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Abstract: This paper investigates a low-Earth orbit (LEO) satellite downlink for high-speed data
communication in interference situations. A choke ring horn type antenna is used as the data
transmitting antenna with an isoflux pattern in the LEO satellite, which has a beam coverage of
±51.6◦ and a bore-sight gain of 4.4 dBi at 8 GHz. The receiving antenna on the ground station is
a parabolic type antenna with a diameter of 11.3 m, and it has a half-power beam width (HPBW)
of 0.2◦ with a maximum gain of 59 dBi at 8 GHz. The jamming-to-signal ratio (J/S) is calculated
assuming that the LEO satellite transmits signals to the ground station, and an elevation angle of the
interference source varies from 0◦ to 90◦ at an altitude of 10 km. Applying antenna characteristics,
such as HPBWs and side lobes, to the calculated space wave path loss makes it possible to predict the
J/S results according to the location of the interference source and the satellite. The results show that
it is necessary to consider the space environment to accurately analyze the LEO satellite downlink,
especially at the low elevation angle of the satellite.

Keywords: LEO satellite; link budget; antenna radiation patterns; interference situation; wave
propagation; space environment; unwanted interference source; J/S

1. Introduction

Low-Earth orbit (LEO) satellites have often been used to acquire image data for Earth
observations, such as natural disasters and terrain changes, using synthetic aperture radars
(SARs) [1,2]. These LEO satellites have a rapid velocity of around 7.6 km/s at an altitude of
550 km to a fixed point on a ground station and transmit the image data through a downlink
which is the X-band (8025 MHz~8400 MHz) for the high-rate data. In order to predict the
data transmission situation from LEO satellites in rapidly changing interference situations,
many studies have been conducted on the link budget analysis in terms of path loss [3], the
elevation angle of the satellite [4], and non-line-of-sight situations [5–7]. However, link bud-
get analysis studies on misaligned off-axis and interference situations considering antenna
radiation patterns and space environment have not yet been sufficiently performed. In
particular, there are no in-depth studies of scenarios where power controllable interference
sources are exposed to the side lobe of the receiving antenna. In addition, most previous
studies have been conducted considering losses in the near-ground atmosphere [8–10],
without accounting for the entire space environment.

In this paper, we investigate an analysis of a LEO satellite downlink, considering
antenna patterns and the space environment in interference situations where the side lobe
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of a ground station antenna is exposed to a strong interference signal source. To calculate
the link budget, considering the bore-sight error loss between the ground station and
the satellite when the LEO satellite moves rapidly over the Earth, antenna patterns of
the ground station and the LEO satellite are employed. The ground station antenna is
assumed to be a parabolic type, and its radiation pattern is calculated by using methods
of geometrical optics (GO) and physical optics (PO) [11]. The radiation pattern of a choke
ring antenna, which it is assumed is that used in the LEO satellite, is obtained through a
full electric magnetic (EM) simulation. The actual radiation patterns of the receiving and
transmitting antennas are obtained and applied to the study, in order to more accurately
estimate the data link budget when interference is strong in the side lobe of the receiving
antenna. Finally, an analysis of the interference situation based on the space environment
is calculated when the interference source moves over the ground station in various inter-
ference situations. We employ ray tracing techniques and geometrical optics to analyze the
interference situation when the LEO satellite is located at a specific low elevation angle.
Jamming-to-signal (J/S) ratio results according to the space environments are examined
and they differ by about 3 dB at low elevation angles according to the space environments.

2. Antenna Simulation for LEO Downlink Analysis

Figure 1 shows the conceptual figure of the downlink scenario when the LEO satellite
transmits high-rate data in interference situations, where the side lobe of the ground station
antenna is exposed to a strong interference signal source. The elevation angle of the satellite
is θgs, and the elevation angle of the interference source is θj. When the LEO satellite
transmits data through the downlink to the ground station, the free-space loss Lf can be
obtained by Formula (1)

L f (dB) = 20 log10(d) + 20 log10( f ) + 20 log10(
4π

c0
) (1)

where d is the distance between the LEO satellite and the ground station and f is the carrier
frequency. The LEO satellite and the ground station antenna can be slightly misaligned
with off-axis situations in the space environment, and a bore-sight error loss Lb can be
calculated using Equation (2)

Lb(dB) = 12
(

θb
θh

)2
(2)

where θh is the half-power beam width (HPBW) of the ground station antenna, and θb is the
bore-sight error angle. It is assumed that there is no manufacturing error of the receiving
antenna, and the antenna is ideally well matched to the RF system. It is also assumed
that the performance of the receiver system does not change even when the side lobe of
the receiving antenna is exposed to strong interference [12]. To calculate the link budget
between the LEO satellite and the ground station, the received power Pr can be expressed
as (3)

Pr(dBm) = Pt + Gt + Gr − L f − Lb − Lat (3)

where Pt is the transmitting power, Gt is the gain of the transmitting antenna in the LEO
satellite, and Gr is the receiving antenna gain of the ground station. We also consider the
atmospheric loss Lat due to significant refraction and attenuation in the atmosphere. This
loss is significantly observed, especially when the LEO satellite is at the low elevation
angle. The atmospheric loss in the space environment will be discussed in more detail in
the next section.

