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Abstract 

The effectiveness of machine learning models can be significantly averse to redundant 
and irrelevant features present in the large dataset which can cause drastic perfor‑
mance degradation. This paper proposes IGRF‑RFE: a hybrid feature selection method 
tasked for multi‑class network anomalies using a multilayer perceptron (MLP) network. 
IGRF‑RFE exploits the qualities of both a filter method for its speed and a wrapper 
method for its relevance search. In the first phase of our approach, we use a combina‑
tion of two filter methods, information gain (IG) and random forest (RF) respectively, 
to reduce the feature subset search space. By combining these two filter methods, the 
influence of less important features but with the high‑frequency values selected by IG 
is more effectively managed by RF resulting in more relevant features to be included 
in the feature subset search space. In the second phase of our approach, we use a 
machine learning‑based wrapper method that provides a recursive feature elimination 
(RFE) to further reduce feature dimensions while taking into account the relevance of 
similar features. Our experimental results obtained based on the UNSW‑NB15 dataset 
confirmed that our proposed method can improve the accuracy of anomaly detection 
as it can select more relevant features while reducing the feature space. The results 
show that the feature is reduced from 42 to 23 while the multi‑classification accuracy 
of MLP is improved from 82.25% to 84.24%.

Introduction
The Internet has changed the way people communicate, work, build businesses, and live 
our daily life dramatically. However, with the increasing number of network connections 
and network services, network attacks have become a major challenge for human soci-
ety. According to Norton’s annual security report published in 2021, a network attack 
occurs every 39 s globally [1]. In terms of attack forms, network attacks can be catego-
rized into active attacks and passive attacks [2]. Active attacks can have great impacts 
on system usability, and the most typical example is a denial of service attack. Passive 
attacks aim to capture important information in computer systems.

To mitigate the risk of different types of attacks, intrusion detection systems have 
been developed to detect malicious behaviors in the network [3, 4]. An early intrusion 
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detection system was proposed by Denning in 1987, who described a model based on 
audit records and statistical methods to identify system anomalies [5]. Modern intru-
sion detection systems can be mainly divided into three categories, which are signa-
ture-based, anomaly-based, and hybrid [6]. Signature-based IDS matches different 
types of attacks against a pre-specified database of signatures. One of its disadvan-
tages is that it cannot effectively detect unknown attacks because of Zero-day attacks 
and outdated databases. Anomaly-based IDS detects attacks by learning normal and 
anomalous network behaviors and has better detection capabilities for unknown 
attacks. However, due to the problems of redundant features and class imbalance in 
intrusion detection datasets, anomaly-based IDS has been shown to lead to false posi-
tives. Hybrid IDS combines signature-based and anomaly-based approaches [7].

The network intrusion detection tasks have become more complex in recent years 
as new network attacks continue to emerge and network data traffic increases. Con-
sequently, machine learning has been widely used in intrusion detection systems 
because of its ability to learn and identify patterns from complex data through sta-
tistical methods and advanced algorithms [8]. Intrusion detection methods based on 
machine learning can be divided into two categories: supervised learning and unsu-
pervised learning. In supervised learning, machine learning methods such as decision 
trees and random forests classify network behavior by learning from the labeled data 
[9]. Unsupervised intrusion detection methods such as K-means and hidden Markov 
models focus on the clustering problem [10] to group network behaviors [11].

Deep learning is a major branch of machine learning that is based on neural net-
works with at least two hidden layers. Deep learning is better suited at automatically 
learning and extracting features from large data sets, and has shown promising per-
formance [8, 12–15]. In spite of these advantages, feature engineering still plays an 
important role in deep learning models when faced with high dimensional structured 
data [16]. High-dimension, redundant and irrelevant features may make the model 
overfitting during the learning process and result in a high false positive rate in the 
real network environment [17]. There has been a wide range of research applying dif-
ferent feature selection methods to assist the Intrusion Detection System (IDS) to 
improve performance and reduce the false positive rate.

A single feature selection method is based on the assumption of importance indica-
tors to eliminate unimportant features. For example, information gain uses the infor-
mation entropy between features and labels as feature importance indicators, while 
random forest judges the importance of features based on multiple decision trees. 
To avoid biased feature importance metrics, using hybrid feature selection methods 
can combine different metrics to prevent removing important features. Hsu et al. also 
pointed out that hybrid feature selection approaches would achieve more stable per-
formance than a single feature selection method [18]. The purpose of this paper is to 
propose a hybrid feature selection method to help improve the multi-classification 
performance of intrusion detection systems on UNSW-NB15 dataset. We proposed 
a hybrid feature selection method named IGRF-RFE which combines both filter and 
wrapper methods that can reduce feature subset search space and eliminates redun-
dant features.

The contributions of our work are as follows:
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– We proposed an MLP-based intrusion detection system using a novel hybrid fea-
ture selection method called IGRF-RFE. IGRF-RFE is composed of both filter fea-
ture selection and wrapper feature selection methods. In the first step, it applies the 
ensemble feature selection method based on Information Gain and Random Forest 
Importance to reduce the dimension of features. This step can reduce the feature 
subset to a reasonable range while referring to two different feature importance met-
rics. Then, recursive feature elimination(RFE) as a wrapper method is applied to the 
reduced feature subset to remove features that negatively impact the actual model 
performance. An MLP classifier with two hidden layers is used in the RFE and the 
final classifier.

– Since there are many duplicate data in UNSW-NB15, feature selection can not be 
directly applied as this can cause overfitting. We analyzed the intrusion detection 
dataset and removed duplicated data before ranking the features to avoid ranking 
bias typically associated with selecting features that can cause overfitting.

