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Abstract: Climate change has led to frequent and extreme flooding events in urban areas such as
Seoul, a city that is particularly vulnerable due to drainage systems that were not originally designed
to handle such conditions. This study aims to develop region-specific storm risk matrices for the
25 districts in Seoul and predict storm risks. By accounting for local meteorological and geographic
characteristics, these matrices will enable a more targeted approach to issuing heavy rainfall warnings,
as opposed to the current nationwide system. The methodology involves calculating entropy weight
based on various factors, assessing flood vulnerability, and estimating region-specific rainfall associ-
ated with warning levels. These warning levels are then used to create storm risk matrices, which
are tested for conformity against historical flood events. Finally, a storm risk prediction technique
is developed using rainfall forecasting data. Results demonstrate the feasibility of using the newly
developed storm risk matrices to predict flood damage up to 72 h in advance. This greatly contributes
to the development of effective mitigation plans for addressing climate change-driven urban flood
damage. The study’s findings offer valuable insights for enhancing local-specific heavy rainfall
warning systems and ensuring better preparation in the face of increasing urban flood risks due to
climate change.

Keywords: storm risk matrix; local ensemble prediction system; flood vulnerability; climate change

1. Introduction

Climate change is altering weather patterns, leading to more extreme and frequent
floods and droughts worldwide [1]. South Korea is not exempt from experiencing these
climate change effects, particularly in terms of shifting rainfall patterns and intensity [2,3].
For instance, in 2020, the rainy season lasted 54 days, longer than the average duration in
previous years, resulting in severe nationwide inundation damage. The frequency and scale
of damage from heavy storms have been progressively increasing, with urban areas being
relatively more vulnerable due to high population density and property concentration.
Rapid urbanization in major cities and countries is among the key factors contributing to
the heightened risk of flood damage [4,5].

Recent flooding in Seoul, South Korea’s capital, underscores the city’s vulnerability to
heavy rainfall, causing casualties, and property damage, as well as revealing challenges
within the city’s sewer system [6]. Sewage backflow has been the main cause of road inun-
dation near the Gangnam subway station and Gwanghwamun area over the past decade.
In urban areas, inundation damage during storms results from rainfall exceeding the sewer
network’s design frequency. While river flooding was historically the primary cause of
inundation damage, increasing impervious areas have become a major contributing factor.
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In South Korea, regions prepare for and respond to flood damage based on special
weather reports issued by the Korea Meteorological Administration (KMA) [7]. KMA issues
storm watches or warnings if 3 h rainfall exceeds 60 or 90 mm, respectively. However, this
criterion is identical nationwide, despite varying flood damage characteristics in densely
populated districts such as Seoul, Busan, and Incheon, due to differing geographical
conditions, meteorological factors, and local features. For instance, during a July 2016
storm event, Gangnam-Gu and Seocho-Gu experienced inundation damage, while Gwanak-
Gu did not, despite having similar rainfall levels.

Given the different levels of flood damage in Seoul, there is a need to develop a rainfall
standard for more localized heavy rainfall warnings, reflecting local meteorological and
geographic characteristics. Rainfall standard refers to the levels at which warning levels
can be issued based on rainfall amount, and the degree of rainfall can be classified as
interest, caution, warning, or serious according to these criteria. Proper flood damage
responses should incorporate both local characteristics and flood vulnerability, which refers
to a community’s susceptibility to flooding’s negative impacts. Vulnerability depends on
exposure to flood hazards and resilience or coping ability with those hazards.

Previous studies used flood vulnerability models and evaluation indicators to analyze
vulnerability. The entropy and AHP methods, based on the Pressure-State-Response (PSR)
model, are employed to analyze flood vulnerability [8,9]. Developed by the Organization
for Economic Cooperation and Development (OECD), the PSR system is commonly used
to assess flood vulnerability, along with the climate change vulnerability model established
by the Intergovernmental Panel on Climate Change (IPCC) [10]. Among these methods,
the AHP method produced reasonable results in calculating weights when sufficient data
and various alternatives were available. However, results rarely have high reliability, as
most cases need to verify the results after determining the alternatives [11]. Thus, there is
an urgent need to develop a method to calculate weight with high reliability.

A climate change vulnerability assessment model is a tool employed to evaluate the
potential impacts of climate change on a specific system or region. The PSR system, which
comprises pressure, state, and response indices, evaluates event causes, effects, and damage
reduction levels to determine vulnerability.

OECD’s methods calculate regional flood risk indices by estimating the weight of
each indicator. Alternative approaches to spatial flood vulnerability analysis include the
Fuzzy Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) and the
restricted weighted-sum method [12]. IPCC’s climate change vulnerability model is utilized
in various studies for flood vulnerability analysis, regional flood damage assessment, and
exploration of distribution characteristics through cluster analysis [13–15]. Other research
has employed the Data Envelopment Analysis model, using population, lifespan, economic
factors, and flood damage as input factors [16], or the AHP method to estimate and map
urban flood vulnerability levels by calculating indicator weights [17]. Furthermore, efforts
to develop flood vulnerability indices and flood mitigation planning continue based on
flood vulnerability analysis [18–23].

KMA has examined past rainfall and designed rainfall to supplement current special
weather warning standards and establish a new rainfall standard in South Korea [24,25].
Designed rainfall is an artificial or modified rainfall pattern used to simulate the effects of
different precipitation types on a specific area or structure. Rainfall criteria determine the
levels at which warning levels can be issued based on rainfall amount. Rainfall levels can be
classified as interest, caution, warning, or serious according to these criteria. This includes
adjusting the intensity, duration, and frequency of rainfall events to assess the potential
impacts of extreme weather events or to design drainage and water management systems
that can effectively handle various rainfall scenarios. The goal is to revise the special
weather warning and disaster prevention indicators to differentiate the special weather
warning standards by different districts. One study estimated the rainfall threshold by
percentage to establish a rainfall standard [26]. Another study estimated the rainfall
standard based on past flood damage and rainfall prediction data [27]. Other methods
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include physical-based or data-based modeling in establishing a rainfall standard and
predicting urban flooding [28–30].

