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Abstract: In the present study, we propose a periodically rotating distributed forcing for turbulent
flow over a sphere for its drag reduction. The blowing/suction forcing is applied on a finite slot of the
sphere surface near the flow separation, and unsteady sinusoidal forcing velocities are azimuthally
distributed on the sphere surface. This forcing profile periodically rotates in the azimuthal direction
over time with a forcing frequency, satisfying the instantaneous zero net mass flux. The Reynolds
number considered is Re = 104 and large eddy simulations are conducted to assess the control
performance. It is shown that the drag reduction performance varies with the forcing frequency,
and the control results are classified into low-frequency ineffective, effective drag reduction, and
high-frequency saturation regimes. With forcing frequencies in the effective drag reduction regime,
a helical vortex is generated from the forcing on the sphere and evolves in the shear layer, and this
vortex is responsible for the separation delay and flow reattachment resulting in the base pressure
recovery and drag reduction. The maximum drag reduction is about 44% with the forcing frequency in
the effective drag reduction regime, while controls in other regimes do not produce a drag reduction.

Keywords: flow control; turbulent flow; flow over a sphere; periodically rotating distributed forcing;
active open-loop control; drag reduction
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1. Introduction

The control of flow over a bluff body has been one of the long-lasting research subjects
in fluid engineering industries and academia [1–3]. Control methods for flow over a bluff
body can be classified into passive, active open-loop and active closed-loop controls [4].
Among them, the active open-loop control is featured by the use of predetermined control
inputs without measuring flow field variables, making it easier to implement than active
closed-loop control. Therefore, many active open-loop control methods have been devel-
oped and applied to flows over various bluff bodies such as a circular cylinder, a sphere,
bodies with a blunt trailing edge, etc. [4–9]. In the present study, we focus on investigating
an active open-loop control method applied to flow over a sphere as a representative three-
dimensional bluff body. Therefore, in the following, we review previous investigations
related to this topic.

Kim and Choi [5] first performed the distributed forcing of flow over a circular cylinder.
In their study, steady blowing/suction actuations were distributed on the upper and lower
surface slots of the circular cylinder near the flow separation, and their amplitudes varied
sinusoidally along the spanwise direction, satisfying the zero net mass flux. For both
laminar and turbulent flows, they showed that this distributed forcing annihilated or
attenuated the Kármán vortex shedding, leading to reductions of the mean drag and lift
fluctuations. In addition, they demonstrated that the performance of the distributed forcing
was affected by the spanwise period of the sinusoidal profile, amplitude of actuations,
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and in and out of forcing phases on the upper and lower slots of the circular cylinder.
In particular, they achieved a drag reduction of about 25% for the turbulent flow at the
Reynolds number Red = u∞d/ν = 3900, where u∞ is the free-stream velocity, d is the
cylinder diameter, and ν is the kinematic viscosity. They attributed the attenuation of the
vortex shedding to the phase mismatch along the spanwise direction, which disrupted the
coherence of the vortex shedding and resulted in three-dimensional vortical structures in
the wake. The flow over a circular cylinder is well known for its nominally two-dimensional
Kármán vortex shedding [4], and the significance of this study is that this two-dimensional
vortical structure can be successfully weakened by the distributed forcing. It is worth
noting that similar strategies have been shown to be effective for the control of flow over a
cylinder such as wavy cylinder [10], helically twisted elliptic cylinder [11,12], cylinder with
tabs [13], and so on.

On the other hand, there have been fewer successful active open-loop controls for
flow over a bluff body having nominally three-dimensional vortex shedding, such as flow
over a sphere or flow over an axisymmetric body. Kim and Durbin [14] experimentally
investigated the effect of a time-periodic acoustic excitation on the turbulent flow over a
sphere. In their study, the acoustic excitation was provided by a loudspeaker installed
at the wind tunnel inlet and directed to the wind tunnel exit, and the sphere was placed
inside the test section of the wind tunnel. The frequencies for the time periodic excitation
ranged from that associated with the vortex shedding to that associated with the instability
of shear layers. They observed that, with this time periodic excitation, the separating shear
layer moved toward the sphere surface and the size of the recirculation region behind the
sphere was reduced. Consequently, the base pressure of the sphere decreased and hence
the drag exerted on the sphere increased.