– During data pre-processing, we removed the minority classes for UNSW-NB15. In 
addition, we employed a resampling technique to ensure a balance between normal 
and abnormal classes. This can avoid another type of overfitting problem typically 
associated with the classes with the limited number of samples available for training.

– The experimental results obtained based on the UNSW-NB15 dataset showed that 
our proposed model can reduce feature dimension from 42 to 23 while achieving a 
detection accuracy of 84.24% compared to 82.25% before feature selection.

We organized the rest of the paper as follows. In section "Related works", we discussed 
related works on feature selection methods for intrusion detection systems. In sec-
tion  "Proposed method", we introduced our MLP-based intrusion detection system as 
well as IGRF-RFE feature selection methods. In section  "Experiments and results", we 
presented our experiment details and results. The conclusion and future works were pre-
sent in section "Conclusion and future work".

Related works
In machine learning, feature selection is an important measure that can help eliminate 
low-value features, avoid overfitting, reduce detection time and improve model accuracy. 
Defined by methodologies, feature selection methods can be divided into three catego-
ries: filter methods, embedded methods, and wrapper methods [19]. Filter methods can 
rank features based on some metrics such as statistical measures, information distance, 
and correlations for example to select the best-ranked features [20]. As filter methods 
are model-independent, feature importance is consistent and does not require recalcu-
lation. Embedded methods obtain feature importance scores from tree-based machine 
learning algorithms such as random forest, C4.5, and Xgboost. After ranking the fea-
tures by importance, similar to filter methods, forward feature search or backward fea-
ture elimination can be applied to select feature subsets [21]. Wrapper methods evaluate 
the quality of feature subsets based on their actual performance on machine learning 
models [22]. Wrapper methods are not model-independent and thus can be based on 
any models. Wrapper methods perform actual training on the model for each evaluation 
of a feature subset, as a result, they are more time and computational consuming than 
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filter methods. To reduce selection time, random search algorithms or other methods 
are typically used together with the wrapper method.

Zhou et al. proposed a feature selection method CFS-BA for intrusion detection sys-
tems, which was based on correlation feature selection and bat algorithm [23]. The pur-
pose of this method was to find the least relevant feature subset through an optimized 
random search algorithm. In this study, an ensemble voting classifier based on random 
forest, C4.5, and Forest PA were used, and experiments were performed on three data-
sets NSL-KDD, AWID, and CIC-IDS2017. The results showed that CFS-BA could reduce 
the number of features of these three datasets to 10, 8, and 13, and improved accuracy by 
4.5%, 1.3%, and 2.2% in binary classification respectively.

The researchers in [24] proposed a filter feature selection method using the Gini index 
for intrusion detection systems and used the GBDT model as the classifier. In this study, 
the PSO algorithm was also used to find the optimal hyper-parameters for GBDT. To 
verify the effectiveness of this model, the author applied the model to the NSL-KDD 
dataset, and the Gini index method reduced the number of features from 41 to 18. The 
optimized GBDT classifier could achieve a performance of 86% in accuracy and 3.83% in 
false positive rate.

Kasongo et  al. used Xgboost as an ensemble feature selection method for intrusion 
detection systems in their research and made a performance analysis on the UNSW-
NB15 dataset using machine learning models [25]. According to the feature importance 
ranked by Xgboost, the researchers selected the 19 most important features from the 42 
features. The results showed that in the binary classification based on decision Trees, 
Xgboost feature selection improved the accuracy by 1.9% compared with the baseline 
performance using all features.

Eunice et al. proposed an intrusion detection system using random forests and deep 
neural networks (DNN) [26]. Their experiments used random forests to select different 
numbers of features and then used them in different layers of DNN. The experimental 
results showed that the best binary classification accuracy is 82.1% when 20 features 
were selected, and the DNN layer was 4. However, their experiments did not consider 
multi-classification performance under their proposed model.

In Prasad et al.’s work, a multi-level correlation-based feature selection was proposed 
in the intrusion detection systems on the UNSW-NB15 dataset [27]. In the two-level 
feature selection approach, Pearson correlation was used to evaluate feature-to-feature 
and feature-to-label correlations. If a pair of features’ correlations were larger than 0.9, 
the redundant feature with a more significant mean absolute correlation was removed. 
In addition, feature-to-label correlation metrics were used for importance filtering. The 
experiment finally selected 15 features for a decision tree model and achieved a multi-
classification accuracy of 95.2%. In their work, instead of the pre-prepared 10% training 
and test sets, they used the full dataset.

In the research by Alazzam et  al. [28], a feature selection method based on Pigeon 
Inspired Optimizer (PIO), inspired by the behavior of pigeon groups, was proposed. In 
the study, the author proposed an improved PIO algorithm based on cosine similarity 
named Cosine PIO and compared it with Sigmoid PIO. The NSL-KDD, KDDCup99, and 
UNSW-NB15 datasets were used in the experiments. In binary classification, Cosine 
PIO performed better than Sigmoid PIO in all three datasets. It selected 5 features in 
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NSL-KDD, 7 features in KDDCup99, 5 features in UNSW-NB15, and achieved an accu-
racy of 88.3% in NSL-KDD, 96% in KDDCup99, and 91.7% in UNSW-NB15.

Zhang et  al. used Information Gain and ReliefF feature selection methods in a ran-
dom forest-based intrusion detection system [29]. They conducted three sets of experi-
ments on the NSL-KDD dataset. The researchers first examined the performance using 
Information Gain and ReliefF alone and then compared it with their combined method 
IG-ReliefF. The IG-ReliefF method could first use IG to reduce the dimension of features 
and then used the ReliefF method to rank the importance, which could effectively reduce 
the time and computational requirements required for feature selection. The experimen-
tal results showed that ReliefF could achieve higher accuracy than the individual IG and 
ReliefF methods.