As we expect more extreme and frequent weather events, especially in urban areas
such as Seoul, it is essential to have mitigation plans for flood damage. An imminent
problem in Seoul during the rainy season is flood damage due to excessive rainfall that
exceeds the designed capacity of drainage systems. The drainage system in Seoul was not
initially designed to hold extreme floods, causing casualties and property losses. However,
flood damages differ across the 25 districts inside Seoul during storm events.

To address this gap, this study’s primary objective is to assess flood vulnerability,
taking into account regional characteristics, and to establish a rainfall standard for pre-
dicting and reducing urban flood damage caused by frequent heavy storms in Seoul. The
sub-objectives include the following: (a) estimating entropy weight, (b) evaluating flood
vulnerability across 25 districts, (c) assessing regional flood vulnerability, (d) estimating
a region-specific rainfall standard, (e) developing storm risk matrices using rainfall stan-
dards, (f) evaluating the conformity of a rainfall standard based on past flood events, and
(g) developing a storm risk prediction technique using rainfall forecasting data.

The novelty of this study lies in addressing the limitations of current standards by
developing a rainfall standard that incorporates flood vulnerability and local characteristics.
These region-specific rainfall standards can provide valuable information, enabling better
preparation for heavy rainfall events.

2. Study Area

South Korea covers a total area of 100,399 km2, with mountains comprising two-thirds
of the country. The nation experiences four distinct seasons: spring from March to May,
summer from June to August, autumn from September to November, and winter from
December to February. The rainy season typically occurs from July to September, with
an average annual rainfall of about 1300 mm. South Korea has a total population of
51.81 million.

Seoul, the capital and largest metropolitan city, spans an area of 605.25 km2 and is
home to 9.9 million people (Table 1). The Han River, South Korea’s longest river, flows east
to west through the city and its surrounding mountains. The river roughly divides Seoul
into the Gangbuk area (north of the Han River) and the Gangnam area (south of the Han
River). The city comprises 25 districts (“Gu”), with 14 districts in the Gangbuk area and
11 districts in the Gangnam area (Figure 1).

Table 1. Description of characteristics of 25 districts.

Districts Area (km2) Population Financial Independence Rate

Gangnam 47.0 425,126 54.7
Gangdong 41.4 580,185 21.1
Gangbuk 39.5 539,231 52.3
Gangseo 35.4 523,037 15.8
Gwanak 33.9 667,960 37.6

Gwangjin 29.7 479,835 17.9
Guro 29.6 495,060 19.3

Geumcheon 24.6 459,970 26.3
Nowon 24.6 437,153 20.0
Dobong 24.5 379,480 36.0

Dongdaemun 23.9 149,384 47.0
Dongjak 23.8 371,890 31.6

Mapo 23.6 308,055 16.8
Seodaemun 21.9 230,040 39.3

Seocho 20.7 325,257 18.4
Seongdong 20.1 404,408 22.2
Seongbuk 18.5 394,702 17.5

Songpa 17.6 312,173 23.4
Yangcheon 17.4 454,251 25.2
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Table 1. Cont.

Districts Area (km2) Population Financial Independence Rate

Yungdeungpo 17.1 346,682 26.2
Yongsan 16.9 293,556 32.7

Eunpyeong 16.4 391,220 26.4
Jongno 14.2 342,837 23.2

Jung 13.0 231,733 24.7
Jungnang 10.0 125,240 53.5

Figure 1. Over 60% of Seoul has undergone urbanization, and most regions have unfavorable
geography for efficient rainwater drainage. The red points on the map represent the locations of
automatic weather stations (AWS). Notably, there are no AWS installations in Jongno-Gu, while areas
such as Yeongdeungpo-Gu have two or more. To compensate for this uneven distribution, the rainfall
data was calculated using the areal average rainfall method based on the Thiessen polygon approach.
The Han River, a significant geographic feature, flows through Seoul, further impacting the city’s
drainage dynamics.

Since the 1970s, Seoul has experienced rapid urbanization as it attracts migrants from
across the country. The loss of natural ground is equivalent to the loss of permeable areas,
while the gain of impervious surfaces and pavement leads to increased runoff. The growing
impervious surface area in Seoul has resulted in inundation damage almost every year, as
the terrain conditions are unfavorable for draining rainwater during storm events [31–34].
During heavy storms, Seoul faces casualties and property losses [35].

3. Methodology

Figure 2 displays the comprehensive workflow of this study. The study is divided into
six steps: One, data collection and model selection (refer to Section 3.1); two, estimation
of entropy weight based on different factors (refer to Section 3.2). The concept of entropy
weight (EWM) is further detailed in Section 3.2; three, evaluation of flood vulnerability
across the 25 districts in Seoul (refer to Section 3.3); four, estimation of district-specific
rainfall standard (refer to Section 3.4); five, definition and development of a storm risk
matrix using the estimated rainfall standard (refer to Section 3.5); six, creation of a storm
risk prediction technique utilizing rainfall forecasting data (refer to Section 3.6).
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Figure 2. Workflow of this study.

3.1. Step 1: Collect Data and Select Model

We gather data to evaluate climate exposure, sensitivity, and adaptive capacity. Cli-
mate exposure refers to the extent to which a specific system or region is vulnerable to
the impacts of climate change. Sensitivity is a factor that assesses how susceptible each
district is to flood damage. Adaptive capacity refers to the ability to respond to floods and
assesses disaster prevention characteristics. Section 3.1.1 addresses climate exposure and
its associated sub-factors. Section 3.1.2 delves into sensitivity and its related sub-factors.
Section 3.1.3 examines adaptive capacity and its sub-factors. Section 3.1.4 describes the
process of model selection. Figure 3 illustrates climate exposure factors ((a–d) in blue),
sensitivity factors ((e–j) in orange), and adaptive capacity factors ((k–o) in green).

