
2244
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.12 DECEMBER 2021

LETTER

A Case for Low-Latency Communication Layer for Distributed
Operating Systems∗

Sang-Hoon KIM†a), Nonmember

SUMMARY There have been increasing demands for distributed oper-
ating systems to better utilize scattered resources over multiple nodes. This
paper enlightens the challenges and requirements for the communication
layers for distributed operating systems, and makes a case for a versatile,
high-performance communication layer over InfiniBand network.
key words: distributed operating systems, InfiniBand, RPC

1. Introduction

Recently, many analytic applications require a huge amount
of resources to provide the required performance, and the
demand is ever-increasing. However, due to the diminishing
performance improvement by the end of Moore’s Law, it is
becoming challenging to provide all the required resources
from a single machine. To overcome the limitation of the
single machine form factor, there is increasing interest in
distributed operating systems, where multiple operating sys-
tem instances (or components) running on multiple nodes
collaborate with each other to provide applications with an
aggregated view of dispersed resources [1]–[3]. Applica-
tions can access abundant system resources without (or with
little) modification, thereby transparently improving the ap-
plication performance, capacity, and overall system resource
utilization.

The distributed OS instances should frequently com-
municate with each other to provide the features of operat-
ing systems in a distributed manner. As many OS features
such as system calls, file operations, and page fault handling
are on the critical path of system performance, the com-
munication layer for distributed OSes should provide low
latency as well as high bandwidth. From this standpoint,
conventional TCP/IP is ill-suited since its deep stack of lay-
ers incurs high communication latencies, and as an alterna-
tive InfiniBand has been gaining popularity for building dis-
tributed OSes. However, the unique communication model
and features of InfiniBand are primarily optimized for high-
performance computing (HPC) workloads, and they are not
properly aligned to be effectively utilized in the distributed
operating system domain. As of the moment of paper writ-
ing, there is no standard implementation nor module that

Manuscript received May 18, 2021.
Manuscript publicized September 6, 2021.
†The author is with Ajou University, South Korea.
∗This work is supported by Electronics and Telecommunica-

tions Research Institute (ETRI) grant funded by the Korean gov-
ernment (20ZS1310).

a) E-mail: sanghoonkim@ajou.ac.kr
DOI: 10.1587/transinf.2021EDL8049

can be universally adopted to OS subsystems in spite of the
high demands for high-performance in-kernel communica-
tion layer. Thus, to realize a distributed OS, existing imple-
mentations using the traditional socket abstraction should
be rebuilt from the scratch to leverage the high bandwidth
and low latency of InfiniBand. The rebuilding is even com-
plicated due to the inherent parallelism and asynchronous
nature in operating systems. Thus, this switching demands
high engineering effort, and many services resort to IP over
InfiniBand (IPoIB) with significant latency of tens of mi-
croseconds as opposed to a few microsecond of native In-
finiBand. RDMA is one of the most appealing features of
InfiniBand. However, it has not been properly discussed in
the context and workload of distributed operating systems,
and even overly abused without carefully considering the
primary roles and goals of operating systems.

This paper makes a case for a versatile, high-
performance InfiniBand communication layer for dis-
tributed operating systems. While building a distributed
operating system, we identified the design considerations
that the communication layer of distributed operating sys-
tems should take into account. Specifically, we identified
a bimodal distribution of network payload sizes and ever-
changing locations of target payloads in distributed OSes.
These characteristics make the I/O buffer management chal-
lenging given that InfiniBand demands constraints for the
I/O buffers. In addition, the common design of asyn-
chronous completion processing through a dedicated com-
pletion handler can extend the completion path significantly.
We enlighten these challenges and requirements, and pro-
vide insights to handle them in the prototype implementa-
tion.

2. Background

The communication model of InfiniBand is primarily opti-
mized for high-performance computing workloads, and is
very different from the traditional synchronous communi-
cation model over TCP/IP. Basically, queue pairs accept
work requests and their associated completion queues asyn-
chronously deliver the completion of the requests. From the
message sender side, it resembles the communication with
datagrams in that messages comprising metadata and pay-
load are posted to the underlying layer (a queue pair in this
case). The metadata includes the identifier of the request,
the type of request, keys to access memory, and so forth.
The payload is designated with a scatter-gather list. Before

Copyright c© 2021 The Institute of Electronics, Information and Communication Engineers



LETTER
2245

the sender posts a message, a receiver should post a receive
work request that specifies the address and length of receiv-
ing buffer. InfiniBand Host Channel Adaptor (HCA) fills in
the buffer with an inbound request and notifies of the event
through the associated completion queue. The receiver can
inspect the completion queue and processes pending com-
pletion events accordingly.