Megantara et al. implemented a hybrid feature selection method based on Gini impor-
tance and recursive feature elimination (RFE) on the NSL-KDD dataset [30]. Gini 
importance was used as a filter method to rank feature importance, and RFE was used to 
further optimize the number of features through a decision tree-based wrapper method. 
Using the decision tree as a classifier, DOS, Probe, R2L, and U2R classes achieved 
88.98%, 91.18%, 81.29%, and 99.42% accuracy in performance separately.

In [31], Ustebay et al. used a random forest-based recursive feature elimination algo-
rithm in CICIDS2017 which contained 80 features. The experiment evaluated the results 
of selecting 1 to 80 features using recursive feature elimination. The 4 most important 
features Source Port, Flow Packet/s, Flow IAT Mean, and Flow IAT Std were identified, 
and the MLP-based IDS achieved 89% accuracy in performance. Because only a small 
part of the dataset was used for training in the experiment, the performance was not 
high, but the small data could reflect the generalizability of the model and feature in the 
real network environment.

Zong et al. implemented IG-TS, a random forest-based two-stage IDS on the UNSW-
NB15 dataset [32]. The Information Gain feature selection method was used to reduce 
features and SMOTE was used to oversample the minority class. The first stage of the 
model focused on minority class classification, and the second stage focused on major-
ity class classification. Combining the results of the two stages, IG-TS could achieve an 
accuracy of 85.78%.

Kumar et  al. proposed an ensemble intrusion detection system based on multi-
ple tree models (C5, CHAID, CART, QUEST) [33]. In the study, the authors used the 
UNSW-NB15 dataset for training and generated a real-time dataset to evaluate the 
performance of the model against unknown attacks. Through Information gain feature 
selection, the author reduced the number of features to 13. Then they used the reduced 
features to detect five majority classes which were DoS, Probe, Normal, Generic, and 
Exploit. The model achieved 83.4% accuracy in performance, evaluated in a real network 
environment.

These existing works exhibit a number of limitations. When decision trees or random 
forests are used alone. These techniques usually assign the same importance to corre-
lated features but should have been a fraction, affecting the model interpretability. A 
combination of filter methods can address the disadvantage of a single method thus 
producing better outcomes. Also, the majority of the filter methods used in the existing 
state-of-the-art are generally univariate which ranks each feature independently of the 
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rest. As a result, they tend to ignore any interaction that occurs between features thus 
often redundant variables are not eliminated. To address this issue, a wrapper method 
can be used to supplement the limitations of the univariate nature of the filter method. A 
wrapper method provides learning-based feature selection after evaluating the pros and 
cons of the features. When training (for feature selection), a wrapper method has the 
capability to take into account the relevance of features across the same feature subset 
space. This capability provides a more enhanced feature selection when the relative rel-
evance across features should be accounted for.

Proposed method
In this section, we introduced the overview of our proposed model—shown in Fig.  1. 
The UNSW-NB15 dataset contains 39 numerical features and 3 categorical features and 
provides a training set and a test set. Since it cannot be used in the MLP model directly, 
data pre-processing is applied to encode the dataset. During data preprocessing, we per-
formed techniques including data cleaning, minority removal, oversampling, encoding, 
and normalization of the dataset. After data preprocessing, we divided the dataset into 
a training set, a validation set, and a test set. The training set and validation set are used 
in the feature selection and training process while the test set is used to verify the final 
performance of the model. Our proposed method has two steps. First, we applied an 
ensemble feature selection method based on information gain and random forest impor-
tance to filter important features. Then we performed recursive feature elimination on 
the reduced features to further optimize the feature subset. After feature selection, we 
used the obtained optimal feature subset to train the MLP model. The final performance 
on the test set provided the effectiveness of our proposed model.

Ensemble feature selection with information gain and Random Forest Importance

Information gain

Information gain (IG) is a univariate filter feature selection method based on infor-
mation entropy [34]. Entropy is a concept in information theory proposed by Shan-
non [35] and is often used to measure the uncertainty of a variant. When dealing with 
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high-dimensional datasets, there may exist features that are highly skewed or con-
tain little information, which affects machine learning performance. In classification 
problems, IG feature selection takes the amount of information as the importance 
metric by calculating the information entropy of each feature. As defined in Eq.  1, 
the information gain of a feature is equal to the entropy of the class label minus the 
conditional entropy of the class label under the feature. The formulas for class feature 
entropy and conditional class entropy are defined in Eqs. 2 and  3. After calculating 
the information gain for each feature, they can be ranked and selected according to 
the importance metric.

In Eq. 7, Y represents the class vector and X represents a feature vector.

In Eq. 8, n is the number of classes in vector Y and p(yi represents the probability of class 
yi in class vector Y.

In Eq. 9, m is the number of values contained in the feature vector X and p(xi) represents 
the probability of value xi in the feature vector X.

Random forest feature importance

Random forest is a machine learning method based on multiple decision trees, which 
is often used for many regression and classification tasks [36]. Different from deci-
sion trees, random forests add randomness to multiple decision trees to avoid over-
fitting and have better generalizability. When a random forest is used as a classifier 
(see Fig. 2), it first determines how many trees to build, and then uses the bootstrap 
sampling technique to randomly select a subset of the data for each decision tree. 
Another part of the randomness comes from the features used by each decision tree, 
and random feature subsets also lead to better generalizability and robustness. After 
training, the random forest classifier can generate the prediction with a higher prob-
ability by a voting method based on the prediction of each tree.