Figure 3. Data description showing the climate exposure factors (from (a–d) in blue), sensitivity
(from (e–j) in orange), and adaptive capacity (from (k–o) in green).
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3.1.1. Climate Exposure

Climate exposure measures how much a system is likely to be affected by variations in
temperature, rainfall, sea level, extreme weather events, and other climate-related factors.
The input data consists of 25 AWS in Seoul. Four sub-factors include maximum rainfall
intensity, maximum 3 h rainfall, days with over 10 mm/day of rain, and days with over
60 mm/day of rain (Table 2). We select maximum rainfall intensity (mm/h) and maximum
3 h rainfall (mm/h) as sub-factors, as they determine the magnitude of rainfall intensity
during a short period (Figure 3a,b). The days with at least 10 mm of rain contribute to
the count of rainy days (Figure 3c). Days with over 10 mm/day indicate how frequently
the region experiences rainfall. Days with over 60 mm/3 h evaluate the number of storm
warning-issued days based on storm warning standards. Dobong-Gu has the highest
number of days with over 60 mm/3 h, while Geumcheon-Gu has the lowest number
(Figure 3d).

Table 2. A list of sub-factors for climate exposure.

Sub-Factor Highest Value Lowest Value

Maximum rainfall intensity (mm/h) Dobong-Gu (67.5 mm/h) Eunpyeong-Gu (32.4 mm/h)
Maximum 3 h rainfall (mm/3 h) Dobong-Gu (104.1 mm/3 h) Geumcheon-Gu (61.8 mm/3 h)

Days over 10 mm/day (days) Dobong-Gu (160 days) Jung-Gu (125 days)
Days over 60 mm/day (days) Dobong-Gu (21 days) Geumcheon-Gu (1 day)

We gather rainfall data from each station from the past five years (2016 to 2020)
and estimate areal rainfall using Thiessen’s Weighting Method. The Thiessen method
calculates the areal average precipitation by connecting the perpendicular bisectors of the
lines between observation points to form Thiessen polygons, determining the area ratio
of each polygon within the watershed, and multiplying it by the precipitation at each
observation point before summing them up. This method accounts for the distribution of
precipitation based on the dominant area of each rain gauge observation point. In this study,
we use data from 25 AWS sites within Seoul. However, there were no stations installed in
Jongno-Gu. By using the Thiessen method, the areal average precipitation in Jongno-Gu
can be calculated and compensated for using the surrounding observation points. We
obtain climate exposure data from the KMA (https://www.weather.go.kr/w/index.do,
accessed on 1 February 2021).

3.1.2. Sensitivity

Sub-factors used to evaluate sensitivity include the rate of impervious area, mean
slope, population density, rate of dilapidated buildings, rate of basement housing, and
official land prices (Table 3). We collect data on the rate of impervious areas from the
Water Resources Management Information System (http://www.wamis.go.kr/, accessed
on 1 February 2021). We gather digital elevation model data to calculate the mean slope
using topography analysis in geographic information system spatial analysis. We obtain
population density, rate of dilapidated buildings, rate of basement housing, and officially
announced land prices from Statistics Korea (KOSTAT).

Table 3. A list of sub-factors for sensitivity.

Sub-Factor Highest Value Lowest Value

Rate of impervious area (%) Yungdeungpo-Gu (96%) Gangbuk-Gu (41%)
Mean slope (%) Gangbuk-Gu (18%) Yungdeungpo-Gu (2%)

Population density (1/km2) Yangcheon-Gu (26,321 people/km2) Jongno-Gu (6327 people/km2)
Rate of dilapidated building (1/km2) Yangcheon-Gu (2664 count/km2) Gangseo-Gu (489 count/km2)
Rate of basement building (1/km2) Jung-Gu (31 count/km2) Jongno-Gu (4/km2)

Officially announce land price (won/km2) Gangnam-Gu (8,628,861 won/km2) Dobong-Gu (2,037,798 won/km2)

https://www.weather.go.kr/w/index.do
http://www.wamis.go.kr/
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Impervious surface area refers to surfaces that water cannot penetrate, such as as-
phalt roads, buildings, and artificial pavement. Areas with high impervious surface areas
experience increased runoff due to the inability of rainwater to infiltrate the ground. Con-
sequently, areas with high impervious surfaces are more vulnerable to flooding, leading to
significant flood damage (Figure 3e). The mean slope is inversely proportional to sensitivity.
Terrain with a lower mean slope is more vulnerable to rainwater drainage issues. According
to previous studies, areas with lower average slopes are more likely to experience flood
damage, such as that caused by river flooding [36]. Therefore, terrain with a lower mean
slope is more vulnerable to rainwater drainage (Figure 3f).

Factors such as population density, rate of dilapidated buildings, rate of basement
housing, and official land prices reflect the local characteristics of districts. Population
density refers to the population of a specific area divided by the area’s size. In the event of a
flood, areas with higher populations are more likely to experience more extensive damage,
such as human casualties, compared to other areas (Figure 3g). The rate of dilapidated
buildings refers to the ratio of buildings over 30 years old per unit area. Dilapidated
buildings are more likely to have poor disaster resilience, such as in the case of flooding,
and may be at risk of collapse or other damage (Figure 3h). The rate of basement buildings
refers to the proportion of buildings with basements per unit area. Areas with a high
proportion of buildings with basements are more likely to experience flood damage because
the presence of basements increases the likelihood of flooding (Figure 3i). Official land
prices refer to the prices used as the taxation base for real estate assets such as land and
buildings in each region. Areas with high standard land prices may result in significant
property damage in the event of flooding (Figure 3j).