As opposed to the approach by Kim and Durbin [14], the experimental study by
Jeon et al. [15] installed a time-periodic actuation on the surface of a sphere and showed
that this strategy applied to turbulent flow over a sphere at subcritical Reynolds numbers
could effectively reduce the drag of the sphere. They provided a time-periodic forcing
(blowing and suction) from a slit located before the flow separation line, which was actuated
by a speaker inside the sphere. For the Reynolds number of 105, they showed that the drag
was reduced by about 50% at the high forcing frequency regime (Std = f d/u∞ ≥ 2.85), and
the amount of drag reduction remained the same for higher forcing frequencies. Here, f is
the forcing frequency, and d is the diameter of the sphere. They observed that the control
performance was degraded with smaller Reynolds numbers (Re < 105). With surface oil
flow pattern visualizations, they demonstrated that the drag reduction was due to the fact
that the disturbances from the time-periodic forcing delayed the first separation while
maintaining laminar separation, and they entrained the high momentum flow in the free
stream toward the sphere surface, resulting in the flow reattachment and the delay of the
main separation. A similar mechanism can also be found in the drag reduction by dimples
on a sphere [16].

Findanis and Ahmed [17] applied a localized synthetic jet to turbulent flow over a
sphere. Unlike actuations by Jeon et al. [15] where the actuations were uniformly allocated
in the the azimuthal direction, the synthetic jet in this study was realized by a single-pointed
round jet located at the sphere surface near the flow separation. This localized synthetic jet
generated a three-dimensional and asymmetric forcing profile and was shown to effectively
delay the flow separation, causing an overall drag reduction of 12%.

Oxlade et al. [18] studied the effect of high-frequency forcing on a turbulent axisym-
metric wake behind a bluff body model. They activated the forcing with a high-fidelity
speaker mounted inside the model to inject a high-frequency periodic jet below the point
of separation. With the control, the time-averaged area-weighted pressure on the model
base increased by 35% at forcing frequencies roughly five times the shear layer frequency.
According to their study, the high-frequency jet created a row of closely spaced vortex rings
in the wake, which would be responsible for the attenuation of the flow entrainment and
the reduction in the pressure drag.
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A numerical study by Jardin and Bury [6] investigated a distributed forcing applied
to the flow past a blunt-based axisymmetric bluff body at the Reynolds numbers of 800
and 1000. Similar to Kim and Choi [5], they adopted a steady and azimuthally distributed
blowing/suction actuation imposed on the trailing edge of the bluff body, and examined the
effects of the forcing profile by varying its wavelength, amplitude, etc. With this approach, it
was demonstrated that drag fluctuations experienced by the bluff body could be effectively
reduced. However, it was observed that the distributed forcing did not produce a significant
reduction of the mean drag. This indicates that, unlike the distributed forcing applied to
the flow over a cylinder discussed above [5], that applied to flow over a axisymmetric
body may not be so successful. The wake behind an axisymmetric body such as a sphere
is naturally three-dimensional, and therefore, adding more three-dimensionality through
the distributed forcing would make little difference in the unsteady wake characteristics
behind an axisymmetric body [4].

As discussed above, previous studies on the distributed forcing typically adopted
a steady forcing with fixed locations of the maximum magnitudes for blowing/suction
actuations [5,6,19]. In the present study, we propose an unsteady distributed forcing and
apply it to the turbulent flow over a sphere, a representative three-dimensional and ax-
isymmetric bluff body. In this approach, we impose an unsteady distributed forcing on
the sphere surface, for which the locations for the maximum blowing/suction amplitudes
periodically rotate in the azimuthal direction over time (see Figure 1). This periodically
rotating distributed forcing is different from previous time-periodic forcings [15,18] in that
its forcing profile retains a large-scale variation in the space and it satisfies the instantaneous
zero net mass flux. The goals of the present study are to assess the performance of the
periodically rotating distributed forcing in reducing the drag exerted on the sphere and to
analyze the near-wake characteristics modified by the control. The control strategy and
numerical details are described in Section 2. The control results are presented and discussed
in Section 3, followed by the conclusions in Section 4.
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Figure 1. Schematic diagram for periodically rotating distributed forcing on the sphere surface:
(a) forcing profile in x-y plane; (b) forcing profile in y-z plane at t = 0; (c) forcing profile in y-z plane
at t = 0.25/ f . Here, arrows on the sphere surface indicate blowing/suction forcings. The forcing
profile refers to Equation (1).