The random forest can also be used as an embedded feature selection method. The 
model can produce the importance score for each feature, which can be used to select 
the most important features and remove features that are not important for perfor-
mance. The feature importance of random forest mainly depends on the node impu-
rity property in decision trees. When generating a node in a decision tree, a feature’s 
position and priority are determined based on the Gini index or entropy in a node. 
The lower Gini index or entropy represents less impurity and higher importance. The 
feature importance of random forests calculates the impurity of each feature in each 
tree and can get an average importance score (see Algorithm 1).

(1)IG(Y ,X) = H(Y )−H(Y |X)

(2)H(Y ) = −

n
∑

i=1

p
(

yi
)

log2p
(

yi
)

(3)H(Y |X) = −

m
∑

i=1

p(xi)H(Y |X = xi)
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Ensemble feature selection

Ensemble feature selection with information gain (IG) and random forest (RF) impor-
tance is the first step of our feature selection method. In this step, the ensemble feature 
selection method is only applied to 39 numerical features, and 3 categorical features are 
preserved to avoid loss of important information. As seen in Fig. 3, it first pre-processes 
the input training set to remove duplicate data. Duplicate data may reduce the gener-
alizability of the result because selected features may overfit classes or instances with 
more repetitions. Subsequently, it calculates the importance of each feature using infor-
mation gain and random forest respectively. The importance scores are normalized to 
a value between 0 and 1. By ranking and visualizing the importance scores, thresholds 
are selected to differentiate obviously unimportant features and other features [37]. A 
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…

Output 1 Output 2 Output n

Voting

Final-Class

…

Fig. 2 Random forest classifier
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feature is retained if its importance is larger than the threshold, while it is removed if its 
importance is lower than the threshold. We assume that significant features could exist 
in both reduced feature subsets selected based on IG and RF metrics, so their union set 
is used for further feature optimization.

Recursive feature elimination

Recursive feature elimination(RFE) is the second step in our feature selection method. 
RFE is a wrapper feature selection method, which can evaluate the importance of fea-
tures iteratively based on machine learning performance by recursively eliminating 
each feature [38]. RFE removes the least important features in each iteration until the 
best performance is obtained or a specified number of features is reached. In our RFE 
algorithm (see Algorithm 2), the input training set and validation set contain only the 
reduced numeric features from the first stage and all categorical features. Other inputs 
to the algorithm include a positive integer patient p and a list init_features containing 
selected features in the first stage. Patient p is introduced to stop RFE in time if better 
performance cannot be obtained in several iterations, while init_features can be used 
to reduce the search space of RFE without starting from all features. Before recursive 
feature elimination, variables must be initialized. f _len represents the number of ini-
tial features, which determines the iterations of RFE in the worst case. best_performance 
is used to record the best performance during RFE, keep_features stores the features 
selected after each iteration of the RFE, selected_features stores the feature subset for 
best performance, and rm_list stores removed numeric features during RFE. In the pro-
cess of recursive feature elimination, an empty dictionary performance_dict will be ini-
tialized at the start of each iteration to store the validation performance with MLP after 

Remove Duplicated 
Data

Training Set

RF Feature Importance 
Ranking

Threshold1

IG Feature Importance 
Ranking

Threshold2

Feature Subset 1 Feature Subset 2

Union Feature Subset

Fig. 3 Workflow of ensemble feature selection with IG and RF
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eliminating each feature. In the evaluate elimination function, the score is calculated by 
averaging the accuracy of 10 different experiments each of which is set with a different 
random seed. Subsequently, patient p determines whether to continue RFE. If patient p 
is larger than 0, one iteration of RFE is performed, and the local best performance of the 
iteration is obtained. After comparing the local best performance and global best perfor-
mance, global best performance and selected features are updated.

MLP classifier

Multilayer perceptron (MLP)

MLP is a feed-forward artificial neural network with multiple hidden layers [39] (see 
Fig. 4). For classification problems, the amount of neurons in the output layer of MLP is 
equal to the number of classes to be classified while the number of neurons in the input 
layer is associated with the number of features. The layers between the input and output 
layers are often fully connected layers and are trained by backpropagation. When per-
forming forward propagation, the network calculates the output of each layer based on 
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an activation function from the previous layer as well as corresponding weight and bias 
values, as shown in Eq. 4.

where Z[l] represents the output matrix, W[l] is weight matrix and b[l] represents bias 
vector.

Since the output of an MLP could be any value, an activation function is used to nor-
malize the output. The activation function can transform the output of each layer to a 
certain range as shown in Eq. 5.

where A[l] represents the activated output matrix.
In our proposed method, we used Relu as the activation function for the hidden layer 

and Softmax as the activation function for the final output layer. Relu, as defined in Eq. 6, 
is an activation function that only transforms values less than zero to 0. The Softmax 
activation function, as defined in Eq. 7, is usually used for multi-classification, which can 
improve the defects of the sigmoid function for multi-classification, and ensure that the 
probability sum of the output layer is equal to 1. It can help determine the most probable 
prediction.

where J is the class number, zi represents the ith output value
The loss function as defined in Eq. 8 is used to calculate the error between the pre-

dicted value and the actual value, and then use back-propagation to adjust the weights w 
and bias b.

(4)Z[l] = W [l]A[l−1] + b[l]

(5)A[l] = g
(

Z[l]
)

(6)arelu = max(0, z)

(7)asoft =
ezi

∑J
j=1e

zj

Fig. 4 Basic MLP model
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where m is the number of samples, ŷ is the predicted value, and y is the exact value.