3.1.3. Adaptive Capacity

Adaptive capacity is inversely proportional to flood vulnerability. The sub-factors for
adaptive capacity include the financial independence rate, rate of storm sewer occurrence,
rate of maintenance hole occurrence, index for implementation of prevention plans, and
index for prevention facilities (Table 4). Financial independence is an indicator of a local
government’s ability to secure income independently. It serves as a measure of a region’s
property value, and areas capable of allocating more funds to disaster preparedness are
assessed as having a higher level of disaster preparedness (Figure 3k). The ratio of storm
sewers and maintenance refers to the ratio of the length of sewer pipes and the number
of manholes per unit area. Areas with more facilities for managing rainfall, such as sewer
pipes and manholes, are evaluated as having a higher level of disaster preparedness
(Figure 3m,n).

Table 4. A list of sub-factors for adaptive capacity.

Sub-Factor Highest Value Lowest Value

Rate of financial independence (%) Seocho-Gu (54.9%) Nowon-Gu (15.4%)
Rate of storm sewer (m/km2) Dongdaemun-Gu (3048 m/km2) Nowon-Gu (85 m/km2)

Rate of maintenance hole (/km2) Jung-Gu (2342/km2) Seocho-Gu (674/km2)
Index for prevention plan (-) Mapo-Gu (1.01) Guro-Gu (0.418)

Index for prevention facility (-) Mapo-Gu (1.00) Geumcheon-Gu (0.463)

Statistical data from drainage system maintenance plans serve as input data for adap-
tive capacity assessment. In 2017, the Ministry of the Interior and Safety calculated the local
safety index using the index for prevention plans and the index for prevention facilities. The
Local safety index, calculated by the Ministry of the Interior and Safety, assesses disaster
risk factors, disaster prevention measures, facility inspections, maintenance, and 53 other
indicators nationwide. The prevention plan refers to efforts to reduce the impact of natural
disasters, with the Prevention Index calculated by considering 28 indicators such as the
establishment of plans for river, stream, and sewage maintenance, and the inspection of
disaster-prone areas (facilities). Additionally, the Prevention Facility Investment Index
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is calculated by considering 18 indicators such as the installation of sewage pipes and
drainage pump stations related to the maintenance of natural disaster-prone areas and
prevention facilities. We extract adaptive capacity data from the Ministry of the Interior
and Safety (https://www.mois.go.kr/eng/a01/engMain.do accessed on 1 February 2021).
Higher climate exposure and sensitivity, along with lower adaptive capacity, indicates that
a district is more vulnerable to floods.

3.1.4. Model Selection

A climate change vulnerability assessment model is a tool employed to evaluate the
potential impacts of climate change on a specific system or region [37]. These models
utilize a variety of inputs, such as data on historical climate patterns, projections of future
climate scenarios, and information on how different sectors of the economy and society
may be affected by changes in temperature, precipitation, sea levels, and other climate-
related variables. We apply the climate change vulnerability assessment model for flood
vulnerability assessment by incorporating local flood damage-related factors, such as local
climate, topography, and disaster prevention characteristics. The three main indices for
flood vulnerability assessment are climate exposure, sensitivity, and adaptive capacity
(Figure 4).

Figure 4. Climate change vulnerability assessment model for flood vulnerability assessment.

3.2. Step 2: Estimate Entropy Weight by Different Factors

Multi-criteria decision-making is a process that involves evaluating and prioritizing
multiple alternatives based on various conflicting criteria. Some of the most used multi-
criteria decision-making methods include AHP, TOPSIS, and EWM.

AHP is a technique for organizing and analyzing complex decisions; AHP breaks
down the problem into a hierarchy of smaller, interrelated criteria. AHP is a highly intuitive
and flexible method that allows decision-makers to easily incorporate their judgments and
preferences through pairwise comparisons. However, AHP can be sensitive to inconsisten-
cies in pairwise comparisons, which may lead to inaccurate results [38].

TOPSIS involves ranking alternatives based on their relative closeness to an ideal
solution and distance from the worst solution. TOPSIS is relatively simple to understand
and apply, and it considers both the positive and negative aspects of alternatives, offering a
balanced evaluation. The method assumes that criteria are independent, which may not
always be the case in real-world decision-making problems [39].

EWM is a decision-making tool used in multi-criteria decision analysis to determine
the relative importance or weight of different criteria in a decision-making process [40].
The method is based on the concept of entropy, which is a measure of the degree of
randomness or disorder in a system. In EWM, each criterion is assigned a weight based
on its relative entropy value, which is calculated by comparing the performance scores of
different alternatives against each criterion [41]. EWM assumes that higher entropy implies
higher importance, which may not always hold true in practice [42,43].

We employ EWM to calculate the weights of sub-factors (Figure 5). EWM offers an
objective approach for determining criterion weights based on the information content of
each criterion. This reduces the reliance on subjective judgments and may lead to more

https://www.mois.go.kr/eng/a01/engMain.do
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reliable and unbiased results. The estimated weights illustrate the importance of sub-factors
in calculating flood vulnerability [44].

Figure 5. Workflow of calculating the entropy weights. To calculate the entropy weights, we configure
and normalize data metrics and calculate the entropy by indicator.

The first step involves collecting the sub-factor data for each assessment factor and
constructing a matrix. We normalize the data using the Min-Max method, which generates
values between 0 and 1. Then, we apply the entropy weight values and constant to calculate
the degree of diversity and weight (Table 5).

Table 5. Entropy weights calculated considering the variance of each sub-factor.

