwon Lee? & Jeongsam Yang3*

MRIimages used in breast cancer diagnosis are taken in a lying position and therefore are
inappropriate for reconstructing the natural breast shape in a standing position. Some studies have
proposed methods to present the breast shape in a standing position using an ordinary differential
equation of the finite element method. However, it is difficult to obtain meaningful results because
breast tissues have different elastic moduli. This study proposed a multi-class semantic segmentation
method for breast tissues to reconstruct breast shapes using U-Net based on Haar wavelet pooling.
First, a dataset was constructed by labeling the skin, fat, and fibro-glandular tissues and the
background from MRI images taken in a lying position. Next, multi-class semantic segmentation

was performed using U-Net based on Haar wavelet pooling to improve the segmentation accuracy
for breast tissues. The U-Net effectively extracted breast tissue features while reducing image
information loss in a subsampling stage using multiple sub-bands. In addition, the proposed network
is robust to overfitting. The proposed network showed a mIOU of 87.48 for segmenting breast tissues.
The proposed networks demonstrated high-accuracy segmentation for breast tissue with different
elastic moduli to reconstruct the natural breast shape.

The International Agency for Research on Cancer has reported that breast cancer is one of the most prevalent
cancers worldwide, accounting for 11.7% of all cancer cases'. Due to the increasing rates of breast cancer and
therefore of mastectomy, the demand for breast reconstruction surgery is continuously increasing. In the prepa-
ration stage for breast reconstruction surgery, it is necessary to obtain the natural breast shape in a standing
position before mastectomy. However, plastic surgeons can access only magnetic resonance imaging (MRI) or
computed tomography (CT) images taken with a patient lying in a prone position during the examination pro-
cess. Consequently, they are limited in producing a natural-shaped breast implant in the standing position solely
from images in a prone position. To overcome this limitation, studies have been conducted on reconstructing
breast shapes in the standing position from prone-position MRI images by obtaining an approximate solution
through an ordinary differential equation of the finite element method for deformations caused by the center
of gravity acting on the breast>*. However, it is difficult to obtain meaningful results from these studies for the
natural breast shape in a standing position because elastic moduli of breast tissues such as skin, fat, and fibro-
glandular tissue affected by gravity are different from every other.

To address this issue, this study proposed a deep learning network using U-Net based on Haar wavelet pooling
to segment breast tissues for reconstructing the breast shape in a standing position. To train the deep learning net-
work, we constructed a dataset consisting of background, skin, fat, and fibro-glandular tissues from MRI breast
images. For labeling the dataset, the median filter, Otsu’s threshold algorithm, and a template-based segmentation
method were used. In the subsampling stage of the conventional U-Net, weak information about the breast tissue
may be lost as the max pooling is sensitive to overfitting. This may cause a significant error during data segmen-
tation. To improve the segmentation accuracy of breast tissues, we utilized the Haar wavelet pooling instead of
the max pooling to be robust for overfitting. The U-Net based on Haar wavelet pooling simultaneously uses a
low-low (LL) sub-band that holds approximate values of the input image and three distinct frequency sub-bands
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[low-high (LH), high-low (HL), and high-high (HH)] with detailed edge feature information. Therefore, it can
effectively extract features of breast tissues by reducing the loss of image information in the subsampling stage.
It also implements a deep learning network that is robust to overfitting.

Various experiments with max pooling and average pooling were conducted to compare the performance
of the proposed network and other networks described in previous studies for segmenting breast tissues. The
proposed U-Net based on Haar wavelet pooling achieved a mean intersection over union (mlIoU) of 87.48,
which was higher than those of other methods. Segmented images not only provide basic information needed
to reconstruct 3D breast shapes but also help plastic surgeons make a more accurate diagnosis.