2. Control Strategy and Numerical Details
2.1. Control Strategy

In the present study, we investigate the periodically rotating distributed forcing ap-
plied to turbulent flow over a sphere, which is given as follows:

ψ(t, θ) = V0 cos(θ − 2π f t), (1)
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where ψ is the forcing velocity on the sphere surface, V0 is the maximum forcing velocity, θ
is the azimuthal direction, f is the forcing frequency, and t is the time. Figure 1 shows the
schematic diagram for the present control method. As shown in Figure 1a, the slot for the
forcing is located near the flow separation on the sphere, and its finite streamwise width is
0.1d with φ1 = 84◦ and φ2 = 96◦. As shown in Figure 1b,c, the blowing and suction forcing
velocities are azimuthally (θ) distributed on the sphere surface, and the forcing profile
periodically rotates over time at the forcing frequency f in the azimuthal direction. The
positive and negative values of ψ in Equation (1) correspond to the blowing and suction
forcings on the sphere surface, respectively, and fluxes from blowing and suction are the
same at every instance ensuring the instantaneous zero net mass flux. In Equation (1),
the present active open-loop control method contains two predetermined parameters of
f and V0. This study considers various values of f and V0 to evaluate their effects on the
reduction of the drag exerted on the sphere.

In this study, to investigate the periodically rotating distributed forcing, we conduct nu-
merical simulations of turbulent flow over a sphere. The forcing in Equation (1) is realized
by the velocity boundary condition on the sphere surface based on the immersed boundary
method [20]. We note that the immersed boundary method used in this study [20] has been
successfully applied to a wide variety of active control methods that use blowing/suction
on solid walls [21–24].

2.2. Numerical Details

In the present study, we perform large eddy simulations (LES) of turbulent flow over
a sphere. The governing equations are unsteady filtered incompressible continuity and
Navier–Stokes equations on the cylindrical coordinate system:

∂ūi
∂xi
− q = 0, (2)

∂ūi
∂t

+
∂ūiūj

∂xj
= − ∂ p̄

∂xi
+

1
Re

∂2ūi
∂xj∂xj

−
∂τij

∂xj
+ fi, (3)

where ¯(•) indicates the filtering operation for LES, xi’s are the cylindrical coordinates,
ui’s are the corresponding velocity components, p is the pressure, and τij = uiuj − ūiūj is
the subgrid-scale (SGS) stress tensor. fi and q are the momentum forcing and the mass
source/sink for the immersed boundary method, respectively [20]. All the variables are non-
dimensionalized by the sphere diameter d and the free-stream velocity u∞. The Reynolds
number is defined as Re = u∞d/ν.

A staggered grid system is employed in this study, and thus, ui and fi are defined at
the cell face, whereas p and q are defined at the cell center. A fractional-step method [25] is
adopted for the decoupling of the pressure and the velocity in the Navier–Stokes equation.
In this study, we use a second-order semi-implicit time advancement scheme consisting of
a third-order Runge–Kutta method (RK3) for the convection term and the second-order
Crank–Nicolson method (CN2) for the diffusion term [26]. Mainly, the second-order central
difference scheme is used for the discretizations of spatial derivative terms, while a third-
order QUICK scheme is partly used for the discretization of the convection term in the
laminar acceleration region over the sphere [27].