Sub-Factor Entropy Weights

Maximum rainfall intensity (mm/h) 0.175
Maximum 3 h rainfall (mm/3 h) 0.255

Days over 10 mm/day (days) 0.261
Days over 60 mm/day (days) 0.309

Rate of impervious area (%) 0.134
Mean slope (%) 0.123

Population density (1/km2) 0.200
Rate of dilapidated building (1/km2) 0.196
Rate of basement building (1/km2) 0.208

Officially announce land price (won/km2) 0.138

Rate of financial independence (%) 0.168
Rate of storm sewer (m/km2) 0.204

Rate of maintenance hole (/km2) 0.243
Index for prevention plan (-) 0.201

Index for prevention facility (-) 0.185

3.3. Step 3: Evaluate Flood Vulnerability by Region

Various methods are considered for calculating flood vulnerability using indices of
climate exposure, sensitivity, and adaptability, including simple average, weighted average,
and Euclidean distance. The simple average method offers the advantage of calculating
flood vulnerability mathematically by averaging each index, assuming equal importance of
each factor. However, it is influenced by outliers in the data when calculating the average
value [45]. Conversely, the weighted average method better reflects the data characteristics
than the simple average method by assigning weights to each factor according to its
importance. However, the subjective determination of weights makes it challenging to
produce objective results [46]. By using the Euclidean distance method, researchers can
calculate flood vulnerability by considering all evaluation factors and excluding subjective
judgments through simple calculations. Therefore, we apply the Euclidean distance method,
and the main input data are the results of climate exposure, sensitivity, and adaptive
capacity for 25 districts using the EWM.

Euclidean distance is a measure of the distance between two points in Euclidean
space [47]. In two-dimensional space, Euclidean distance is the straight-line distance
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between two points, as calculated using the Pythagorean theorem. In n-dimensional
space, the Euclidean distance between two points is calculated using the square root of the
sum of the squares of the differences between each coordinate (Figure 6). The Euclidean
distance method is a common approach for quantitative analysis and cluster analysis of
data [48]. The Ministry of Interior and Safety in South Korea applies the Euclidean distance
method to calculate the local safety index. Unlike other approaches such as the simple
average method, the Euclidean distance method can apply climate exposure, sensitivity,
and adaptive capacity in assessing vulnerability. The origin (0, 0, 0) in a three-dimensional
space composed of climate exposure, sensitivity, and 1-adaptive capacity is the safest area
from floods. The flood vulnerability is the distance from the origin to the coordinates of
the target area (climate exposure, sensitivity, 1-adaptive capacity). See Equation (1) for
calculating flood vulnerability.

Flood vulnerability =

√
(Climate Exposure)2 + (Sensitivity)2 + (1 − Adaptive capacity)2) (1)

Figure 6. Calculating the flood vulnerability using Euclidean distance.

3.4. Step 4: Estimate the Rainfall Standard by Region

Rainfall standard designates threshold levels for issuing warnings based on the
amount of precipitation, with classifications such as interest, caution, warning, or se-
rious. The primary input for establishing these standards is the historical rainfall data from
storm events in Seoul, spanning from 2010 to 2020. We analyze flood vulnerability and
probability of rainfall by incorporating regional characteristics from the 25 districts in Seoul.
The probability of rainfall is estimated by applying probability distribution models such as
Gumbel or generalized extreme value to the rainfall data, selecting the optimal distribu-
tion type through parameter application and suitability testing, and then calculating the
probability through frequency analysis.

We define the rainfall ratio as the ratio of damaging rainfall to probability of rainfall.
Damaging rainfall refers to the amount of precipitation that causes harm to infrastructure,
property, and ecosystems, potentially leading to floods, landslides, and erosion, which
pose significant threats to public safety and well-being. In the context of climate change,
concerns arise about the increasing frequency and intensity of damaging rainfall events
due to changes in temperature and precipitation patterns.

Damaging rainfall represents the amount of precipitation responsible for flood damage
and casualties. We calculate the average rainfall ratio for four flood damage levels and
use these values to establish rainfall standard. To compute damaging rainfall, we utilize
historical rainfall data from flood events between 2010 and 2020. We then employ the flood
impact table developed by Choi et al. to describe flood damage levels from 1 to 4, based
on the severity of flood damage [49] (Table 6). Level 1 represents minimal flood damage,
while level 4 signifies the most severe flood damage experienced in South Korea.
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Table 6. Description of flood damage for four levels.

Level Description of Flood Damage

Level 1

Clothing may get wet if the rainfall lasts for a long time
Small puddles form in the ground
Buildings may need inspection
Some assets are flooded

Level 2
Clothing may get wet by walking around
Big puddles form in the ground
Farmlands may get damaged by local flooding

Level 3

Clothing gets wet with an umbrella
Inundation occurs
Small streams overflow
Roads are blocked due to flooding
Buildings and structures may get damaged

Level 4

Heavy rain blocks the view
Large areas are flooded
Water overflows from maintenance holes
Cars may get inundated
Buildings and structures may collapse

To test the suitability of our proposed rainfall standard, we predict flood risk using
past flood damage events as input data for each district, evaluating their appropriateness.
We use flood damage data from the last five years (2016 to 2020). We chose this recent
timeframe because over 200 houses in the Gangbuk area were flooded in 2018. Moreover, in
2020, Seoul experienced its longest rainy season, during which Dobong-Gu and Nowon-Gu
suffered inundation damage, especially due to flooding from the Jungnang stream.

3.5. Step 5: Develop Storm Risk Matrix Using Rainfall Standard

The storm risk matrix, as illustrated in Figure 7, is composed of rainfall criteria on the
x-axis and the likelihood of high-impact rainfall on the y-axis. Four distinct colors within
the matrix indicate storm risk levels, including concern, caution, alert, and emergency. We
apply the concept of impact forecasting to modify the UK matrix and develop our storm
risk matrix.

Figure 7. Storm risk matrix in South Korea. The storm risk levels have four levels including concern
(blue), caution (yellow), alert (orange), and emergency (red).

The UK developed a matrix for five meteorological events: rain, wind, snow, ice, and
fog [50]. This matrix addresses high-impact weather by representing the degree of impact
on the x-axis and the likelihood of high-impact weather on the y-axis (Figure 8). Based on
this matrix, the UK Meteorological Office issues special weather warnings up to five days
in advance.
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Figure 8. Natural hazard risk matrix in UK. The storm risk levels have four levels including concern
(blue), caution (yellow), alert (orange), and emergency (red).

