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I. INTRODUCTION 

Terahertz technology has attracted considerable attention be-

cause terahertz waves can be exploited in wide-ranging applica-

tions, including medicine [1–3], security [4, 5], communications 

[6–8], and spectroscopy [9–11]. Diverse components for manip-

ulating terahertz waves have been designed, including absorbers 

[12–14], power splitters [15–19], modulators [20–22], polariza-

tion power splitters [23–25], and sources [26–30]. Among these 

components, terahertz power splitters (TPSs) are critically im-

portant in integrated circuits for dividing and routing terahertz 

waves to any point of the circuits. Homes et al. [17] proposed a 

TPS based on a silicon slab with a thickness of a few millimeters 

that can be used in spectroscopic measurements over a broad 

terahertz range (0.2–10 THz). Ung et al. [16] fabricated a TPS 

by depositing a thin silver sheet on an ultrathin, low-density 

polyethylene plastic sheet. By changing the thickness of the sil-

ver sheet and utilizing its skin depth, they varied the splitting 

ratios of the TPS, which they achieved through the transmission 

and reflection of the metallic dielectric structure in a frequency 

range of 0.5–1.5 THz. Hou et al. [19] proposed a TPS based on 

ferrite photonic crystals. They inserted line defects in the pho-

tonic crystals to steer the light and embedded two silicon and 

ferrite rods at the output branches to control the variable split-

ting ratio. In a magnetic field, the refractive index of the ferrite 

rod changed, and the splitting ratio could be varied. Reichel et 

al. [18] fabricated a TPS based on T-junction metallic structures. 

They created metallic waveguides to route the terahertz waves 

and a mechanical septum that changed the splitting ratio over a 

frequency range of 0.15–0.3 THz. Yang and Jiu-Sheng [15] 

realized a 1 × 6 TPS operating at 1 THz using temperature-

dependent photonic crystals. By introducing line and point  
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Abstract 
 

This letter proposes 50:50 TE terahertz power splitters based on digitized metamaterials. The components are optimized using the parti-

cle swarm optimization algorithm. The digitized metamaterials are formed as a silicon slab with circular air holes atop a silicon dioxide 

substrate. The insertion losses of optimized structures containing air holes with a radius of 9 μm and air holes with different radii (9 μm 

and 7 μm) are less than 3.9 dB and 3.65 dB, respectively, over a frequency range of 0.87–1.09 THz. The footprint of the proposed devices 

is 400 μm × 350 μm. The devices have excellent characteristics, such as compactness, efficiency, all-dielectric properties, and compatibil-

ity with CMOS fabrication technologies, and can become vital components of most terahertz-wave routing circuits. 
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defects into the photonic crystals, they created a multimode 

interferometer and four Y splitters. However, these TPSs require 

an external magnetic field, which increases their fabrication cost 

[19], enlarges their dimensions [15–19], and limits their inte-

grability [16–18]. 

Designing optical all-dielectric components is of great im-

portance due to their low loss and high efficiency [31–35]. In 

this letter, we present compact all-dielectric TPSs with an 

ultra-small footprint that are compatible with CMOS (com-

plementary metal-oxide-semiconductor) fabrication technology. 

The TPSs were designed from metamaterials using an inverse 

design process based on particle swarm optimization (PSO), 

which optimizes the structures in a 50:50 splitting ratio. The 

finite-difference time-domain (FDTD) module of Lumerical 

software (Ansys, Vancouver, Canada) was used to simulate the 

structures. 

II. SIMULATION RESULTS AND DISCUSSION 

The devices have digitized structures made of a silicon slab 

with air holes deposited on a buried silicon dioxide substrate. 

They contain one input and two output waveguides, as shown in 

Fig. 1. 

When designing a device using the PSO method, an initial 

structure is needed. The initial digitized structure consisted of a 

silicon (Si) slab etched with air holes deposited on a SiO2 

substrate (Fig. 1). The radius of the air holes and the array 

period were 9 μm and 26 μm, respectively. The parameters L, D, 

H, G, g, W, and T (see Fig. 1 for their geometric descriptions) 

were set to 350, 400, 1,000, 237.6, 39.6, 100, and 100 μm, 

respectively. The region to be optimized was the region contain-

ing the circular holes, with dimensions of L × D × T. In this 

structure, the air holes were modeled as 1, and the silicon was 

modeled as 0. The insertion loss (IL), which is defined as -10log 

(Po/Pin) (where Po and Pin are the output power at the upper or 

lower branch and the incident power, respectively), was consid-

ered the figure of merit of the proposed device, which was min-

imized using the PSO method. 

The structure was simulated using the three-dimensional (3D) 

FDTD method. The generation size and maximum generation 

number of the PSO method were 10 and 100, respectively. The 

mesh size of the 3D FDTD was dx = dy = dz = 3 μm. The 

waveguides were excited by a TE00 polarization mode with the 

electrical field component in the y-direction. The working fre-

quency range of the device was 0.87–1.09 THz. Within this 

frequency range, the refractive indices of Si and SiO2 are 3.41 

and 1.96, respectively. 
Fig. 2 shows the structures after optimization using the PSO-

based inverse design method. After optimization, a few circular 

air holes with optimized positions remained in the silicon slab 

on the SiO2 substrate. The inset of Fig. 2(a) displays the elec-

 
(a) 

 
(b) 

Fig. 2. Schematic of the optimized terahertz power splitter (TPS) 

structures containing air holes with (a) a radius of 9 μm and 

(b) radii of 9 μm and 7 μm. 