All buffers subject to I/O should be pinned to its virtual
address space so that corresponding pages are not disturbed
by virtual memory mechanisms, such as paging, dedupli-
cation, and compaction, during I/O. Also, they should be
mapped to a DMA-capable memory address to allow HCA
to access them directly. In case the buffers are accessed
through RDMA, the buffers should be additionally regis-
tered to HCA as memory regions. HCA assigns a remote
key for the memory region, and that key is needed to re-
motely access the memory.

3. Design

3.1 Observation

The communication in distributed operating systems ex-
hibits different characteristics compared to that of traditional
user applications, and we aim to optimize the communica-
tion layer considering these unique characteristics. Specif-
ically, one of the common communication patterns in tra-
ditional user applications is to distribute a huge amount of
data to multiple nodes that process the data in parallel. As
we discussed in Sect. 2, the I/O buffers for InfiniBand should
be set up properly (i.e., pinned, mapped, and registered)
prior to making I/O requests. This setup takes a consider-
able amount of time, so to amortize the involved overhead
user applications usually preallocate huge buffers, set them
up during initialization, and use them to the rest of their
lifetime. This usage model is possible since the buffers are
solely and entirely dedicated and fixed to the address spaces
of the application processes.

In contrast, from the perspective of operating systems,
memory is a shared resource, continually allocated to and
released from application processes. The source and target
data for OS features can be anywhere in the system mem-
ory; user applications make system calls with data on their
stacks and heaps. Many file and memory accesses are han-
dled from page cache pages that are scattered all over the
system memory. Thus, OSes cannot determine which data
will be remotely accessed in the future, and this dynamic
nature of memory use complicates the buffer management
in the communication layer for distributed OSes. This situ-
ation is complicated further as some InfiniBand drivers only
accept the buffers that are dynamically populated through
kmalloc or alloc pages. This implies OS cannot simply
compose small requests comprising few integers (which are
common in distributed OSes as we will discuss later) on its
stack, but has to dynamically allocate and release buffers for
the messages.

Figure 1 breaks down the time to transfer data over

Fig. 1 The breakdown of the time to transfer data over RDMA read.
‘DMA’ and ‘Transfer’ imply the time to setup the buffer for DMA and that
of actual data transfer, respectively. ‘MR reg.’ and ‘MR unreg.’ indicate
the time to register and unregister the I/O buffer.

RDMA read in a naı̈ve InfiniBand implementation. We ob-
serve that the most of the communication time is spent for
buffer management (up to 98.0%), and this portion is so
decisive that the actual data transfer time impacts little on
the overall performance. This indicates that even though
InfiniBand and RDMA are very efficient to transfer data,
it might not operate optimally in distributed operating sys-
tems spending a considerable amount of time for setting up
buffers.

Some studies propose to map the entire physical ad-
dress space of the system to one big memory region dur-
ing the system booting time [4]. This approach is, how-
ever, impractical in that it can lead to serious security vul-
nerabilities (i.e, other nodes can access the entire system
memory unchecked) and user processes cannot utilize the
mapped memory portion for their virtual memory. Worse,
as the memory is pinned down to the address space, OS
cannot provide virtual memory features from the address
space range, which significantly impair the flexibility and
efficiency of memory management.

The buffer usage is also different from user applications
due to the diverse features that distributed OSes should pro-
vide. Generally, we can categorize operating system fea-
tures into two categories; controlling the system and pro-
viding requested data. For example, process synchroniza-
tion and signal handling are system control features whereas
file and memory operations are data features. The control-
related features tend to require small payloads, and their ar-
guments are integer values at most, implying small in size.
As they directly control the execution of processes, they are
highly latency-sensitive. On the other hand, data-related
features involve huge data transfer between nodes. For in-
stance, to provide up-to-date page contents to nodes, pages
should be distributed to nodes, and they are bandwidth-
sensitive.