Literature review

Deep learning-based breast tissue segmentation method. Currently, we are observing noteworthy
advances in deep learning-based image segmentation and detection for ultrasound images, CT images, and
MRI*. Furthermore, deep learning research based on medical imaging is being utilized in various fields includ-
ing the heart, lungs, brain, and breast’. Nonetheless, the segmentation of breast MRI images is advancing at a
slower pace. Previous studies on breast image analysis have used binary segmentation methods to diagnose
breast diseases such as breast cancer and breast tumors®-'%. However, such methods were time-consuming and
labor-intensive because the region of interest (ROI) for the breast tissue was manually set. Moreover, these meth-
ods had a disadvantage in that the quality of segmented tissues varied depending on the skill level of the worker
and the algorithm used. Recently, various deep learning-based algorithms have been introduced for medical
image processing to overcome such disadvantages.

Table 1 summarizes segmentation methods for breast tissues based on deep learning with MRI breast images
used in previous studies. Most deep learning-based networks that segment breast tissues modified the U-Net!” to
perform segmentation for a single class, such as breast cancer, breast tumor, and breast density. To detect breast
cancer in digital mammography, Soulami et al. have improved the segmentation performance by proposing a
deep learning network based on the end-to-end U-Net method!". Further, to segment tumors in breast ultrasound
images, Negi et al. have used a deep learning network called RDA-U-Net and the Wasserstein GAN algorithm
and reported remarkable performance'? Ilesanmi et al. have proposed a variant-enhanced block that combines
max pooling and average pooling to segment tumors in breast ultrasound images, consequently improving the
accuracy of semantic segmentation for tumors using the VEU-Net network!?.

Many studies have been conducted to segment fibro-glandular tissues known to account for a large propor-
tion of breast tissues using deep learning. Zhang et al. have segmented fat and fibro-glandular tissues from MRI
breast images using a U-Net'*. Subsequently, Zhang et al. have improved the segmentation accuracy by perform-
ing transfer learning for fat and fibro-glandular tissues in a deep learning model that segments breast density of
MRI breast images'®. Huo et al. have improved the segmentation accuracy of fibro-glandular tissues by adopting
nnU-Net to segment the entire breast and fibro-glandular tissues in DCE-MRI breast images'®.

In contrast to most previous studies that used binary segmentation methods, our study performed multi-class
semantic segmentation through U-Net based on Haar wavelet pooling to segment various types of breast tissues
for breast shape reconstruction.

Deep learning method based on wavelet pooling forimages. The wavelet pooling used in the sam-
pling operation of deep learning algorithms has the advantage of decreasing the effect of noise on segmentation
by filtering the input image before sampling. Previous studies have conducted various image segmentation tasks
by combining wavelet pooling and deep learning'®'®. Table 2 summarizes improved performances of image
classification, segmentation, recognition, and restoration using wavelet pooling-based deep learning in previous
studies.

Previous studies have proposed an unsupervised image fusion algorithm for image restoration and classifica-
tion that combines a deep learning network with a multi-scale discrete wavelet transform?*-22, Suryanarayana
et al. have converted low-resolution MRI images into high-resolution MRI images by combining VDR-Net with
wavelet pooling that uses both low and high frequencies®. Alijamaat et al. have combined U-Net with wavelet
pooling of low-frequency component (LL band) characterized by high image pixel concentration while maintain-
ing the overall trend of images to improve the segmentation performance for multiple sclerosis of the brain.
Zhao et al. have improved the performance of congenital heart disease diagnosis in pediatric echocardiography
images by combining low-frequency information of multi-scale wavelet with WU-Net®.

Related study Backbone model Input images # of segment classes including background Segmented tissue
Soulami et al."! End-to-end U-Net Mammogram 2 Breast cancer
Negi et al.? RDA-U-Net ul B 2 Breast tumor
trasoun
Ilesanmi et al.”® VEU-Net 2 Breast tumor
Zhang et al.' U-Net 3 Fat, fibro-glandular tissue
Zhang et al."” U-Net (transfer learning) MRI 3 Fat, fibro-glandular tissue
Huo et al.'® nnU-Net 3 Fat, fibro-glandular tissue
Ours Haar wavelet pooling U-Net MRI 4 Skin, fat, fibro-glandular tissue

Table 1. Comparison of deep learning-based segmentation methods for breast tissues in existing studies.
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Related study | Deep learning purpose | Wavelet transform Deep learning type Image dataset