Figure 2a,b show the transmitting antenna of the satellite and the far-zone radiation pattern.
Patch arrays [13–15], helical wires [16,17], and corrugated or choke ring horns [18–23] are often
used as data transmission antennas for LEO satellites. Among them, the choke ring horn
antenna is used as the transmitting antenna in this study, because it has a relatively simple
shape and can easily have the required radiation pattern with wide beam coverage. In
particular, an isoflux pattern is required to maintain uniform received power at the Earth’s
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surface during downlink data transmission through the X-band. To obtain the isoflux
pattern, the antenna is designed based on a requirement mask for the radiation pattern,
which is announced in the CNES [24–26]. The designed antenna has a diameter dt of
77.4 mm, and its characteristics are obtained using the CST studio suite full EM simulation
tool. It has a beam coverage of ±51.6◦ with a bore-sight gain of 4.4 dBi at 8 GHz.
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Figure 3a,b show the receiving antenna of the ground station and the far-zone radiation
pattern. In general, the ground station antenna is designed considering the regulation of
ITU-R S.508-6 for efficient communication by minimizing interference [27]. The receiving
antenna is a parabolic type with a diameter dr of 11.3 m, of which the radiation pattern is
obtained using the GO and PO methods. This antenna is fed by a rectangular horn antenna,
and has an HPBW of 0.2◦ with a maximum gain of 59 dBi at 8 GHz. The receiving antenna
is designed following ITU-R S.508-6 regulations to have side lobe levels (SLLs) of less than
the required mask. The actual radiation patterns of the receiving and transmitting antennas
are used, in order to more accurately estimate the data link budget when interference is
strong in the side lobe of the receiving antenna.
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3. Space Wave Propagation for LEO Downlink Analysis

In the LEO satellite data transmitting scenario, EM waves propagate through the tro-
posphere, stratosphere, and ionosphere to reach ground stations. Thus, losses are affected
and increased by the phenomena of refraction, attenuation, and reflection between each
layer. To predict EM wave propagation in space environments, it is necessary to calculate
the refractive indices of the troposphere and the stratosphere. The reflection and trans-
mission of EM waves are then obtained at the interfaces of multi-layered spheres. The ray
tracing technique and geometrical optics are employed to calculate EM wave propagation
at interfaces among the troposphere, stratosphere, and ionosphere in a space environment.
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Figure 4 shows the GO model when a ray passes through multi-layered atmospheric
spheres [28]. The wave propagation characteristics can be determined by calculating the
transmission and reflection at each interface of the multi-layered spheres. The polarization
of the incident wave is also considered when calculating the reflection and transmission
coefficients at each layer [29]. n0, n1, . . . , nI are the effective refractive index in the divided
layers of ionosphere, and nI+1, . . . , nT are the effective refractive index in the divided
layers of troposphere. θoi, θIi, and θTi are incident angles on each layer of ionosphere
and troposphere. Ei0 is the electric field incident on the multi-layered ionosphere, Et0 is
the electric field transmitted through each interface of the multi-layered ionosphere, and
Ei1 is the electric field incident on the multi-layered troposphere. Et1 is the electric field
transmitted through the multi-layered troposphere, and ET is the electric field reaching the
observation point which is presented the blue circle marker.
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The effective refractive index according to the altitude in the troposphere and the
stratosphere can be approximated by the equations in [30,31]. The refractive index can
be determined by temperature, pressure, and water vapor pressure obtained using daily
updated weather data from the University of Wyoming [32]. Since the ionosphere has
a plasma ion layer caused by solar radiation, it affects the refraction, attenuation, and
reflection of EM waves [33]. The characteristics of the ionosphere and prediction methods
are employed in [34] to investigate wave propagation in the ionosphere. The relative
permeability of the atmosphere is assumed to be 1, and the anisotropy of the electrical
conductivity is not considered.