Figure 2 summarizes the distribution of message sizes
and their contribution to inter-node traffic, which are col-
lected while running a kmeans application on a distributed
operating system [3]. We can observe the bimodal distri-
bution of message sizes; small payloads for control-related
features and large payloads for data-related features. In
terms of message counts, small messages, smaller than a
hundred bytes, comprise 74.4% of communication mes-



2246
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.12 DECEMBER 2021

Fig. 2 Analysis on the messages in a distributed OS implementation.
‘Counts’ indicates the cumulative ratio of the occurrences of the payload
size. ‘Bytes’ indicates the cumulative ratio of transferred data amount.
Note that x-axis is in log-scale.

sages. On the other hand, 97.1% of communication traffic
comes from big data operations. Therefore, the communica-
tion layer should be designed keeping these characteristics
in mind.

Lastly, operating system internals are inherently con-
current and asynchronous. Multiple processes can simul-
taneously invoke system calls, and multiple cores may be
handling interrupts simultaneously. Moreover, it is common
in operating systems to process operations asynchronously
(especially for I/O) to increase overall processing through-
put. Thus, the communication layer should provide a proper
communication model that fits these sophisticated features
and implementation in distributed OSes.

3.2 Design and Implementation

Message Sending. Based on the observations, we con-
cluded that efficient buffer management is the most crucial
part for the communication layer in distributed OSes. To
amortize the high buffer setup overhead, we opt to preal-
locate a small memory region during initialization and to
use it as a send buffer for communication. Specifically, dur-
ing the distributed OS startup, each node establishes con-
nections to all other nodes specified in a configuration. For
each connection, a small amount of memory (configurable
and 32 MB by default) is allocated, registered as a mem-
ory region, and associated with the connection. A sender
(i.e., a component in the distributed OS) can allocate a send
buffer from the memory region and compose a message
on the buffer directly. Also, we maintain a pool of send
work requests to facilitate asynchronous message process-
ing. In posting the message, the sender may choose to be
synchronous (wait until the message is processed) or asyn-
chronous (proceed without waiting for the completion). The
buffer and send work requests are automatically reclaimed
after the posted message is processed.

To support concurrent and parallel communication,
multiple senders can simultaneously allocate multiple send
buffers from the preallocated memory region. Under the
hood, the memory region is populated with multiple, physi-
cally contiguous 4 MB chunks (in the Linux kernel we can

allocate physically contiguous pages up to that size from the
buddy system allocator), and the chunks are logically orga-
nized into a circular buffer. Buffer allocation requests are
served from the head of the circular buffer unless it touches
the tail of the buffer. When a buffer is reclaimed, its space
is marked as free, and the tail of the circular buffer is up-
dated accordingly if the reclaimed buffer is at the tail. If a
buffer is not returned quickly, it can straggle the tail of the
ring buffer, making the ring buffer full. In this case, buffers
are temporarily allocated with kmalloc until the straggling
buffer is released.

Usually, communications especially for system con-
trol purposes should be synchronously handled. This im-
plies the communication layer should notify senders of the
message processing completion fast. However, we can
only attach one send completion queue for one connection,
thereby enforcing to demultiplex completion events to mul-
tiple senders. In our previous work, we implemented the
completion notification mechanism that senders are blocked
after posting messages and a dedicated thread pumping
completion events out of the completion queue wakes up
blocked senders. This approach incurs too much latency (up
to hundreds microseconds) due to the context switch and
inter-thread communication overhead. We optimized the
completion path by removing the dedicated thread and mak-
ing senders keep polling the completion queue after post-
ing a message. Specifically, each sender has an associated
flag and its address is embedded in the send work request.
When a sender gets a completion event from the comple-
tion queue, it sets the flag specified in the completion event.
After setting the flag, the sender checks its own flag and
may proceed once the flag is set. Otherwise (i.e., the flag
was for other sender), the sender polls the completion queue
again. This way, we can significantly reduce the notifica-
tion latency when a single thread is accessing the connection
which is the common case.

The proposed approach can involve one memory copy
while loading the payload. Many control messages are,
however, very small in distributed OSes, and the memory
copy overhead is much smaller compared to the buffer setup
overhead. Nevertheless, the sender may specify the address
of payload instead of using the preallocated buffer in case it
want to send large buffers without memory copy and/or over
RDMA.
Message Receiving. Likewise the send buffer, we initialize
the system with a number of receive work requests posted.
The receive buffers for the work requests are preallocated
along with the receive work requests. When a sender posts a
send work request, its payload is transferred to the receiving
node and filled in one of the receive buffers. And the receiv-
ing event is notified through the completion queue mecha-
nism.