Liu et al.?® Image fusion Discrete wavelet transform CNN COCO

Liu et al.?! Image restoration Multi-level wavelet transform | Multi-level wavelet CNN Berkeley segmentation dataset, DIV2K, Waterloo exploration database
Lietal.?? Image classification Discrete wavelet transform CNN MNIST, CIFAR-10, SHVN, KDEF

2:1;{?? arayana Super resolution Stationary wavelet transform | VDR-Net ﬁ;g{ll\l/ﬁ{l{cllatase 0

Alijamaat et al.** | Semantic segmentation | Discrete wavelet transform U-Net Brain MRI (MICCAI dataset)

Zhao et al.® Semantic segmentation | Multi-scale wavelet transform | WU-Net Pediatric echocardiographic (CAMUS dataset)

Ours

Semantic segmentation

Discrete wavelet transform

Haar wavelet pooling U-Net

Breast MRI (TCIA breast diagnosis)

Table 2. Comparison of deep learning methods based on wavelet pooling for images.

Existing studies cited above have demonstrated that the combination of wavelet pooling and deep learning
algorithms can improve image performance in various applications such as classification, segmentation, recogni-
tion, and restoration. This study improves the semantic segmentation performance for breast tissues by combin-
ing Haar wavelet pooling with U-Net. In particular, the image output through the high-frequency filter of wavelet
pooling can effectively express locations of breast tissues and micro-soft tissues by emphasizing edge features for
vertical, horizontal, and diagonal components. Furthermore, the characteristics of fine breast tissues are well-
preserved because the image output through the low-frequency filter has approximate values of the input image.

Design of deep learning network for segmentation

Overview. This paper proposed a multi-class semantic segmentation method for breast tissues to recon-
struct breast shapes in a standing position using U-Net based on Haar wavelet pooling. Labeled breast tissue
data are necessary to train deep learning networks. MRI images, which are essential for breast cancer screening,
have higher resolution and lower noise than CT or ultrasound images. Moreover, MRI images are effective for
representing and segmenting micro-soft tissues such as fat and fibrous granular variants in the breast.

Figure 1 shows the breast tissue segmentation process based on a deep learning network for breast shape
reconstruction. In the first step, MRI images in Digital Imaging Communication in Medicine (DICOM) for-
mat were collected. In the second step, breast tissues from collected MRI breast images were labeled to build
a dataset for training the deep learning network. Labeling steps included removing noise from the MRI image
with a median filter using Otsu’s threshold algorithm, expanding to all MRI images through the template-based
segmentation method based on the segmented tissues, and verifying labels by a radiologist. In the third step,
U-Net based on Haar wavelet pooling was designed to segment breast tissues for breast shape reconstruction.
This study combined U-Net with Haar wavelet pooling to improve the multi-class semantic segmentation per-
formance for MRI breast images. The U-Net based on Haar wavelet pooling uses the LL sub-band, which holds
an approximate value of the input image, and three distinct frequency sub-bands (LH, HL, and HH), which
have detailed edge features. Therefore, breast tissue features could be effectively extracted by reducing the loss of
image information in the subsampling. The U-Net based on Haar wavelet pooling was trained with constructed
datasets, and its performance was then tested.

Building an MRI dataset for breast tissue segmentation. A set of data, including labels for every
pixel of the MRI data, is required for breast tissue segmentation with deep learning. In this study, an MRI data-
set was collected from the breast diagnosis database* of The Cancer Imaging Archive (TCIA), an open-access
database for medical images for cancer research. The breast diagnosis database contains medical images of breast
cancer patients as well as cases of breast diagnosis such as high-risk normal, DCIS, fibroids, and lobular carci-
nomas. Each image was captured with three pulses (T2, STIR, BLISS) using a Phillips 1.5 T MRI system. Breast
MRI images of 89 breast cancer patients were obtained at 2 mm intervals at resolutions of 500 to 600 DPI, with
80 to 90 MRI slices per person. This study used MRI slice images of T2-weighted pulse sequences data.