The primary inputs for our matrix are probability of rainfall and rainfall damage data
from historical storm events, which include hazard intensity, vulnerability, and exposure.
Probability of rainfall is estimated by applying probability distribution models such as
Gumbel or generalized extreme value to rainfall data, selecting the optimal distribution type
through parameter application and suitability testing, and then calculating the probability
through frequency analysis. For the likelihood (y-axis), we adopt 20%, 40%, and 60%
standards based on the high-impact weather of the UK matrix. After constructing the
matrix according to the x- and y-axes, we categorize storm risk levels into concern (blue),
caution (yellow), alert (orange), and emergency (red). The concern level indicates that
people should be aware of potential hazards, while the caution level suggests that people
should remain vigilant for possible hazards. The alert level requires preparation, and the
emergency level calls for precautionary action [51].

Frequency analysis serves as the primary method for calculating probability of rainfall.
We apply rainfall data to the probability distribution model to estimate probability of
rainfall. To incorporate the sewer network and small rivers, we use the 5-year frequency
(the design frequency of branch pipes), 10-year frequency (the design frequency of main
pipes), and 30-year frequency (the design frequency of small rivers) when calculating
probability of rainfall. We also use 3 h duration rainfall as input data, as Seoul experiences
more frequent heavy rainfall events within shorter durations. The 3 h duration rainfall
refers to the total amount of precipitation occurring during a continuous 3 h period.

3.6. Step 6: Develop Storm Risk Prediction Technique Using Rainfall Forecasting Data

Numerical weather prediction models are available in various forms. One such model
is the European Centre for Medium-Range Weather Forecasts model, which applies high-
resolution data and diverse physical processes to generate predictions. This model is
considered the most accurate in the world; however, its complex calculations and relatively
slow processing time result in slower prediction speeds [52]. Another model is the Global
Forecasting System model, developed by the US National Weather Service and used
worldwide. This model reflects large-scale atmospheric motion and physical processes,
yielding a wide range of predictions. However, its prediction accuracy is comparatively
low, particularly in precipitation forecasting [53].

Local Ensemble Prediction System (LENS) is a numerical weather prediction system
providing high-resolution, short-term weather forecasts for specific regions or locations [54].
LENS employs an ensemble approach, which involves running multiple weather model
simulations with slightly different initial conditions or parameters. These simulations allow
the system to offer a range of possible weather outcomes and estimates of the likelihood of
each outcome, enabling forecasters to better comprehend potential weather scenarios and
make more informed decisions about the timing and impact of weather events.

LENS is tailored for local-scale use and can produce forecasts with a resolution of
just a few kilometers. This makes it a valuable tool for applications such as transportation
planning, emergency management, and agriculture, where accurate and timely weather
information is crucial. Consequently, we utilize LENS with a spatial resolution of 3 km
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and propose a flood risk prediction method (Figure 9). We opt for LENS because the
KMA has employed this system since 2015 to predict extreme weather events and provide
earlier warnings.

LENS data in Korea comprises a control member and 12 perturbation members, which
simultaneously offer ensemble and probability values for predicting weather factors [55].
KMA uses the Global Ensemble Prediction System and LENS data to provide probabilistic
predictions for up to 72 h, at hourly increments from 0:00 a.m. to 12:00 p.m. In Korean
Standard Time, LENS data becomes available at 4:00 a.m. and 4:00 p.m. Since 2018, the
resolution of LENS data has improved from 3 km to 2.2 km [56]. We apply LENS data (from
2016 and 2017) and rainfall standard to evaluate flood risk prediction results.

Figure 9. Illustration of ensemble prediction [57].

4. Results
4.1. Flood Vulnerability Assessment

The three primary indices for flood vulnerability assessment are climate exposure,
sensitivity, and adaptive capacity (Figure 10). Dobong-Gu exhibited the highest climate
exposure (1.00), while Jung-Gu displayed the lowest (0.153). Yangcheon-Gu demonstrated
the highest sensitivity (0.673), whereas Jongno-Gu showed the lowest sensitivity (0.113).
Mapo-Gu had the highest adaptive capacity (0.659), while Nowon-Gu possessed the lowest
adaptive capacity (0.185). Dobong-Gu recorded the highest flood vulnerability (1.37), and
Jongno-Gu registered the lowest flood vulnerability (0.609).

4.2. Rainfall Assessment
4.2.1. Rainfall Standard

We categorized the probability of rainfall into three levels: level 2 (5-year frequency),
level 3 (10-year frequency), and level 4 (30-year frequency) (Table 7). Level 1, based on
5 mm, requires attention, but the probability of flooding during the storm remains low.
Levels 2, 3, and 4 represent a rainfall standard that redistributed the probability of rainfall
for each district according to flood vulnerability and the rainfall ratio (Figure 11). We
employed the results from the local-specific rainfall standard to establish a storm risk
matrix for forecasting storm risk (Table 8). The outcomes demonstrated that the rainfall
standard for Levels 2 and 4 was similar to 60 mm/3 h (heavy rain advisory) and 90 mm/3 h
(heavy rain warning) standards.
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Figure 10. Calculated factors (climate exposure, sensitivity, and adaptive capacity) for assessing flood
vulnerability using the entropy method.

Table 7. Calculated rainfall ratio for Levels 2, 3, and 4, and their averages.

Level
Damaging Rainfall (DR) Probability of Rainfall (PR) Rainfall Ratio (DR/PR) Corrected PR

mm/3 h mm/3 h - mm/3 h

2 39.0 116.7 0.334 56.6
3 71.0 138.4 0.513 67.1
4 104.0 171.3 0.607 83.0

Average - - 0.485 68.9
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Figure 11. Rainfall standard for 25 districts in Seoul.

Table 8. Results of the x-axis value of the Storm Risk Matrix. The y-axis is the same for all regions,
and the x-axis can be used to construct a Storm Risk Matrix by applying rainfall criteria calculated
based on flood vulnerability.