Batch normalization

For deep learning models, it is important to avoid overfitting. In a deep neural network, 
if the layers are too deep, it is possible to have gradient vanishing or gradient explosion 
problems, which may affect the performance of the model and may cause overfitting. 
Batch normalization, as defined in Eq.  9, is a method proposed by Loffe and Szegedy 
[40] to solve the gradient explosion or gradient vanishing. After each hidden layer, batch 
normalization normalizes the correspondent output values to avoid values that are too 
large or too small. It first takes the difference between each output and the vector’s mean 
value and then divides it by a standard deviation. In this study, batch normalization is 
added after each hidden layer of our MLP model to avoid overfitting.

where Xi is the ith hidden layer’s output matrix, Meani is the mean value of Xi , and 
StdDevi is the standard deviation of Xi.

Classification

In this study, we implemented the MLP as a classifier with two hidden layers using the 
Relu activation function, each of which contains 128 neurons (see Fig. 5). After each hid-
den layer, batch normalization is added as a means of regularization. The selected fea-
tures and pre-processed data are fed into the neural network through the input layer, 
the model is trained through forward and backward propagation and the output layer 
produces the probability of each class using the Softmax activation function. In the pre-
diction stage, after producing a class probability vector, the argmax function, as defined 
in Eq. 10, finds the largest number among them and returns its index.

Our model was trained with Adam’s optimization algorithm, which adaptively adjusts 
the learning rate based on recent gradients for the weight. Also, our model used the 
learning rate = 0.0003, the batch size = 64, and the epochs = 300. To avoid overfitting, 
we apply the early-stopping technique, which can stop training in time when overfitting 
is observed, and restore the best model parameters. We set the parameter of early-stop-
ping = 30. If the loss of the validation set does not decrease for more than 30 consecu-
tive epochs, it is determined that the model has been overfitted thus the training stops 
and any changes are rolled back.

Computational complexity

By analyzing the computational complexity of the single feature selection algorithm 
and our proposed hybrid feature selection, it can be found that the worst-case com-
putational complexity of the two feature selection algorithms used in the first step, 

(8)L(y, ŷ) =
1

m

m
∑

i=1

(yi − ŷi)
2

(9)Xi =
Xi −Meani

StdDevi

(10)result = argmax(probability_vector)
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IG and RF, is O(n) (see Eqs.  11 and  12). The worst-case computational complexity 
of our proposed IGRF-RFE is the same as that of RFE, which is O(n2) (see Eqs.  13 
and 14).

where n represents the number of features, C1,C2,C3,C4 represent constant numbers

Experiments and results
Hardware and environment setting

Our experiments were conducted on a desktop running with Ubuntu 20.04.4 LTS 
operating system. The hardware used on the desktop consists of 16GB RAM, AMD 
Ryzen 7 2700 processor, and an AMD RX580 graphics card. Our experimental envi-
ronment was based on python 3.8 and the MLP model was created on TensorFlow 
2.4.1. Scikit-Learn, Numpy, pandas, matplotlib, and other packages provide data 
processing, feature selection, and visualization functions for our experiments. Spe-
cific hardware and environmental information are presented in Table 1.

(11)TIG(n) = C1 ∗ n = O(n)

(12)TRF (n) = C2 ∗ n = O(n)

(13)TRFE(n) = C3 ∗ n ∗ (n− 1)/2 = O(n2)

(14)TIGRF−RFE(n) = C1 ∗ n+ C2 ∗ n+ C4 ∗ n(n− 1)/2 = O(n2)

Input layer

128 Neurons

Batch Normalization

128 Neurons

Output layer

Batch Normalization

hidden layer 1

hidden layer 2

relu activation

relu activation

soft-max activation

Fig. 5 Our Specified MLP Classifier

Table 1 Hardware and environment specification

Unit Description

Processor AMD Ryzen 7 2700

RAM 16 GB

GPU AMD RX580

Operating System Ubuntu 20.04.4 LTS

Packages Tensorflow 2.4.1, Sklearn 1.0.2, 
Numpy, Pandas and Matplotlib
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The UNSW‑NB15 dataset

For intrusion detection systems based on machine learning methods, datasets play 
a vital role in the effectiveness against unknown attacks, test performance, and gen-
eralizability. The IDS datasets are required to contain a sufficient number of differ-
ent types of attacks and reflect real-world attack scenarios. A well-known IDS dataset 
is KDDCup99, which has been widely used in many previous studies. KDDCup99 is 
a dataset created from MIT Lincoln Laboratory’s simulated experiments on cyber-
attacks to help build machine learning classifiers for intrusion detection [41]. NSL-
KDD was created as a cleaned version of KDDCup99, removing the duplicate data in 
KDD99, and rebuilding the training and testing data [42]. However, these two data-
sets met with criticism that they do not meet the network security requirements of 
today due to the lack of modern attack types, the imbalanced distribution of training 
and test sets, and the lack of support for some common network protocols [43].

For the shortcomings of KDDCup/NSL-KDD, Moustafa and Slay [43] created a 
more complex intrusion detection dataset named UNSW-NB15 to reflect better 
modern attacks and protocols. UNSW-NB15 is a dataset extracted from 100 GB of 
normal and modern attack traffic by researchers at the Australian Centre for Cyber 
Security(ACCS) using the IXIA tool. The complete UNSW-NB15 dataset contains 2.5 
million records of data, covering one normal class and nine attack classes which are 
Analysis, Backdoor, DoS, Exploits, Fuzzers, Generic, Reconnaissance, Shellcode, and 
Worms. The original data consists of 49 features which can be divided into six groups: 
flow features, basic features, content features, time features, additional generated fea-
tures, and labeled features.