Figure 2 shows a step-by-step process of labeling breast tissues from MRI slice images. The breast tissue should
be segmented into skin, fat, fibro-glandular tissue, and background because the upper part of the pectoral muscle
is incised in a mastectomy. MRI images often suffer from the presence of salt and pepper noise, which is a type
of impulse noise that appears as random white or black dots and can distort the image. To address this issue,
we employed a median filter, which is known to be effective in removing point noise. Specifically, we applied
the median filter to the slice image, as illustrated in Fig. 2a, to eliminate the salt and pepper noise and improve
the image quality. As a result, we were able to obtain more accurate and reliable data for further processing
and analysis. Otsu’s threshold algorithm was used to segment breast tissues from denoised MRI images. This
algorithm could separate the foreground and background by a threshold based on the distribution of pixels in
the image. Multiple thresholds were utilized to separate breast tissues with the same pixel distribution value.

Figure 2b shows the result of segmenting fibro-glandular tissues (yellow region) and the background (light
blue region) using Otsu’s threshold algorithm by setting the background and the foreground (fibro-glandular
tissues). Figure 2c shows the result of segmenting fat (green region) and the rest of the breast tissues (red region)
through Otsu’s threshold algorithm by setting the background and the foreground (fat, muscle, and chest wall).
Figure 2d shows that the background (brown region) and the inside of the human body (green region) are sepa-
rated through Otsu’s threshold algorithm. Skin data are lost during T2-weighted pulse sequence images. Hence,
boundary lines between green and brown regions were offset by pixels with a thickness of 2 mm that matched
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Figure 2. The step-by-step process for breast tissue labeling.

the thickness of the human body’s skin, and the result was used as skin data. These segmented skin data were
validated through BLISS MRI images of breast cancer patients. In this process, breast-diagnosis cases such as
fibroma and breast cancer were recognized and segmented as fibro-glandular tissues because they were diseases
expanded by the action of hormones on mammary glands. Breast tissues obtained in the previous step were
integrated, as shown in Fig. 2f. Light blue, blue, green, and yellow regions represented the background, skin, fat,
and fibro-glandular tissues, respectively.

We used template-based segmentation to reduce the manual labeling of breast tissues. Template-based seg-
mentation expands with a single MRI slice as a reference template for the remaining other MRI slices; It can
extract individual breast tissue features after analyzing each tissue’s location, size, shape, and pixel distribution
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Figure 3. Segmentation of full MRI slice images through template-based segmentation.

values with cross-sectional MRI slices into which breast tissues are segmented and set as a reference template.
The full MRI image in which breast tissues are finally segmented can be obtained by extracting breast tissues with
similar characteristics from consecutive MRI slices. Figure 3 shows the process of segmenting the entire MRI
slice image through template-based segmentation. T2-weighted pulse sequence data that were input for breast
tissue segmentation and the segmented breast tissue are output at 800 x 800 DPI resolution. These labeled data
with template-based segmentation were validated by a radiologist.

Designing U-Net based on Haar wavelet pooling.  This study proposed a U-Net based on Haar wave-
let pooling in the subsampling stage. The wavelet transform, which has information on the spatial and frequency
domains, is expressed as a vibration with an average of zero that vibrates while repeating increase and decrease
within a preset time. Wavelet transform can effectively detect sudden signal changes because it describes regional
features and provides a signal analysis at different scales and levels. The wavelet transform for a signal x(t) is
defined by Eq. (1)*":

VT -
Wax(b) = ﬁ/x(t)\ll (T)dta >0 (1)

where a is the parameter for scale change, b is the displacement rate, and W*(¢) is a continuous basis function
called the mother wavelet. The two-dimensional (2D) discrete Haar wavelet transform equation is utilized to
compute matrices in deep learning networks, allowing the extraction of high and low frequencies from images.
The input image is divided into small image patches, enabling the extraction of high- and low-frequency compo-
nents through filtering in each image patch. As a result, small image patches are divided by the size of a power of
2, allowing for efficient computation during conversion. This approach enables the preservation of critical image
information while reducing computational complexity, minimizing the computational requirements when the
Haar wavelet transformation is employed for image segmentation in deep learning networks. In the decomposed
image, high-frequency components correspond to various edges and noise, while low-frequency components
represent the general information of the input image, such as directionality.