Administrative Districts
Level 1 Level 2 Level 3

Level 4
mm/3 h

Gangnam-Gu 5.00 64.73 76.76 95.01
Gangdong-Gu 5.00 65.59 77.78 96.27
Gangbuk-Gu 5.00 62.80 74.48 92.18
Gangseo-Gu 5.00 54.47 64.60 79.95
Gwanak-Gu 5.00 79.19 93.92 116.25

Gwangjin-Gu 5.00 77.97 92.46 114.44
Guro-Gu 5.00 59.49 70.55 87.32

Geumcheon-Gu 5.00 79.57 94.37 116.80
Nowon-Gu 5.00 51.16 60.67 75.10
Dobong-Gu 5.00 43.04 51.05 63.18

Dongdaemun-Gu 5.00 67.56 80.13 99.18
Dongjak-Gu 5.00 69.46 82.37 101.96

Mapo-Gu 5.00 80.99 96.05 118.88
Seodaemun-Gu 5.00 66.85 79.28 98.13

Seocho-Gu 5.00 75.82 89.92 111.30
Seongdong-Gu 5.00 67.98 80.62 99.78
Seongbuk-Gu 5.00 58.11 68.92 85.30

Songpa-Gu 5.00 61.08 72.43 89.65
Yangcheon-Gu 5.00 52.73 62.53 77.40

Yungdeungpo-Gu 5.00 68.18 80.86 100.09
Yongsan-Gu 5.00 71.51 84.81 104.96

Eunpyeong-Gu 5.00 62.12 73.67 91.18
Jongno-Gu 5.00 85.26 101.12 125.16

Jung-Gu 5.00 82.77 98.16 121.50
Jungnang-Gu 5.00 66.51 78.88 97.63

We set the threshold for the first level of rainfall criteria at 5 mm/3 h, indicating
rainfall unlikely to cause damage if it persists for 3 h. Additionally, the second and fourth
levels of rainfall criteria were determined based on the “heavy rain advisory” and “heavy
rain warning” criteria, respectively. This allows for issuing risk levels tailored to each
region, considering regional characteristics such as existing heavy rain advisory criteria.
The rainfall criteria calculated in this study provide a level of accuracy comparable to heavy
rain advisory criteria.
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The damage description indicates the magnitude of the damage. Since 2010, the
primary causes of flood damages have been inundation and maintenance hole backflow. In
2011, a landslide occurred on Mount Umyeon. The area faced a high risk of inundation due
to large puddles when more than 39 mm of rainfall persisted for over 3 h (Table 9). The
area might experience inundation damage to roads and houses once it receives more than
71 mm of rainfall. Maintenance hole backflow may occur when the area experiences more
than 104 mm of rainfall. We utilized storm events from 28 August 2018 and 6 August 2020
to evaluate the suitability of the established rainfall standard (Table 10). Seoul witnessed
more than 80 mm of rainfall during these two storm events. During this period, the rainfall
levels were compared with the flood damage levels according to the flood damage chart.
In the first period, Seongbuk-gu, Eunpyeong-gu, Dobong-gu, and Nowon-gu experienced
values at the same level, unlike other regions. In the second period, the rainfall level was
lower than the damage level.

Table 9. Historical flood damages in Seoul from 2010 to 2020.

Start Date End Date Rainfall (mm/3 h) Level Damage Description

13 August 2010 18 August 2010 39 2 Big puddle in the ground

21 Jun 2011 3 July 2011 65 2 Big puddle in the ground

7 July 2011 16 July 2011 54 2 Big puddle in the ground

13 July 2012 13 July 2012 71 3 Inundation

5 July 2012 6 July 2012 95 3 Inundation

11 July 2013 15 July 2013 99 3 Inundation

1 July 2016 7 July 2016 85 3 Inundation

2 July 2017 11 July 2017 93 3 Breast wall collapse

21 September 2010 22 September 2010 174 4

Inundation

Water overflows from maintenance holes

Inundation

26 July 2011 29 July 2011 125 4
Landside on Woomyeon mountain

Water overflows from maintenance holes

14 August 2012 16 August 2012 112 4
Inundation

Water overflows from maintenance holes

22 July 2013 23 July 2013 130 4
Inundation

Water overflows from maintenance holes

26 August 2018 1 September 2018 116 4
Inundation

Water overflows from maintenance holes

28 July 2020 11 August 2020 104 4
Inundation

Overflow from small streams

Table 10. Calculated factors (climate exposure, sensitivity, adaptive capacity) for assessing the flood
vulnerability using the entropy method.

Event District
Level Damage Description

Rainfall Damage

Gangnam-Gu 1 2 Inundation

Gangdong-Gu 1 2 Inundation

Dongdaemun-Gu 1 2 Inundation

Mapo-Gu 1 2 Inundation
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Table 10. Cont.

Event District
Level Damage Description

Rainfall Damage

28 August 2018

Seodaemun-Gu 1 2 Inundation

Yangcheon-Gu 1 2 Inundation

Seongbuk-Gu 2 2 Inundation

Eunpyeong-Gu 2 2 Inundation

Gangseo-Gu 3 2 Inundation

Gangbuk-Gu 4 2 Inundation

Nowon-Gu 4 4 Inundation, stream overflow in Jungnang River

Dobong-Gu 4 4 Inundation, stream overflow in Jungnang River

6 August 2020

Gwanak-Gu 1 1 Blackout

Gangbuk-Gu 1 2 Inundation

Mapo-Gu 1 2 Inundation

Seongbuk-Gu 1 2 Inundation

Dobong-Gu 3 4 Inundation, stream overflow in Jungnang River

4.2.2. Storm Risk Prediction

We utilized six LENS datasets from 2016 (Table 11) and 2017 (Table 12), with the
maximum value among the 12 perturbation members serving as the primary input. We
compared flood risk outcomes for the storm events of 5 July 2016 and 23 July 2017 using
observed rainfall and LENS data (Table 13).

Table 11. Calculated predicted flood risk level using the developed rainfall standard and storm risk
levels based on LENS for the historical storm event (from 3 July 2016 to 5 July 2016).