Figure 2 shows the coordinate system, computational domain and boundary condi-
tions used in this study. As stated before, we use the cylindrical coordinate system, where
x, r and θ denote the streamwise, radial and azimuthal directions, respectively. A Cartesian
coordinate system (x, y, z) is also adopted in order to define the drag and lift forces, where
the lift force is composed of two orthogonal (y and z) components which are perpendicular
to the streamwise direction (x). The computational domain used is −15 ≤ x/d ≤ 15,
0 ≤ r/d ≤ 15, and 0 ≤ θ ≤ 2π, where (x/d = 0, r/d = 0) corresponds to the center
location of the sphere. The number of grid points used is 705(x)× 181(r)× 64(θ). Figure 3
shows grid distributions near the sphere in both y-z and x-r planes. As shown, grid lines
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for the mesh do not necessarily coincide with the geometry of the sphere owing to the
adoption of the immersed boundary method [20]. To accurately capture the flow near the
sphere wall, we allocate 200 streamwise grid points in −1 ≤ x/d ≤ 1. The immersed
boundary method used in this study [20] is classified as a discrete forcing method [28].
We note that this immersed boundary method [20] has been extensively applied to tur-
bulent flows over various complex bluff bodies and produced accurate predictions for
them [11,24,29–31]. Non-uniform meshes are used and dense resolutions for r/d ' 0.5 are
allocated to accurately capture the separating shear layer around the sphere. A Dirichlet
boundary condition (ux = u∞, ur = 0, uθ = 0) is used at the inflow and far-field boundaries
(r/d = 15), and a convective boundary condition (∂ui/∂t + uc∂ui/∂x = 0) is used for the
outflow boundary, where uc is the space-averaged streamwise velocity at the exit. The
numerical accuracy is confirmed by increasing the number of grid points in each direction.
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Figure 2. Coordinate system, computational domain and boundary conditions.
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Figure 3. Grid distributions near the sphere: (a) in y–z plane; (b) in x–r plane. Every other grid is
shown.

In the present study, for the modeling of the SGS stress tensor τij in Equation (3),
we adopt the dynamic global subgrid-scale eddy-viscosity model based on the Germano
identity [29,32]:

τij −
1
3

τkkδij = −2νTSij, (4)
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Sij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
, (5)

where νT is the eddy viscosity and Sij is the filtered strain rate tensor. νT is determined by
the Vreman eddy viscosity model [33] in the following form,

νT = Cv

√
Bβ

αijαij
, (6)

αij =
∂uj

∂xi
, (7)

Bβ = β11β22 + β11β33 + β22β33 − β
2
12 − β

2
13 − β

2
23, (8)

βij =
3

∑
m=1

∆2
mαmiαmj, (9)

where Cv is the Vreman model coefficient, and ∆ denotes the size of grid filter. The Vreman
model guarantees theoretically zero subgrid-scale dissipation for various laminar shear
flow regions. In the previous studies, it was shown that the value of Cv for the accurate
prediction of turbulent flow depends on the flow configurations [29,32,34]. Therefore, in
this study, by using the dynamic global procedure based on the Germano identity, Cv is
dynamically determined in the following form [32]:

Cv = −1
2

〈
Lij Mij

〉
V〈

Mij Mij
〉

V

, (10)

Lij = ũiuj − ũiũi, (11)

Mij =

√√√√ B
β̃

α̃ijα̃ij
S̃ij −

˜√ Bβ

αijαij
Sij. (12)

Here, 〈•〉V denotes the instantaneous volume averaging for the entire computational
domain, and thus, Cv is constant in space but a function of the time.

3. Results and Discussion
3.1. Uncontrolled Flow

Table 1 shows the flow statistics of the uncontrolled flow over a sphere at Re = 104

from the present numerical simulation together with those from previous studies. In
the table, the mean drag coefficient (CD), mean base pressure coefficient (Cpb ), and mean
separation angle (φs) are presented. The mean separation angle φs is measured from the
stagnation point of the sphere, and obtained by averaging over the azimuthal direction (θ)
and the time. As shown in Table 1, the flow statistics from the present large eddy simulation
are generally in good agreements with those from the previous investigations.

The frequencies corresponding to the shear layer and wake instabilities are obtained
from the time traces of radial velocities near the shear layer (x/d = 1, r/d = 0.6) and in
the wake (x/d = 5, r/d = 0.3), respectively [27]. Figure 4 shows the variations of Strouhal
number corresponding to these shear layer and wake instabilities with the Reynolds
number from the present simulation and previous experimental and numerical studies.
In this figure, with increasing the Reynolds number, the high frequency associated with
the shear layer instability increases, while the low frequency associated with the wake
instability exhibits mild variations [35]. It is evident that these frequencies at Re = 104 are
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successfully predicted by the present simulation, indicating the accuracy of the present
numerical approach.