In this study, a 2D discrete Haar wavelet transform that could minimize the computation when converting
MRI breast images in the deep learning network was used.

The 2D-wavelet transform presents the input image as a matrix of two-dimensional signals based on the
brightness of pixels. Data passing through the 2D-wavelet transform were divided into four bands according to
the applied filter. Figure 4 shows the structure of wavelet pooling. The wave pooling process, which utilizes the
wavelet transform, involves two distinct steps. Input data were decomposed through a high pass filter and a low
pass filter at each step. The size of the input data was reduced because down-sampling was performed in each
step. In the first step of wavelet pooling, the input image was horizontally separated into low (L), which was a low-
frequency component, and high (H), which was a high-frequency component by applying the horizontal filter.
In this process, the approximate value of the input image was decomposed for the low-frequency component,
and the detailed value was decomposed for the high-frequency component. In the second step where the vertical
filter was applied, images of low- and high-frequency components were vertically separated again and decom-
posed into four sets of data: LL, LH, HL, and HH bands. Resolutions of data in all bands were reduced to half the
resolution of the input data. Data of the LL band had a low-frequency component, indicating the overall trend
data of the input data. Data of LH, HL, and HH bands had edge features for vertical, horizontal, and diagonal
components, respectively. The segmentation of MRI images requires accurate recognition and differentiation of
features based on the orientation of the breast tissue. We utilized four sub-bands generated in the Haar wavelet
pooling process to achieve this directionality. Incorporating these sub-bands into deep learning networks can
enhance segmentation performance by extracting diverse features from the input data.

U-Net consists of a contracting path that extracts features from the training data and an expansive path for
restoring the original resolution. The contracting path performs down-sampling by setting the stride size of the
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Figure 4. Two-dimensional wavelet pooling structure.

convolution to two in each step, whereas the expansive path performs up-sampling using transposed convolu-
tion. The max pooling in the subsampling stage used in previous studies was difficult to generalize because it
was sensitive to the overfitting of the dataset?®. Although some studies have attempted to solve the vanishing
gradient problem by passing the information in the contraction path to the expansive path through a skip con-
nection, overfitting still occurs®. Breast tissues are delicate data linked by small pixels. Therefore, if max pooling
is used, information on the breast tissues might be lost. This study designed a deep learning network of the U-Net
architecture based on Haar wavelet pooling for subsampling to segment breast tissues.

Haar wavelet pooling offers the advantage of preserving image directionality, which is invariant to posi-
tion, scale, and rotation, while reducing spatial information. This enables the recognition features of detailed
patterns or boundaries and helps deep learning networks to generalize effectively, making them robust against
overfitting®®. Preservation of orientation information is crucial in medical imaging, where it is necessary to
accurately detect and distinguish the characteristics of various tissues and structures based on orientation.
Haar wavelet pooling facilitates accurate semantic segmentation and diagnosis in medical images by reducing
spatial information while preserving the directional information of these images. Preservation of directional
information enables more accurate recognition of subdivided patterns, textures, and borders, thereby improving
analysis accuracy.

Figure 5 shows the deep learning network architecture that combines Haar wavelet pooling with U-Net. The
deep learning network was composed of 12 convolution layers, 5 Haar wavelet pooling layers, and 5 inverse
wavelet-based up-sampling layers. Input breast image data were converted into LL, LH, HL, and HH band data
by Haar wavelet pooling. These converted data were then transmitted to the convolution layer. The resolution
was restored using an inverse wavelet, which could reconstruct data using the output value of wavelet pooling. In
the proposed architecture, a batch normalization function and a ReLU activation function were used with each
convolution layer. The amount of computation for the network was reduced compared with previous studies by
applying the Haar wavelet pooling. The number of existing channels was maintained because the pooling result
did not affect the number of channels in the deep learning network. However, the number of input channels
of the convolution layer was increased by a factor of four because the U-Net based on Haar wavelet pooling
simultaneously used LL, LH, HL, and HH bands.