 
Fig. 1. Schematic of the initial structure of the terahertz power splitter.
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tromagnetic power distribution of the TE00 incident polariza-

tion mode at the cross-section of the input waveguide. The air 

holes in the optimized structure act as scatterer points. Aided by 

constructive interferences in the optimized region, the light is 

routed to the output branches. Moreover, these holes create a 

photonic bandgap that prevents the terahertz waves from 

diffracting in the y-direction; consequently, light can be guided 

only through the output branches. The sparsity of holes in the 

optimized region creates a guiding electromagnetic mode in the 

bandgap that steers the light to the outputs. Furthermore, using 

air holes with two different radii provides freedom for construc-

tive interferences that result in higher transmission from the 

optimized digitized structure. Fig. 2(a) shows the optimized 

digitized structure containing air holes with a radius of 9 μm, 

and Fig. 2(b) shows the structure containing air holes with two 

different radii in the silicon slab. 
Fig. 3 shows the IL of the optimized 50:50 TPS structures 

containing air holes with one radius (structure A) and two dif-

ferent radii (structure B). The ILs of structures A and B were 

less than 3.9 dB and 3.65 dB, respectively, indicating efficiencies 

of approximately 81% and 86%, respectively, over a frequency 

range of 0.87–1.09 THz. Thus, structure B had higher efficiency 

than structure A. Moreover, the IL of structure B over this fre-

quency range was flatter than that of structure A. The electro-

magnetic power distributions of the optimized structures A and 

B at a frequency of 0.94 THz are shown in Fig. 4(a) and 4(b), 

respectively. The distributions show the routes of the terahertz 

light in the optimized structures. 

PSO is a bio-inspired stochastic algorithm for finding the op-

timal solution over the solution space. This optimization meth-

od has been used to design photonic devices [36, 37]. In this 

work, the PSO algorithm was used to minimize the IL. In this  

algorithm, N particles are considered, and 𝑋 = (𝑥ଵ, 𝑥ଶ, 𝑥ଷ,… , 𝑥ௗ, … , 𝑥), 𝑉 = (𝑣ଵ, 𝑣ଶ, 𝑣ଷ, … , 𝑣ௗ, … , 𝑣), 𝑃 = (𝑝ଵ,

𝑝ଶ, 𝑝ଷ, … , 𝑝ௗ, … , 𝑝) , and 𝑃 = (𝑝ଵ, 𝑝ଶ, 𝑝ଷ, … , 𝑝ௗ,… ,𝑝) are the position, velocity, optimal position, and swarm's  

optimal position at each particle, respectively. D represents the 

dimension of the space that stands for the number of air holes 

inside the silicon slab. The velocity and position of particles at 

each iteration t are defined as 
 𝑣,௧ାଵௗ = 𝜔𝑣,௧ௗ + 𝑐ଵ𝑟ଵ(𝑝,௧ௗ − 𝑥,௧ௗ ) + 𝑐ଶ𝑟ଶ(𝑝,௧ௗ − 𝑥,௧ௗ ), (1)𝑥,௧ାଵௗ = 𝑥,௧ௗ + 𝑣,௧ାଵௗ , (2)
 

where 𝑟ଵ and 𝑟ଶ are random numbers on the interval [0, 1], 

and 𝑐ଵ, 𝑐ଶ, and 𝜔 are social, cognitive, and inertial parameters, 

respectively. As shown in Fig. 5(a) and 5(b), the ILs converged 

 

Fig. 3. Insertion loss (IL) versus frequency of an incident wave in 

TE00 mode for the optimized structures containing air holes 

with one radius (structure A) and two different radii (structure 

B). 

 
(a) 

 
(b) 

Fig. 4. Distribution of electromagnetic power at a frequency of 

0.94 THz in (a) structure A and (b) structure B. 

(a) (b) 

    
(c) (d) 

Fig. 5. Insertion loss (IL) versus iterations for (a) structure A and 

(b) structure B. IL versus particles and iterations for (c) 

structure A and (d) structure B. 
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roughly after 63 iterations, and the IL of structure B was less 

than that of structure A owing to the use of air holes with two 

different radii (7 μm and 9 μm). The IL parameter versus particles 

and iterations for the two structures is shown in Fig. 5(c) and 

5(d). The IL decreased abruptly and then showed a further 

gradual decrease over iterations. The simulation time taken to 

design each structure using the PSO on a PC with a 2.9 GHz 

Core-i7 CPU and 32 GB of RAM was roughly 20 hours. 
To show the return loss of structures A and B, the reflection 

at the input is defined as -10log(PRef/Pin), where PRef is the re-

flection at the input port. The reflection for the two structures 

is shown in Fig. 6. The reflection for structure A was higher 

than that of structure B over almost the entire working spectrum. 

III. CONCLUSION 

In this letter, we presented two 50:50 TE TPSs based on 

digitized metamaterials. The devices contain an input and two 

silicon waveguide outputs and were optimized using the PSO 

inverse design method. The structures consist of a silicon slab 

etched with a few air holes and deposited on a SiO2 substrate. 

The ILs of the optimized devices containing air holes with one 

radius and air holes with two different radii were less than 3.9 dB 

and 3.65 dB, respectively, over a frequency range of 0.87–1.09 

THz. The advantages of the devices are compactness, efficiency, 

small footprint, all-dielectric properties, and compatibility with 

CMOS fabrication technology. These devices are suitable can-

didates for high-density terahertz circuits. 
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