Table 1. Flow statistics of the uncontrolled flow over a sphere at Re = 104 from the present simulation
together with those from previous studies.

Re CD Cpb φs (deg)

Constantinescu and Squires [36] 104 0.393 −0.275 84
Yun et al. [27] 104 0.393 −0.274 90
Muto et al. [37] 104 0.446 - -
Rodríguez et al. [38] 104 0.402 −0.272 84.7
Present study 104 0.420 −0.274 88
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Figure 4. Shear layer and wake frequencies of the flow over a sphere at different Reynolds numbers:
present study,©; Möller [39], +; Cometta [40], ×; Achenbach [41], N; Kim and Durbin [14], – – –;
Sakamoto and Haniu [42], ——; Constantinescu and Squires [36], H; Yun et al. [27], �.

3.2. Effect of Forcing Frequency f

In this section, we investigate the effect of the forcing frequency ( f ) on the control
performance. We vary the forcing frequency from f ∗ = 0.125 to f ∗ = 5.0, covering both the
wake and shear layer frequencies, while the forcing amplitude is fixed to be V0/u∞ = 0.2.
Here, f ∗ is the non-dimensional forcing frequency defined to be f ∗ = f d/u∞.

Figure 5 shows variations of the mean drag and lift fluctuations according to the
forcing frequency f ∗. In the cases of low forcing frequencies (0.125 ≤ f ∗ ≤ 0.5), the mean
drag and lift fluctuations increase by the control. Additionally, with controls using forcing
frequencies close to the vortex shedding frequency in the wake (see Figure 4) such as
f ∗ = 0.25, it is observed that the shedding frequency measured from the time trace in
the wake region (x/d = 5, r/d = 0.3) is fixed to be the forcing frequency f , indicating
that the flow perturbed by the control experiences a lock-on phenomenon, where the
behavior of vortex shedding is locked on to the forcing frequency of a control that differs
from the shedding frequency of the uncontrolled flow [43–45]. On the other hand, for
moderate forcing frequencies (0.75 ≤ f ∗ ≤ 2.5), the drag exerted on the sphere is reduced
by the control with the maximum amount of drag reduction by about 44% (CD = 0.237) at
f ∗ = 1.5. This suggests that, unlike the steady distributed forcing [6], the present unsteady
distributed forcing with appropriate forcing frequencies can successfully reduce the drag of
an axisymmetric bluff body. For high forcing frequencies, (3.5 ≤ f ∗ ≤ 5.0), the mean drag
approaches to the value of the uncontrolled flow (CD = 0.420), and becomes saturated. We
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note that, as shown in Figure 5b, the lift fluctuations increase for all forcing frequencies
considered in this study, indicating that the periodically rotating distributed forcing is not
an effective way of reducing lift fluctuations, contrary to the drag reduction by it with
moderate forcing frequencies (0.75 ≤ f ∗ ≤ 2.5).
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Figure 5. Variations of force coefficients versus the forcing frequency ( f ∗) with the fixed forcing
amplitude of V0/u∞ = 0.2: (a) mean drag coefficient (CD); (b) rms of lift coefficient fluctuations
(CLrms). Here, dashed line denotes values for the uncontrolled flow.