System implementation and experimental evaluation

Implementation environment. Table 3 shows the implementation environment for building the U-Net

based on wavelet pooling. The U-Net was executed on Ubuntu Linux. It was implemented in Python using Ana-

conda, a math and science library, PyTorch, a deep learning library, and CUDA and CuDNN for GPU operation.
Two NVIDIA Quadro RTX 5000 16G GPUs were interconnected for distributed data-parallel processing for

deep learning operations. The interface module was implemented with the DistributedDataParallel library from

PyTorch to synchronize IDs of GPU operation processes performed on two graphic cards.
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Figure 5. U-Net based on Haar wavelet pooling.

Item Usage Version

Ubuntu Operating system 16.04.5 LTS-64bit
Python Development language 3.8.12

Anaconda | Math and science library 4.10.1

PyTorch Deep learning library 1.10.0

CUDA GPU parallel computing library | 11.3

CuDNN GPU-accelerated library 824

Table 3. Implementation environment.

Experiment and evaluation. Segmentation accuracies for background, skin, fat, and fibro-glandular tis-
sues were analyzed to evaluate the performance of the U-Net based on Haar wavelet pooling. The dataset of 5202
images was divided into a training dataset, a validation dataset, and a test dataset at a ratio of 8:1:1. These data
were rotated at a random angle for augmentation of the dataset in the deep learning network training process.

Multi-class semantic segmentation was performed using the U-Net based on Haar wavelet pooling. The reso-
lution of the training data was set to be 800 x 800 DPI, with a batch size of 8, epoch of 200, and learning rate of
0.002. Furthermore, focal loss and adaptive moment estimation optimizer (Adam) were applied. The loss function
was compared with cross-entropy, dice loss, and focal loss to find the optimal parameter. Max pooling, average
pooling, and Haar wavelet pooling were applied in this experiment to prove the effectiveness of Haar wavelet
pooling with subsampling. The segmentation performance was measured using Intersection over Union (IoU)
commonly used as a performance evaluation index for segmentation, mIoU (the average of all IoU values), and
pixel accuracy. Equations for IoU (2), mIoU (3), and pixel accuracy (4) are shown as follows:

IOU = L 2
~ TP+FP+FN @
1k TP

10U = — _——
" ki TP T FP TN 3)
, TP + TN
Pixel accuracy = (4)

TP + TN + FP + FN

where TP, TN, FP, FN, and k represent true positive, true negative, false positive, false negative, and the number
of classes, respectively.

Table 4 shows IoU, mIoU, and pixel accuracy results for the background, skin, fat, and fibro-glandular tissues
of the test dataset. Haar wavelet pooling showed higher breast tissue segmentation performance than max pooling
and average pooling in the same experimental environment. Furthermore, the deep learning network using focal
loss and Haar wavelet pooling showed the highest mIoU and pixel accuracy values. The deep learning network
using focal loss and Haar wavelet pooling confirmed that segmentation accuracies for skin and fibro-glandular
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Fibro-glandular tissue Pixel accuracy

Pooling method Loss function Background IoU (%) | Skin IoU (%) Fat IoU (%) ToU (%) mloU (%) (%)

Max pooling Cross entropy 98.78 75.44 94.62 76.28 86.28 99.29
Average pooling Cross entropy 98.39 70.03 93.88 73.15 83.86 99.12
Haar wavelet pooling Cross entropy 98.80 75.37 94.70 77.66 86.63 99.31
Max pooling Dice loss 98.62 72.07 94.17 75.52 85.09 99.20
Average pooling Dice loss 98.40 74.65 93.84 63.94 82.71 98.78
Haar wavelet pooling Dice loss 98.77 73.63 94.79 76.20 85.85 99.29
Max pooling Focal loss 98.90 76.57 94.78 78.58 87.21 99.34
Average pooling Focal loss 98.85 75.47 94.38 73.79 85.62 99.29
Haar wavelet pooling | Focal loss 98.90 77.14 94.81 79.06 87.48 99.35

Table 4. Experimental results obtained with a combination of training parameters of the deep learning
network for breast tissue segmentation. Significant values are in bold.