Figure 5a,b show the bore-sight error and atmospheric attenuation that occur when
transmitting signals from the LEO satellite to the ground station on Earth. The bore-sight
error increases as the satellite elevation angle θgs decreases, as shown in Figure 5a. In partic-
ular, the bore-sight error significantly increases when considering the space environments,
as shown in the blue line. At a low elevation angle (θgs = 10◦), the difference in bore-sight
error is 0.04◦ and at a high elevation angle (θgs = 90◦), the difference is 0◦. The reason for
the large difference, especially at the low elevation angle, is the increased ray refraction.
Figure 5b shows the atmospheric attenuation, and again, how the attenuation considerably
increases as the satellite elevation angle θgs decreases. This result shows that at the low
elevation angle, the total path is increased by the refraction, resulting in greater attenuation.

Figure 6 shows the normalized received power at the Earth’s surface according to
latitude and longitude when transmitting signals from the LEO satellite. We assume that
the elevation angle of the LEO satellite is θgs = 10◦, and the main lobe is steered at an
observation point of 78.23◦ latitude and 15.408◦ longitude. Figure 6a shows the normalized
received power in free space, whereas Figure 6b shows the result in the space environment.
This clearly demonstrates that there is a difference between the observation point and
the location of the maximum received power due to the bore-sight error in the space
wave propagation.
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4. Analysis of LEO Satellite Downlink

To analyze the LEO downlink in interference situations, we set the scenario considering
antenna patterns, the path loss in the space environment, and the interference source. The
radiation patterns were obtained from the data transmitting antenna of the LEO satellite
and the receiving ground station antenna in Section 2. We considered the bore-sight error
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loss by assuming that the transmitting and receiving antennas are slightly misaligned in the
off-axis situation. The path loss calculated in Section 3 was then applied in the downlink
analysis. In the given scenario, the LEO satellite transmits the data to the ground station,
and the ground station antenna tracks the LEO satellite. The LEO satellite is located at the
elevation angle of θgs. At the same time, it is assumed that the elevation angle θj of the
interference source moves from 0◦ to 90◦ at an altitude of 10 km. The input power of the
interference source can be adaptively controlled from 100 dBm to 150 dBm and is connected
to a 10 dBi gain antenna. The interference power range was derived to maintain the target
J/S such as 0 dB, 5 dB, 10 dB, and 15 dB when the interference source is located at various
elevation angles. The detailed link budget parameters are listed in Table 1.

Table 1. Downlink parameters for the link budget in the scenario.

Downlink Parameters Values

Receiving antenna gain 59 dBi
Satellite altitude 550~2200 km
Frequency range 8025~8400 MHz

Transmitting power 30 dBm
Transmitting antenna bore-sight gain (dBi) 4.4 dBi

Effective isotopic radiation power (EIRP), Gt + Pt 34.4 dBm
Free-space path loss Lf dB
Bore-sight error loss Lb dB

Atmospheric attenuation Lat dB
Interference source power 100~150 dBm

Interference source antenna gain 10 dBi
Interference source altitude 10 km

Figure 7 shows the J/S result according to the elevation angle θj and the interference
power. “#” markers indicate the points at which the J/S is 0 dB. As can be seen, the result
exhibits a large variance due to fluctuation in the antenna radiation pattern, which makes
it difficult to observe the J/S tendency. To overcome this issue, we applied the regression
model to “#” makers in our J/S result. This regression model (f 1) is based on a quadratic
function often used to fit raw data to a curved distribution [35,36]. The quadratic regression
model can be expressed as (4)

f1(θj) = a1θ2
j + a2θj + a3 (4)

where a1, a2, and a3 are coefficients that best fit the points (“#” makers) with J/S = 0 dB,
which is illustrated as the solid line. We then easily examined the tendency of the results by
observing the single curved line.
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Figure 8 illustrates J/S according to the elevation angle θj and the interference power
at θgs = 10◦. To obtain the J/S in the space environment, we applied the bore-sight error
loss and atmospheric attenuation in Section 3 to the link budget calculation. In Figure 8a,
the solid line indicates the regression model for the points with J/S = 0 dB in the space
environment. To observe the effect of the space environment, we also examined the
regression model (dashed line) without the space environment. To quantify the difference
between the two cases, we defined β, which is the average difference between the two
models expressed as (5):