Based on the discussion in the preceding paragraph, the control results from the
present periodically rotating distributed forcing can be divided into three categories: low-
frequency ineffective (0.125 ≤ f ∗ ≤ 0.5), effective drag reduction (0.75 ≤ f ∗ ≤ 2.5), and
high-frequency saturation (3.5 ≤ f ∗ ≤ 5.0) regimes. To illustrate the temporal evolutions of
forces for these regimes, the time traces of the drag and lift coefficients for cases with typical
forcing frequencies of f ∗ = 0.25, 1.5, and 5.0 are shown in Figure 6. In Figure 6a, it is clear
that the drag owing to the control with f ∗ = 1.5 is reduced by about 44% compared to that
of the uncontrolled flow. On the other hand, the control with f ∗ = 0.25 increases the drag,
while the control with f ∗ = 5.0 produces a similar value of drag to that without control. As
expected from Figure 5, the amplitudes of lift fluctuations increase at f ∗ = 0.25, 1.5 and
5.0 (Figure 6c–e) compared with the case of the uncontrolled flow (Figure 6b). We note
that, as shown in the figure, (Cy, Cz)’s move around (0, 0) for all control cases, indicating
that the present control does not produce an undesirable non-zero mean lift force. From
Figure 6b–e, instantaneous lift coefficients on the y–z plane show two different types of
temporal behavior. In the cases of the uncontrolled flow and low-frequency ineffective
regime (Figures 6b,c), the lift coefficients on the y-z plane move irregularly around the
center of (0, 0) over time. On the other hand, in the cases of effective drag reduction and
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high-frequency saturation regimes (Figures 6d,e), lift forces move in the counterclockwise
direction (when viewed from the downstream), which is the same direction as the rotating
direction of forcing in Equation (1).
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tu∞/d

(a) (b)

C
z
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z
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Figure 6. Time traces of force coefficients for various forcing frequencies: (a) CD versus the time;
(b) Cy–Cz for the uncontrolled flow; (c) Cy–Cz for f ∗ = 0.25; (d) Cy–Cz for f ∗ = 1.5; (e) Cy–Cz for
f ∗ = 5.0. For (a), �, without control; – – – (black), f ∗ = 0.25; —— (black), f ∗ = 1.5; —— (blue),
f ∗ = 5.0.

Figure 7 shows contours of the averaged pressure in the near wake of the sphere
with the typical forcing frequencies of f ∗ = 0.25, 1.5 and 5.0, together with that of the
uncontrolled flow. As shown in Figure 7a, it is observed that a low-pressure region for
the uncontrolled flow locates near the centerline behind the sphere (x/d ∼ 1.3, r/d ∼ 0.4).
With the control at f ∗ = 0.25 in the low-frequency ineffective regime (Figure 7b), the
low-pressure region moves to the sphere surface, which incurs the pressure decrease on
the rear surface of the sphere resulting in the increase of the drag. In the effective drag
reduction regime ( f ∗ = 1.5, Figure 7c), the low-pressure region is located on the shear layer
of the sphere in an elongated shape owing to the forcing and pressures on the rear surface
and the base of the sphere are recovered, which is favorable for the drag reduction. The
pressure at the sphere base ((x, r) = (0.5d, 0d)) with f ∗ = 1.5 is CPb = −0.0766, which
is significantly higher than that of the uncontrolled flow (see Table 1). With the control
at f ∗ = 5.0 in the high-frequency saturation regime (Figure 7d), the pressure contour is
similar to that of the uncontrolled flow (Figure 7a), which could explain the similar drag
values to that without the control in this regime.

Figure 8 shows instantaneous three-dimensional vortical structures in the turbulent
wake of the sphere identified using the λ2 method [46] with the typical forcing frequencies
of f ∗ = 0.25, 1.5 and 5.0. Compared to the vortical structures of the uncontrolled flow in
Figure 8a, the vortex shedding in the wake with the control at f ∗ = 0.25 is strengthened
owing to the lock-on phenomena [43], and the vortical structures behind the sphere exhibit
a distinct waviness along the streamwise direction (Figure 8b). In the case of f ∗ = 1.5
(Figure 8c), it is observed that a helically rotating vortex forms and dissipates in the shear
layer of the sphere, which is generated from the blowing actuation of distributed forcing
on the sphere surface. The streamwise distance dh for this helical vortex shown in Figure 8c
is measured to be about dh = 0.3d ∼ 0.4d. It is noteworthy that this distance for the helical
vortex is similar to the value measured for the vortex rings from the periodic forcing by
Oxlade et al. [18]. In the vortical structures with the control at f ∗ = 5.0 shown in Figure 8d,
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the helical vortex is created from the forcing slot, but it is so thin that it quickly disappears
as it travels downstream. This behavior suggests that the high-frequency forcing is not so
effective in changing the vortical structures in the wake.