The creator of the dataset also provided a 10% partitioned dataset, split into a training 
set (175,341 records) and a test set (82,332 records) (see Table 2). The statistical distri-
butions of the training and test set samples have been verified to be highly correlated, 
which means the partitioning is reliable for the machine learning model [44]. There are 
some minority classes: Analysis, Backdoor, Shellcode, and Worms, whose proportion 
is less than 2%. In the 10% dataset, a few meaningless features were removed, and the 
number of features was reduced to 42, including 38 numerical features and 3 categorical 
features (see Table 3). In this research, we used the 10% dataset for classification.

Table 2 Records of 10% UNSW‑NB15 dataset

Class Training dataset Test dataset

Normal 56000 37000

Generic 40000 18871

Exploits 33393 11132

Fuzzers 18184 6062

DoS 12264 4089

Reconnaissance 10491 3496

Analysis 2000 667

Backdoor 1746 583

Shellcode 1133 378

Worms 130 44

Total 175341 82332
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Data pre‑processing

In this section, we discussed the procedure and methods we use for the data pre-
processing process.

Cleaning

In the training and test sets provided by UNSW-NB15, there are 44 original fea-
tures. 42 of them are meaningful features and 2 features are the class labels of the 
attack. ‘attack_cat’ is a multi-class label and ‘label’ is a binary-class label. As our MLP 
model is designed to perform multi-classification for intrusion detection, ‘label’ was 
removed. In addition, we also cleaned 44 rows with null values in the dataset.

Minority removal

Extremely imbalanced datasets can have a negative impact on machine learning per-
formance. Since the imbalanced dataset is not the focus of this study, we removed 4 
minority classes: ‘Analysis’, ‘Backdoor’, ‘Shellcode’, ‘Worms’, which accounted for only 
1.141%, 0.996%, 0.646%, and 0.074% of the training set.

Oversampling

We observed that the proportions of data samples for different classes were the same 
in the given training set and test set while the normal class has the largest difference 
between them. The normal class accounts for only 32.9% in the training set, while 

Table 3 UNSW‑NB15 feature data types

No. Feature Dtype No Feature Dtype

0 dur float64 22 dwin int64

1 proto object 23 tcprtt float64

2 service object 24 synack float64

3 state object 25 ackdat float64

4 spkts int64 26 smean int64

5 dpkts int64 27 dmean int64

6 sbytes int64 28 trans_depth int64

7 dbytes int64 29 response_body_len int64

8 rate float64 30 ct_srv_src int64

9 sttl int64 31 ct_state_ttl int64

10 dttl int64 32 ct_dst_ltm int64

11 sload float64 33 ct_src_dport_ltm int64

12 dload float64 34 ct_dst_sport_ltm int64

13 sloss int64 35 ct_dst_src_ltm int64

14 dloss int64 36 is_ftp_login int64

15 sinpkt float64 37 ct_ftp_cmd int64

16 dinpkt float64 38 ct_flw_http_mthd int64

17 sjit float64 39 ct_src_ltm int64

18 djit float64 40 ct_srv_dst int64

19 swin int64 41 is_sm_ips_ports int64

20 stcpb int64 42 attack_cat object

21 dtcpb int64 43 label int64



Page 16 of 26Yin et al. Journal of Big Data           (2023) 10:15 

45.9% instances are the normal class in the test set (see Fig.  6). Dataset imbalance 
could cause a serious performance issue that affects the training process of MLP mod-
els. In UNSW-N15, the proportion of a normal class in the training set is much less 
than the proportion of a normal class in the test set, which may lead to an overfitting 
issue towards abnormal classes. To address this issue, we adopted an oversampling 
technique by double sampling the normal class so that the proportion of the normal 
class reaches 49.5%.

One‑hot encoding

There are three categorical features in the dataset: ‘service’, ‘proto’, and ‘state’, which 
contain 13, 9133 nominal values respectively. These features were transformed using 
one-hot encoding, making each nominal value a binary feature.

Normalization

Normalization can unify the value range of each feature and eliminate the bias during 
MLP model training caused by different value scales. We used MinMax Normalization 
to convert the range of feature values between 0 and 1 [45]. As defined in Eq. 15, the new 
value is calculated by the difference between the min value divided by the scale size.

Fig. 6 Class proportion before and after oversampling
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where xi represents the ith feature vector, min(xi ) returns the minimum value of the vec-
tor and max(xi ) returns the maximum value of the vector.

Training, validation, and test set preparation

In Fig. 7, we applied PCA to the original training and test sets provided by UNSW-
NB15, reduced them to three dimensions, and visualized their distribution. The dis-
tribution of different classes can be seen in the visualization of PCA latent space, 
which increases the interpretability of the data. Although PCA visualization cannot 
represent all dimensions of the data, it can be found that in three-dimensional space, 
there is a lot of overlap between different types of attack and normal classes. On the 
other hand, from the 3-dimensional visualization of the training set and the test set, 
it can be seen that the spatial distribution of the training set and the test set in some 
areas is not the same.

Machine learning usually divides data sets to use for different purposes. The train-
ing set is used to fit the model, the validation set is used to estimate the loss in train-
ing, and the test set is used to verify the performance of the model [46]. These three 
sets suppose to contain separate data samples to avoid biased performance caused by 
data leakage. The UNSW-NB15 dataset does not provide a separate validation set, as 
such most previous studies holdout a validation set from the training set. However, in 
the PCA visualization (see Fig. 7), we observed that the original training set and test 
set have different distributions in 3-dimensional space, so the model fitted based on 
the training set may not reflect the performance of the test set. In this case, the model 
may overfit the special distribution of the training set and cannot generalize well. The 
validation set usually needs to be the same distribution as the test set to correctly 
estimate the training loss of the model [47]. As a result, in our study, we split the 
original test set to construct a new validation set and test set (see Table 4). The new 
validation set and test set have the same distribution to help the model avoid overfit-
ting. In Table 4, the training, validation, and test set do not overlap, and the ratio of 
the three datasets is 68:16:16.