District Mapo Nowon Dobong Jung Jongno Eunpyeong

Flood risk for observed rainfall Yellow Red Red Yellow Yellow Yellow

3 July 2016 4:00 a.m. Blue Yellow Orange Yellow Blue Yellow
4:00 p.m. Blue Orange Red Yellow Blue Blue

4 July 2016 4:00 a.m. Blue Orange Orange Blue Blue Yellow
4:00 p.m. Yellow Orange Orange Orange Yellow Blue

5 July 2016 4:00 a.m. Blue Yellow Yellow Yellow Blue Yellow
4:00 p.m. Blue Blue Blue Blue Blue Blue

Table 12. Calculated predicted flood risk level using the developed rainfall standard and storm risk
levels based on LENS for the historical storm event (from 21 July 2017 to 23 July 2017).

District Nowon Dobong Jongno Gangseo

Flood risk for observed rainfall Red Red Yellow Yellow

21 July 2017 4:00 a.m. Blue Blue Blue Blue
4:00 p.m. Red Red Orange Blue

22 July 2017 4:00 a.m. Blue Blue - -
4:00 p.m. Orange Blue Blue Yellow

23 July 2017 4:00 a.m. Orange Yellow Blue Blue
4:00 p.m. Blue Blue - Blue



Water 2023, 15, 1979 18 of 21

Table 13. Comparison of the flood risk for results through the storm events of 5 July 2016, and
23 July 2017.

Division

5 July 2016 23 July 2017

Flood Risk Flood Risk

Observed Rainfall LENS Observed Rainfall LENS

Mapo Yellow Yellow - -
Nowon Red Orange Red Red
Dobong Red Red Red Red

Jung Yellow Orange - -
Jongno Yellow Yellow Yellow Orange

Eunpyeong Yellow Yellow - -
Gangseo - - Yellow Yellow

5. Discussions and Conclusions

Dobong-Gu experienced the most rainfall in a short period, as this area had the highest
maximum rainfall intensity and a maximum of 3 h of rainfall. Dobong-Gu also had the
most days with over 100 mm/day and 60 mm/3 h of rainfall, indicating the highest climate
exposure. In contrast, Yangcheon-Gu had the highest population density and dilapidated
buildings, making it more likely to experience casualties and property damage. Jongno-Gu,
with the lowest population density and rate of basement housing, was the least vulnerable
to floods, while Mapo-Gu exhibited the highest adaptive capacity due to its comprehensive
prevention plan and facilities.

Nowon-Gu and Dobong-Gu had the lowest rate of storm sewer infrastructure because
of their mountainous geographic features. Dobong-Gu had the highest climate exposure
(1.00) and the lowest adaptive capacity (0.185), making it the most flood-vulnerable. Con-
versely, Jongno-Gu had the lowest flood vulnerability (0.113) and a high adaptive capacity
(0.961), indicating greater safety from flood damage. Our approach, which considers
various regional characteristics such as climate, topography, and disaster management mea-
sures, can be useful for determining regional rainfall criteria and developing region-specific
flood prevention measures.

During the two storm events in 2016 and 2017, Seoul experienced more than 70 mm
of rainfall. KMA issued a special weather warning for the storm only a day in advance,
but the city still suffered extensive flood damage. Our results, utilizing LENS data and the
storm risk matrix, indicate that flood risk can be predicted up to three days in advance,
enabling KMA to issue warnings earlier.

In our calculations, we used rainfall data from AWS for each region, and area-average
rainfall was obtained through the Thiessen method. The accuracy of storm risk prediction
using LENS data was somewhat lower in some areas, likely due to uncertainties in rainfall
prediction data and data collection limitations. Flood damage data may be influenced by
factors other than rainfall, such as other water systems, meteorological factors, and human
factors. Improving the accuracy of LENS data and conducting a detailed analysis of flood
damage causes could enhance flood risk assessment accuracy.

In this study, we assessed flood vulnerability for the local characteristics of the
25 districts in Seoul by incorporating local features. We also established a rainfall standard
and a storm risk matrix based on the flood vulnerability for each district. To do so, we
proposed a flood risk prediction method using LENS data. We selected 15 sub-factors of
flood vulnerability, considering climate exposure, sensitivity, and adaptive capacity based
on the IPCC’s climate change vulnerability model. We calculated each district’s flood
vulnerability using entropy weight and Euclidean distance with the chosen sub-factors.

Seoul’s northern and western areas, which are frequently exposed to high-intensity
rainfall, have high climate exposure. These regions also have low adaptive capacity due to
a lack of rainwater reduction facilities, resulting in high flood vulnerability. We constructed
a storm risk matrix by calculating a rainfall standard. Although evaluating the suitability
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of the storm risk matrix using selected flood damage events differed from actual flood
damage, we could predict flood risk three days in advance by applying LENS data to the
storm risk matrix.

The predicted flood risk, based on the suitability of the rainfall standard for the
25 districts, was somewhat lower than the actual flood damage. This may be because we
only considered factors other than rainfall when establishing a rainfall standard. Future
studies could consider other hydrological and meteorological factors, such as flood volume,
wind speed, or stormwater pump failures and building deterioration indexes. Actual flood
damage can result from factors beyond rainfall, such as meteorological elements and human
factors, despite being recorded as damages caused by rainfall in reports. By conducting a
detailed cause analysis of the collected flood damage data, it is possible to construct a more
effective flood risk matrix that accounts for the direct damage caused by rainfall.

One limitation of this study is the uncertainty in rainfall prediction data. Overcoming
this limitation could involve developing a more accurate rainfall standard and a storm risk
matrix by analyzing the causes of flood damage data used in this study. The innovative
aspect of our research is addressing the current lack of adequate standards by developing
storm risk criteria that incorporate flood vulnerability while considering local features. The
resulting rainfall standard provides region-specific information, enabling more effective
preparation for intense rainfall events and offering potential applicability to other case
studies lacking tailored storm risk guidelines.
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