(a)

(b)

r/d

r/d

(d)

(c)

x/d

r/d

r/d

2

p

ur
¥

Figure 7. Contours of the averaged pressure in the near wake of the sphere with various forcing
frequencies f ∗ (V0/u∞ = 0.2): (a) uncontrolled flow; (b) f ∗ = 0.25; (c) f ∗ = 1.5; (d) f ∗ = 5.0. Here,
〈•〉 denotes the averaging over time and azimuthal direction.

Figure 9 illustrates contours of instantaneous azimuthal vorticity (ωθ) on a x–y plane
for uncontrolled and controlled flows. For the uncontrolled flow shown in Figure 9a, the
growth of the laminar boundary layer, flow separation, evolution and roll-up of the shear
layer, vortex shedding in the wake, as well as vivid small-scale vortices are visible. Consis-
tent with the three-dimensional vortical structures in Figure 8c, the staggered formations
of vortices in the upper and lower shear layers of the sphere by the control (Figure 9b)
indicate the evolution of the helical vortex in the shear layer, and these vortices disappear
as they travel downstream. After the helical vortex starts to disappear around x/d = 1.5,
the turbulent wake exhibits small-scale vortices.
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(a) (b)

(d)(c)

d
h

Figure 8. Instantaneous three-dimensional vortical structures in the turbulent wake of the sphere iden-
tified using the λ2 method [46] with various forcing frequencies f ∗ (V0/u∞ = 0.2): (a) uncontrolled
flow; (b) f ∗ = 0.25; (c) f ∗ = 1.5; (d) f ∗ = 5.0.

y/d

x/d

y/d

x/d

(a)

(b)

d

u

q
w

¥

Figure 9. Contours of instantaneous azimuthal vorticity (ωθ) on a x–y plane: (a) uncontrolled flow;
(b) controlled flow with f ∗ = 1.5 and V0/u∞ = 0.2.

To understand the detailed process for the generation of helical vortex, Figure 10
displays instantaneous velocity vectors on the x–r plane (θ = 0) in the near wake at
different temporal instances for the case of f ∗ = 1.5 and V0/u∞ = 0.2 in the effective drag
reduction regime. At t = 0 in Figure 10a, flow separation occurs upstream of the helical
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vortex. At t = T/4 in Figure 10b, it is observed that the helical vortex at t = 0 moves
downstream in the shear layer, and in addition, a small helical vortex generated from the
blowing forcing is also visible on the surface of the sphere. Here, T denotes the temporal
period defined to be T = 1/ f . At this time instance, it is evident that a flow reattachment
occurs on the sphere surface between these two helical vortices. A similar behavior was
also observed in the time-periodic forcing by Jeon et al. [15]. At t = 2T/4 and t = 3T/4
in Figure 10c,d, respectively, these two helical vortices travel downstream, and hence, the
instantaneous locations of flow separation and reattachment are also further delayed on
the sphere surface. Compared to the separation point φs = 88◦ of the uncontrolled flow
(see Table 1), it is certain that the separation point is much delayed at all instances, which
reduces the drag on the sphere. The mean separation and reattachment points are φ = 102◦

and φ = 129◦, respectively. We note that the separation delay for flow over a bluff body is
generally favorable to the base pressure recovery and drag reduction [4].

(a) (b)

(c) (d)

helical

vortex

separation
separation

reattachment

helical

vortex

separation

reattachment

helical

vortex

helical

vortex

separation

reattachment

helical

vortex

Figure 10. Instantaneous velocity vectors on the x–r plane (θ = 0) in the near wake at different
temporal instances owing to the periodically rotating distributed forcing ( f ∗ = 1.5 and V0/u∞ = 0.2):
(a) t = 0; (b) t = T/4; (c) t = 2T/4; (d) t = 3T/4. Here, T denotes the temporal period defined to be
T = 1/ f . Note that the forcing slot locates from φ = 84◦ to φ = 96◦.

3.3. Effect of Forcing Amplitude V0

In the previous section, we examined the control performance according to the forcing
frequency f and found that the control performance varied according to the value of the
forcing frequency. In this section, we examine the control performance according to the
forcing amplitude V0. With the fixed forcing frequency at f ∗ = 1.5 in the effective drag
reduction regime, we assess the control performance by changing the forcing amplitude
V0/u∞ from 0.1 to 0.5.