(15)x′i =
xi −min(xi)

max(xi)−min(xi)

Fig. 7 The PCA visualization of original training and test set
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Evaluation metrics

As our work is a multi-classification task, we used accuracy, recall, precision, false positive 
rate (FPR), f1 score, and AUC-ROC curve as our performance metrics. Table 5 presents a 
simplified confusion matrix that differentiates the classification results. Based on the one 
versus all principle, there are generally four cases in machine learning classification tasks, 
where:

– True Positive (TP): represents correctly classified positive samples
– False Negative (FN): represents incorrectly classified positive samples
– False Positive (FP): represents incorrectly classified negative samples
– True Negative (TN): represents correctly classified negative samples

Accuracy as defined in Eq.  16 calculates the ratio of correctly classified samples to all 
samples.

Recall as defined in Eq. 17 calculates the ratio of correctly classified positive samples to 
all samples that were supposed to be positive.

Precision, as defined in Eq. 18, calculates the ratio of actually classified positive samples 
to all samples that are predicted to be positive.

(16)Accuracy =
TP + TN

TP + TN + FP + FN

(17)Recall(TruePositiveRate) =
TP

TP + FN

(18)Precision =
TP

TP + FP

Table 4 Records of training, validation and test set to be used in our model

Class Training set Validation set Test set

Normal 56000 18500 18500

Generic 40000 9436 9435

Exploits 33393 5566 5566

Fuzzers 18184 3031 3031

DoS 12264 2044 2045

Reconnaissance 10491 1748 1748

Total 170332 40325 40325

Table 5 Simplified confusion matrix

Labeled samples Predicted cass

Positive Negative

Actual Class Positive TP FN

Negative FP TN
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False positive rate (FPR) as defined in Eq. 19 calculates the ratio of incorrectly classified 
positive samples to all samples that were supposed to be negative.

F1 score as defined in Eq. 20 calculates the harmony mean of recall and precision. It can 
be used as a performance metric to solve the defects of recall and precision when faced 
with multi-class imbalanced data.

The Receiver operating characteristic (ROC) curve shows the FPR and TPR of the model 
prediction at different thresholds. The area under the ROC curve (AUC) as defined in 
Eq. 21 calculates the area under the ROC, and it can be used to judge the performance of 
the model.

Results

Before the ensemble feature selection with IG and RF, we removed the duplicate samples 
in the training set to avoid overfitting features. Then, we applied the information gain 

(19)FPR =
FP

TN + FP

(20)F1 = 2×

(

Precision× Recall

Precision+ Recall

)

(21)AUCROC =

1
∫

0

TP

TP + FN
d

FP

TN + FP

Fig. 8 Numeric feature importance ranking by information gain
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and a random forest classifier with 1000 trees on the training set to obtain the impor-
tance ranking of 39 numeric features (see Figs. 8 and 9). There are some low importance 
features in IG ranking and RF importance ranking, which may degrade the performance 
of the model. We choose 0.25 and 0.02 as the thresholds for two feature selection meth-
ods respectively to filter important features. Therefore, in IG ranking, features with an 
importance score greater than 0.25 were retained while features with an importance 
score greater than 0.02 were retained in RF importance ranking. After removing unim-
portant features from these two metrics respectively, two feature subsets were obtained. 

Fig. 9 Numeric feature importance ranking by random forest

sload, sinpkt, 
ct_state_ttl, synack, 

ackdat, dttl, dload, sttl, 
dur, dmean, dbytes, 
rate, sbytes, smean, 
dinpkt, ct_srv_dst, 

tcprtt

ct_srv_src,
ct_dst_src_ltm

dloss, djit, 
spkts, dpkts, 

sjit

IG RF

Fig. 10 Numeric feature union set of IG and RF feature selection
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22 features were retained by IG feature selection and 19 features were retrained by RF 
importance feature selection. To take their union set in Fig. 10, it can be seen that they 
have 17 features in common and their union set have 24 numeric features which can be 
used as a part of the reduced feature subset for further feature reduction in the second 
step.

We applied the 24 numerical features obtained in the IGRF ensemble step and 3 cat-
egorical features to the wrapper-based RFE feature selection method. 10 random seeds 
from 2022 to 2031 were chosen to average the score in the evaluate_elimination func-
tion for each elimination. In the experiment, the patient parameter in our proposed 
model was set to 5, which means that the RFE process is stopped if the performance 
does not improve in the cumulative five iterations. After applying our hybrid feature 
selection method on UNSW-NB15, 23 important features were finally selected including 
20 numerical features and 3 categorical features (see Table 6). In Fig. 11, the confusion 
matrix of multi-classification is displayed, where the horizontal axis is the predicted label 
and the vertical axis is the true label. It can be seen that there are some misclassifications 
among different classes. DoS, Fuzzer, and Reconnaissance were often misclassified as 
Exploits. Approximately 88.31% of DoS samples, 27.78% of Fuzzer samples, and 18.82% 
of Reconnaissance samples were misclassified as Exploits, which might have been the 
reason for their poor performances. In addition, 889 samples of the Fuzzer class were 
misclassified as normal while 966 normal samples were misclassified as Fuzzer class.