β =
1
N

N

∑
k=1

∣∣∣Ps(k)− Pf (k)
∣∣∣ (5)

where N is the number of elevation angle points, Ps is interference power of each elevation
angle with the space environment, and Pf is interference power without the space envi-
ronment. When the J/S = 0 dB, β is 3.53, which is due to the high atmospheric loss and
bore-sight error at the low elevation angle of θgs = 10◦. Figure 8b presents the regression
model when J/S is changed to 5 dB, and it was observed that β is 2.56 dB in this case.
Figure 8c,d illustrate the regression models with J/S = 10 dB and J/S = 15 dB, where β are
2.16 dB and 1.63 dB, respectively.
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Figure 9 illustrates J/S with θgs = 60◦, which is the result of seeing the effect of the
space environment when the elevation angle θgs is increased. In Figure 9a, the solid and
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dashed lines indicate the regression models with and without the space environment when
J/S is 0 dB. A reduced β of 0.02 was observed in this case because the atmospheric loss and
bore-sight error decrease as the elevation angle θgs approaches 90◦. Figures 9b, 9c and 9d
present the regression models when J/S is changed to 5 dB, 10 dB, and 15 dB, respectively.
For each case, β were 0.37 dB, 0.62 dB, and 0.14 dB, respectively. The detailed values of
J/S results are listed in Table 2. As can be seen from the table, the smaller the elevation
angle, the larger the overall β. The results demonstrate that it is necessary to consider the
space environment to accurately analyze the LEO satellite downlink, especially at the low
elevation angle of the satellite.

Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 12 
 

 

  
(a) (b) 

 
(c) (d) 

Figure 9. J/S according to the elevation angle θj and the interference power at θgs = 60°: (a) J/S = 0 dB; 
(b) J/S = 5 dB; (c) J/S = 10 dB; (d) J/S = 15 dB. 

Table 2. J/S results depending on the J/S and θgs. 

θgs 10 60 
J/S (dB) 0 5 10 15 0 5 10 15 
β (dB) 3.53 2.56 2.16 1.63 0.02 0.37 0.62 0.14 

5. Conclusions 
We analyzed the LEO satellite downlink, considering antenna patterns and the space 

environment in interference situations. The actual radiation patterns of the receiving and 
transmitting antennas were applied to more accurately estimate the data link budget 
when interference was strong in the side lobe of the receiving antenna. The choke ring 
horn type antenna with a diameter of 77.4 mm was used as the transmitting antenna in 
the LEO satellite, which had an HPBW of 103.2° and a maximum gain of 6.6 dBi at 8 GHz. 
The receiving antenna in the ground station was the parabolic type of antenna with a di-
ameter of 11.3 m and an HPBW of 0.2°, with a maximum gain of 59 dBi at 8 GHz. We 
applied the space environment by employing the ray tracing technique and geometrical 
optics to calculate EM wave propagation. To observe the effects of the space environment, 
we examined the regression model with and without the space environment. To quantify 
the difference between the two cases, we defined β, which was the average difference be-
tween the two models. At θgs = 10°, β was from 1 dB to 4 dB, whereas β was from 0 dB to 1 
dB at θgs = 60°. These results demonstrated that the bore-sight error and atmospheric at-
tenuation increase due to the increased ray refraction, especially at low elevation angles, 

Figure 9. J/S according to the elevation angle θj and the interference power at θgs = 60◦: (a) J/S = 0 dB;
(b) J/S = 5 dB; (c) J/S = 10 dB; (d) J/S = 15 dB.

Table 2. J/S results depending on the J/S and θgs.

θgs 10 60

J/S (dB) 0 5 10 15 0 5 10 15
β (dB) 3.53 2.56 2.16 1.63 0.02 0.37 0.62 0.14

5. Conclusions

We analyzed the LEO satellite downlink, considering antenna patterns and the space
environment in interference situations. The actual radiation patterns of the receiving and
transmitting antennas were applied to more accurately estimate the data link budget when
interference was strong in the side lobe of the receiving antenna. The choke ring horn
type antenna with a diameter of 77.4 mm was used as the transmitting antenna in the LEO
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satellite, which had an HPBW of 103.2◦ and a maximum gain of 6.6 dBi at 8 GHz. The
receiving antenna in the ground station was the parabolic type of antenna with a diameter
of 11.3 m and an HPBW of 0.2◦, with a maximum gain of 59 dBi at 8 GHz. We applied
the space environment by employing the ray tracing technique and geometrical optics
to calculate EM wave propagation. To observe the effects of the space environment, we
examined the regression model with and without the space environment. To quantify the
difference between the two cases, we defined β, which was the average difference between
the two models. At θgs = 10◦, β was from 1 dB to 4 dB, whereas β was from 0 dB to 1 dB at
θgs = 60◦. These results demonstrated that the bore-sight error and atmospheric attenuation
increase due to the increased ray refraction, especially at low elevation angles, and thus it
was important to consider the space environment for LEO satellite downlink analysis in
interference situations.
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