Figure 11 shows variations of the mean drag and lift fluctuations according to the forc-
ing amplitude V0/u∞. For all forcing amplitudes considered in the figure (0.1 ≤ V0/u∞ ≤
0.5), the drag is successfully reduced with the maximum drag reduction at V0/u∞ = 0.2.
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On the other hand, the rms of lift coefficient fluctuations linearly increases with the forcing
amplitude, as shown in Figure 11b.

X

X

X

X

X

X

X

X

X

X

X

X

V0/u∞

V0/u∞

(a)

(b)

C
D

C
L
r
m
s

Figure 11. Variations of force coefficients according to the forcing amplitude V0/u∞ with the fixed
forcing frequency of f ∗ = 1.5: (a) mean drag coefficient (CD); (b) rms of lift coefficient fluctuations
(CLrms). Here, dashed line denotes values for the uncontrolled flow.

4. Conclusions

In the present study, we proposed the periodically rotating distributed forcing for
turbulent flow over a sphere for its drag reduction. The blowing/suction forcing was applied
on a finite slot of the sphere surface near the flow separation, and unsteady sinusoidal
forcing velocities were azimuthally (θ) distributed on the sphere surface. This forcing profile
periodically rotated in the azimuthal direction over time with the forcing frequency f ,
satisfying the instantaneous zero net mass flux. The Reynolds number considered was
Re = 104 and large eddy simulations were conducted to assess the control performance. It
was shown that the drag reduction performance varied with the forcing frequency, and the
control results were classified into low-frequency ineffective, effective drag reduction, and
high-frequency saturation regimes. With forcing frequencies in the effective drag reduction
regime, the helical vortex was generated from the forcing on the sphere and evolved in the
shear layer, and this vortex was responsible for the separation delay and flow reattachment
resulting in the base pressure recovery and drag reduction. The maximum drag reduction
was about 44% with the forcing frequency in the effective drag reduction regime, while
controls in other regimes did not produce an effective drag reduction.

While the previous steady distributed forcings [5,6,19] were not so effective for the
drag reduction of an axisymmetric body, the unsteady distributed forcing in this study
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successfully reduced the drag experienced by the sphere. This suggests that the present
periodically rotating distributed forcing can effectively control flow around an axisymmetric
bluff body. Additionally, this technique has the advantage of satisfying instantaneous zero
net mass flux, unlike other time-periodic forcing techniques [15,18]. Therefore, applying
the present control strategy to other axisymmetric flows with nominally three-dimensional
vortex shedding would be an interesting topic to pursue.

Despite the drag reduction owing to the periodically rotating distributed forcing, it
was observed that the lift fluctuations of the sphere increased by the control with the forcing
frequencies considered in this study. We suspect that this increase of lift fluctuations is
due to the asymmetry of the distributed forcing in the azimuthal direction. That is, the
blowing and suction in the present forcing profile in Equation (1) have opposite phases (out
of phase), and this may cause an asymmetry for flow structures in the wake. To address this
issue, it is worth considering a forcing profile that produces symmetric blowing and suction
actuations. For example, using a forcing profile such as ψ(t, θ) = V0 cos(2θ− 4π f t) instead
of Equation (1) would satisfy this condition. Currently, we are investigating periodically
rotating distributed forcings adopting such a forcing profile, and the results will be reported
in a future study.
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Nomenclature

x Streamwise direction
y Transverse direction
z Spanwise direction
r Radial direction
θ Azimuthal direction
φ Angle measured from the stagnation point
t Time
d Sphere diameter
u Fluid velocity
p Pressure
u∞ Free stream velocity
ν Kinematic viscosity
fi Momentum forcing
q Mass source/sink
Sij Strain rate tensor
τij Subgrid-scale stress tensor
δij Kronecker delta
νT Eddy viscosity
() Filtered quantity
Re Reynolds number
St Strouhal number
CD Drag coefficient
CL Lift coefficient
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Cy Lift coefficient in the y direction
Cz Lift coefficient in the z direction
rms Root-mean-square value
Cpb Base pressure coefficient
φs Separation angle
V0 Forcing amplitude
f Forcing frequency
ψ Forcing velocity
dh Streamwise distance for helical vortex
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