tissues were relatively high. This is because deep learning networks can be trained effectively because Haar
wavelet pooling can reduce the influence of easy negative examples such as background and fat while focusing on
training hard negative examples such as skin and fibro-glandular tissues. By contrast, the deep learning network
using both dice loss and average pooling showed low segmentation performance. Haar wavelet pooling has been
shown to outperform Max pooling and Average pooling in medical image segmentation, particularly in breast
tissue images. This is because Haar wavelet pooling can preserve important image features and structure more
efficiently than the other two pooling methods, allowing for more accurate segmentation. In breast tissue images,
there are both easy negative examples, such as fat and background, and hard negative examples, such as skin
and fibro-glandular tissue. Haar wavelet pooling can effectively reduce the influence of easy negative examples
while enhancing learning for hard negative examples, resulting in significantly higher segmentation accuracy.

Table 5 compares the results of breast tissue segmentation accuracy between the proposed network and pre-
vious studies. The IoU, mIoU, and pixel accuracy values for background, skin, fat, and fibro-glandular tissues
were measured in this experiment. The U-Net based on Haar wavelet pooling achieved a mIoU of 87.48 and a
pixel accuracy of 99.35% for breast tissue segmentation. The Haar wavelet pooling approach is constrained by
the accuracy of skin and fibrous tissue, which is lower than that of other breast tissues. To address this issue,
our future research endeavors will concentrate on enhancing the accuracy of skin and fibrous tissue. We plan
to achieve this through the application of supplementary data augmentation techniques aimed at improving
segmentation accuracy or by utilizing loss functions that prioritize specific tissue regions.

The Haar wavelet transformation offers the capability to minimize computational complexity by decomposing
the input image into multiple layers. Therefore, by utilizing Haar wavelet pooling in deep learning networks for
segmenting MRI breast images, high segmentation accuracy can be achieved with minimal computation, even
for high-resolution medical images. Additionally, compared to existing deep learning networks, Haar wavelet
pooling offers the advantage of reduced time in medical image analysis and high accuracy.

As demonstrated in Table 5, the proposed method exhibits a performance improvement of 1.16% in mean
Intersection over Union (mIOU) relative to previous study®'. Although the enhancement in mIOU across all
tissues is not substantial, our study primarily targeted micro-tissues, such as skin and fibroglandular tissue.
Specifically for skin, we observed an improvement of 4.14% when compared to previous study?'. These findings
imply that Haar wavelet pooling plays a significant role in enhancing the recognition of micro-tissues.

Verification of segmentation results through visuvalization. Figure 6 shows original MRI images
of three patients (A, B, and C) with different breast shapes and fibro-glandular tissue densities in the test data-
set and images of breast tissues segmented by the proposed network. The top of Fig. 6 depicts the original
MRI images and the bottom shows breast tissue images segmented using the proposed network. Black, blue,

Fibro-glandular tissue Pixel accuracy

Method # of params (million) | Background IoU (%) | Skin IoU (%) Fat IoU (%) ToU (%) mloU (%) (%)

U-Net 31.04 98.85 74.34 94.20 76.46 85.96 99.28
End-to-end U-Net 2791 98.85 74.16 93.66 71.99 84.67 99.23
RDA-U-Net 18.85 98.61 75.71 93.89 68.90 84.28 99.19
VEU-Net 14.22 98.63 74.43 94.03 69.77 84.21 99.04
nnU-Net 47.88 98.86 73.00 94.78 78.65 86.32 99.31
LL wavelet U-Net 21.98 97.00 68.30 90.75 43.67 74.95 98.54
Ours 24.28 98.90 77.14 94.81 79.06 87.48 99.35

Table 5. Comparison of complexity, segmentation accuracy, and pixel accuracy values of deep learning
networks. Significant values are in bold.
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(a) Input images

(b) Output images

Figure 6. Original MRI images (top) and breast tissue images segmented through the U-Net based on Haar
wavelet pooling (bottom) for three female patients.

green, and yellow indicate the background, skin, fat, and fibro-glandular tissues, respectively. For Patient A, a
small breast shape and a high density of fibro-glandular tissues were observed. Patient B was characterized by a
medium-sized breast shape and low-density fibro-glandular tissues close to the chest wall muscle. Patient C, with
alarge breast shape, was characterized by moderately dense fibro-glandular tissues. These results showed that the
proposed network could effectively segment skin, fat, and fibro-glandular tissues even when MRI images with
different breast shapes and fibro-glandular tissue densities were used as input.