We implement an interface that resembles that of tradi-
tional RPC systems. An OS component can register a mes-
sage type and its associated handler to the communication
layer. When the system receives a request, it checks the type
of the received message and forwards it to its registered han-



LETTER
2247

Fig. 3 The breakdown of the time to send messages over proposed sys-
tem. ‘Buf. alloc.’ and ‘Buf. rel.’ mean the time to allocate and release
I/O buffer using the proposed scheme. ‘Transfer’ implies the time taken to
transfer data.

dler. To facilitate parallel message processing, we maintain
a pool of worker threads, and dispatch received messages
to the workers. Thus, the handler is executed in the con-
text of the worker threads. Upon returning from the handler,
the received message and associated receive work request is
automatically recycled for subsequent requests.

By distributing inbound requests to a pool of worker
threads, the requests are processed in out-of-order. How-
ever, we found that there are some cases in a distributed OS
where multiple messages should be handled in order. To
this end, OS components can specify while registering the
handler whether the message type should be processed in an
order or not. The messages of these types are dispatched to
a designated worker and processed in a serialized manner in
the context of the worker.

4. Evaluation

We evaluated the proposed communication layer with four
nodes each of which is with one Intel Xeon Gold 5215 pro-
cessor and 128 GB of memory. The nodes are equipped with
Mellanox ConnectX-5 InfiniBand HCA, and they are con-
nected with a Mellanox SX6012 InfiniBand switch which
provides 56 Gbps bandwidth.

Figure 3 summarizes the performance of the commu-
nication layer. We measure the time for each communica-
tion step in the implementation. ‘Buf. alloc.’ and ‘Buf. rel.’
mean the time to allocate and release I/O buffers as men-
tioned in Sect. 3.2, and they only account for 3.5% to 6.6%
of entire message sending time. This indicates that our im-
plementation significantly reduces the overhead for buffer
management compared to the time spent setting up buffers
in Fig. 1.

To evaluate the performance on multithreaded case, we
measure the operation processing rate while changing the
number of sending threads and message sizes. Figure 4
shows the aggregated operations per second on various mes-
sage sizes and threads. We can observe the aggregated ops
increases as the number of threads is increased on all mes-
sage sizes. From this result we can confirm the scalable
performance of the proposing communication layer.

Fig. 4 The trends of aggregated operations per second on various mes-
sage sizes and sending threads. The ops is normalized to the single thread
performace.

Using the proposed communication layer, we imple-
mented a distributed operating system [3]. The distributed
OS is based on Linux and allows a process to be run split
across multiple nodes. To this ends, the system defines 18
message types for providing various OS features such as
process migration, memory consistency protocol, process
synchronization through futex, and signal handling. We be-
lieve this demonstrates the versatility of the proposing com-
munication layer.

5. Conclusion

In this paper, we presented the unique characteristics of
the communication layer for distributed operating systems,
and provides optimization techniques tailored to the char-
acteristics. We implemented the proposed scheme in a real
distributed operating system, and verified that the propos-
ing scheme eliminates the most of the buffer management
overhead. We are working on implemeting additional fea-
tures at the communication layer, including payload repli-
cation over multicasting and commit-based checkpointing,
to simplify communication patterns that are common in dis-
tributed OSes.

References

[1] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang, “LegoOS: A disseminated,
distributed OS for hardware resource disaggregation,” Proceedings of
the 13rd USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI), Carlsbad, CA, Oct. 2018.

[2] J. Zhang, Z. Ding, Y. Chen, X. Jia, B. Yu, Z. Qi, and H. Guan, “Gi-
antVM: a type-II hypervisor implementing many-to-one virtualiza-
tion,” Proceedings of the 16th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE), pp.30–44,
March 2020.

[3] S.-H. Kim, H.-R. Chuang, R. Lyerly, P. Olivier, C. Min, and B.
Ravindran, “DEX: scaling applications beyond machine boundaries,”
Proceedings of the 40st International Conference on Distributed Com-
puting Systems (ICDCS), 2020.

[4] S.-Y. Tsai and Y. Zhang, “LITE kernel RDMA support for datacenter
applications,” Proceedings of the 26th ACM Symposium on Operating
Systems Principles (SOSP), Shanghai, China, pp.306–324, Oct. 2017.

http://dx.doi.org/10.1145/3381052.3381324
http://dx.doi.org/10.1109/icdcs47774.2020.00021
http://dx.doi.org/10.1145/3132747.3132762