In Table 7, the performance of our IDS model is presented. In multi-classification, the 
MLP model based on the IGRF-RFE feature selection method has an accuracy of 84.24%. 
Since the UNSW-NB15 dataset has multiple imbalanced classes, the f1 score is a better 
measure to use for the performance of each class. The Generic attack has the highest f1 
score of 98.20%, followed by the normal class with 93.11%. DoS and Fuzzer attacks have 
lower f1 scores of 11.09% and 42.26% respectively, which may be the insufficient sam-
ples in the UNSW-NB15 dataset. DoS class only occupies 5.4% of the training set and 
Fuzzers only accounts for 8.0%, which may make the MLP model can not fit them well 
when training. Although the Exploits and Reconnaissance classes do not have as many 
samples as Generic and Normal, they have f1 scores of 72.55% and 78.83%. Moreover, 

Table 6 Selected features by IGRF‑RFE

No. Feature Dtype No. Feature Dtype

0 dur float64 14 dloss float64

1 proto object 15 sinpkt float64

2 service object 16 dinpkt float64

3 state object 18 djit float64

4 spkts float64 23 tcprtt float64

5 dpkts float64 24 synack float64

6 sbytes float64 25 ackdat float64

7 dbytes float64 26 smean float64

8 rate float64 27 dmean float64

9 sttl float64 31 ct_state_ttl float64

10 dttl float64 35 ct_dst_src_ltm float64

12 dload float64
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a lower false positive rate (FPR) also reflects one aspect of the model performance. Our 
model has a weighted FPR of 0.0403, which means that only about 4% of negative sam-
ples are misclassified to be positive samples. The Generic attack class has the lowest FPR 
of 0.0005, while the Exploits has the worst FPR of 0.993. Also, although DoS has the low-
est f1 score, it has the second-lowest FPR of 0.0062.

In Fig. 12, we applied the one vs all methodology to generate theReceiver Operat-
ing Characteristic (ROC) curve for each class, which can help understand the qual-
ity of the predicted probability. Generic and normal classes have the higher AUCs 
(area under the ROC curve) of 1 and 0.99 respectively. However, DoS and Fuzzer 
classes have the lower AUCs of only 0.95 and 0.89. Overall, the multi-class ROC curve 
reflects a good performance of our model’s detection capability.

Fig. 11 Confusion matrix of our results

Table 7 Evaluation metrics of multi‑classification of UNSW‑NB15

Precision Recall F1 Score FPR Accuracy

DoS 0.3612 0.0655 0.1109 0.0062 84.24%

Expl. 0.5980 0.9222 0.7255 0.0993

Fuzz. 0.4930 0.3698 0.4226 0.0309

Gene. 0.9982 0.9662 0.9820 0.0005

Norm. 0.9388 0.9236 0.9311 0.0510

Recon. 0.7807 0.7883 0.7845 0.0100

Weighted
Avg.

0.8360 0.8424 0.8285 0.0403
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Comparison

From Table 8, we compared our results with the performance of different feature selec-
tion methods and feature subsets used in our experiments. It can be seen that the feature 
subset selected by our IGRF-RFE method performs better than other feature subsets 
in the Table. Our feature selection method improves nearly 2% in accuracy and 2.6% in 
weighted f1 score over using all features. Furthermore, we evaluate the performance of 
feature subsets using standalone IG and RF and their union and intersection sets. Using 
IG and RF’s feature subsets as well as their intersection improves the performance of the 
model, but they are still lower than our methods in every evaluation metric.

We also compared the performance of our proposed method with other similar pre-
vious works (see Table  9). Among similar works using MLP models, our MLP model 
with the IGRF-RFE feature selection method achieves better performance in both f1 
score and accuracy. Our hybrid feature selection method obtains 23 important features 
and outperforms the standalone IG method or some other tree-based feature selection 
methods. It is worth mentioning that although our performance is lower than the 95.2% 
accuracy achieved by Prasad et al’s work [27], it is because different studies use varying 

Fig. 12 ROC (receiver operating characteristic) curve of multi‑classification

Table 8 Performance of different feature subsets

Subsets Num. Precision (%) Recall (%) F1 score (%) Accuracy (%)

All Features 42 80.37 82.25 80.22 82.25

IG 25 82.24 83.13 81.49 83.13

RF 22 82.43 83.42 81.62 83.42

IG &RF Uni. 27 83.30 80.60 80.36 80.60

IG &RF Inter. 20 81.84 82.90 81.67 82.90

IGRF‑RFE 23 83.60 84.24 82.85 84.24
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amounts of data for UNSW-NB15. Our study used the 10% pre-partitioned dataset from 
UNSW-NB15’s author which is validated by statistical distributions, and our results are 
still competitive among similar methods.

Conclusion and future work
In this paper, we proposed a hybrid feature selection method IGRF-RFE for MLP-based 
intrusion detection systems and applied it to a modern IDS dataset UNSW-NB15. IGRF-
RFE consists of two feature reduction steps including IGRF ensemble feature selection 
and recursive feature elimination with MLP. In IGRF ensemble feature reduction, 24 
important numerical features were obtained according to the importance ranking of 
numerical features ranked by Information Gain IG) and Random Forest (RF) methods. 
After feeding 24 numerical features and 3 categorical features into the wrapper-based 
RFE algorithm, we obtained an optimal feature subset with 20 numerical features and 
3 categorical features for our MLP model. Our hybrid feature selection approach has a 
worst-case computational complexity of O(n2) , which is equivalent to that of the normal 
RFE algorithm. By introducing patient parameter p, our algorithm can stop earlier to 
save computational resources. The experimental results showed that our feature selec-
tion method could achieve an accuracy of 84.24% and a weighted f1 score of 82.85%, 
which was better than standalone IG and RF feature selection methods as well as other 
similar previous work.

The results also show that using the proposed IGRF-RFE feature selection method can 
effectively select important features and improve the performance of intrusion detection 
systems. At the same time, the method can also be applied to the feature selection of 
other structured datasets. In the future, we plan to apply our proposed feature selection 
method to different intrusion detection datasets with advanced re-sampling techniques 
as well as with other machine learning models [50].
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