Figure 7 shows MRI images and segmentation results for two patients. Figure 7 (Patient A) shows the 69th
patient out of 89 patients, with a mIoU of 90.28. Figure 7 (Patient B) shows an MRI image of the 58th patient
with a mIoU of 77.94. As shown in (A3) and (B3) rectangles in Fig. 7, the fibro-glandular tissue of Patient A had

Patient A Patient B

Input image Output image Input image Output image

Figure 7. MRI images and breast tissue segmentation images of Patient A with a high segmentation accuracy
(mIoU: 90.28) and Patient B with a low segmentation accuracy (mloU: 77.94).
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Figure 8. Comparison of breast tissue images segmented by three deep learning networks with the highest
mloU values.

a higher density than that of Patient B. As for Patient B, with a low density of fibro-glandular tissues, the mIoU
of the segmented breast tissue was lower than that of Patient A with a high density of fibro-glandular tissues. This
observation indicated that the U-Net based on Haar wavelet pooling could effectively segment breast images of
women with a high density of fibro-glandular tissues.

Figure 8 visualizes the ground truth image and the segmented breast tissue image with U-Net, nnU-Net,
and U-Net based on Haar wavelet pooling. The rectangle area indicated that the U-Net based on Haar wavelet
pooling segmented breast tissues more accurately than U-Net and nnU-Net. By contrast, in Fig. 8b, the outside
of the background was misrecognized as skin tissue and the inside as fibro-glandular tissue and fat, owing to
the noise of the background. When Fig. 8b, showing an image of breast tissue segmented through nnU-Net,
was compared with the ground truth, the background was incorrectly segmented into fibro-glandular tissue,
skin, and fat because of the noise inside the background. These results showed that the proposed network could
distinguish the noise of the input image and the breast tissue more accurately than methods described in previ-
ous studies and accurately segment delicate soft tissues and skin of the mammary gland. As depicted in Fig. 8b
and ¢ show misclassifications of fat and fibroglandular tissues at the lower regions. However, these tissues are
accurately identified in the proposed method. By utilizing the directional information from the four sub-images,
Haar wavelet pooling aids image segmentation, thereby preventing potential noise that could arise in adjacent
tissues. This, in turn, yields improved results.

Consent to participate. All authors consent for participation.

Conclusion

Recently, deep learning networks with excellent performance have been introduced in various studies for medical
image segmentation. Many methods have been proposed for segmenting breast tissues using binary-image seg-
mentation to diagnose breast diseases such as breast cancer and breast tumors. However, conventional methods
are time-consuming and labor-intensive because the ROI for breast tissues is manually set and the quality of the
segmented tissue varies depending on the skill level of the worker. To address this issue, we proposed a U-Net
based on Haar wavelet pooling for multi-class semantic segmentation of breast tissues from MRI images. In
addition, a labeled dataset was built to train the network for breast shape reconstruction. The proposed network
achieved a mIoU of 87.48 and a pixel accuracy of 99.35%. In particular, the network accurately segmented breast
tissues of women with a high density of fine mammary glands.

It is quite challenging to identify an effective method for substantially enhancing the IOU value in medical
image data segmentation. Nevertheless, our method was able to make a modest improvement to the IOU value,
which will have a significant impact on breast shape reconstruction. While the method proposed in this paper
concentrates on 2D image segmentation, we plan to explore the possibility of extending it to 3D image segmen-
tation in future studies. We aim to compare its performance against established 3D segmentation methods like
3D U-Net. The findings of this comparison will help us broaden the application scope of the proposed method.
Further, we aim to enhance its segmentation accuracy by considering the inter-slice correlation in MRI images.
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