
Journal of Cloud Computing:
Advances, Systems and Applications

Ko et al. Journal of Cloud Computing: Advances, Systems
and Applications           (2021) 10:44 
https://doi.org/10.1186/s13677-021-00260-8

RESEARCH Open Access

Computation offloading technique for
energy efficiency of smart devices
Jaejun Ko, Young-June Choi and Rajib Paul*

Abstract

The substantial number of wearable devices in the healthcare industry and the continuous growth of the market
procreates the demand for computational offloading. Despite major development of wearable devices and offloading
techniques, there are several concerns such as latency, battery power, and computation capability that requires
significant development. In this paper, we focus on the fact that most smart wearable devices have Bluetooth pairing
with smartphones, and Bluetooth communication is significantly energy-efficient compare to 3G/LTE or Wi-Fi. We
propose a computation offloading technique that offloads from the smartphone to the cloud server considering the
decision model of both wearable devices and smartphones. Mobile cloud computing can elevate the capacity of
smartphones considering the battery state and efficient communications with the cloud. In our model, we increase
the energy efficiency of smart devices. To accomplish this, a Dhrystone Millions of Instructions per Second
(DMIPS)-based workload measurement model along with a computation offloading decision model were created.
According to the performance evaluation, offloading from wearable devices to smartphones and offloading once to
cloud server can reduce energy consumption significantly.

Keywords: Wearable device, Smartphone, Computation offloading, Energy efficiency

Introduction
Recently, wearable devices has become an integral part
of human life and refining several regular activity such
as healthy eating, active lifestyle, sufficient exercise, sleep
tracking, emergency alert, and many more. Global Infor-
mation and Communication Technology (ICT) compa-
nies are launching different advanced wearable devices;
specifically, the healthcare wearable devices are grow-
ing every year. According to a report issued by Tractica,
a market intelligence agency, in 2016, the market for
health care wearable devices is expected to grow rapidly
from 2015 to 2021, reaching about $18 billion by 2021 [1].
In addition, CISCO estimates that the number of world-
class wearable devices will increase year by year and will
reach 924 million by 2021 [2]. Despite a huge number of
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work on mobile cloud computing, so far very few studies
focus specifically
Smart devices such as wearable devices and smart-

phones have limitations in battery capacity and processor
performance that can be mounted with limitations on
device size in order to improve portability due to the
characteristics of mobile devices. Therefore, there are lim-
itations in performing complex calculations using various
sensors such as heart rate, camera, or using network com-
munication service with other devices. To alleviate this
problem, the concept of computation offloading has been
proposed that transfers complex computation job to cloud
server with powerful computing resources. The offloading
technique brings several benefits; however, it also hinders
the energy consumption performance of limited power
devices. In a wireless network considering a bad channel
condition, devices can have significant energy consump-
tion to transfer the task to a cloud server. The compu-
tation offloading can reduce the energy consumption of
wearable devices by using only network communication
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which consumes less energy than computation processing
locally.
The existing computation offloading techniques use a

communication module such as Wi-Fi, 3G, or LTE to
offload a complex computation task to the cloud server.
Most wearable devices have Bluetooth pairing with smart-
phones, and the energy consumption for Bluetooth is
lower than Wi-Fi and 3G/LTE energy [3]; therefore, it
is efficient to offload the complicated computation to
the smartphone via Bluetooth. Unlike cloud servers with
unlimited computing resources, smartphones have lim-
ited battery capacity like wearable devices. Therefore,
smartphones operating on wearable devices cause high
energy consumption and leads to performance degra-
dation. In this paper, we propose a two-step operation
offloading technique to select the offloading tasks. This
technique considers the energy efficiency of the smart-
phones during offloading, determines whether the request
received from the wearable device should be accom-
modated according to the current battery state of the
smartphone itself or once offloaded to the cloud server.
Ultimately, this can improve the overall energy efficiency
of smart devices.
We created an energy cost model in a combination of

Bluetooth andWi-Fi communication cost that determines
whether to perform computation offloading for smart
devices; the workload model is base on the DMIPS pro-
posed in [4]. Also, to evaluate the actual energy efficiency
of the proposed method, we implemented the benchmark
application with the Hanoi Tower in LG GWatch Urbane
W150, Google Nexus 5, and PC, respectively. The chang-
ing energy consumption was measured by usingMonsoon
Power Monitor. We compared the energy efficiency of
each smart device and the total energy efficiency when the
proposed technique is applied and analyzed the results.
This paper is organized as follows. “Related work”

section introduces the existing studies on computa-
tion offloading. “Proposed offloading technique” and
“Offloading decision model” sections introduce the work-
load and computation offloading decision models used
in the proposed schemes, respectively. Our experimen-
tal setup is discussed in “Experiment setup” section.
“Results” section, we describe and analyze the results
of experiments to prove the energy efficiency of
each smart device in the proposed method. Finally,
“Conclusion” section presents conclusion and future
work.

Related work
Computational offloading has grabbed a lot of attention
among researchers after the novel work of Cuervo [5].
Smart wireless devices [6, 7] bring critical issues like bat-
tery life, computation time, and offloading price. These
hinders the popularity of wearable devices. In this section,

we discuss existing literature studies that relates to our
work.
In the past few years, we can find a plethora of work

towards offloading problems from mobile devices to the
remote server or cloud. Similar to other domains, in cloud
computing, Deep Learning (DL) has been widely applied
[8–13]. At the same time, a tremendous amount of efforts
have been made towards reducing the overload of DL
tasks to make it feasible on smartphones [14]. In contrast,
wearable devices have much less computation power, and
resources compare to smartphones, which makes it very
difficult to execute DL tasks. The focus of our work is to
improve the energy efficiency of wearable smart devices;
therefore, we have mainly focused on papers with similar
significance.
An energy-optimal task transmission scheme is pro-

posed in [15] without considering the option of local
transmission. For some low-delay tolerance applications,
this may worsen the performance. An optimal offloading
decision policy is derived in [16] by comparing the energy
consumption of local computing. However, the local exe-
cution is done only for applications with strict deadlines.
Since cloud server has high computational power, we find
a similar approach in [17] that refers to the migration
of computations to the cloud server. However, the cloud
servers are spatially far from devices, which causes high
transmission delay and performance deterioration.
In [18], authors have proposed an offloading scheme

with a workflow consisting of an assessment phase, scan-
ning phase, selection phase, and offloading phase. Their
technique initially discovers a device in the neighborhood
and then paired the device with Bluetooth to offload com-
plex tasks with high energy consumption. In addition, they
created a communication and computation energy model
for offloading decisions, implemented three benchmark
applications of OpenGL Cube, Garbage Collection, and
SunSpider, and compared the energy consumption when
the proposed technique was applied.
Another offloading technique was proposed in [19] that

reduces the energy consumption of mobile devices. In
the case of processing complex tasks with high energy
consumption, it was divided into two processes. Firstly,
offloading was performed by Bluetooth communica-
tion to a nearby PC, and secondly, offloading was per-
formed by Wi-Fi communication. Energy consumption
was compared using the Million Floating Point Opera-
tions(MFLOP).
In [20], authors have proposed Jade, a task offloading

technique including Profiler, Optimizer, and Communica-
tion Manager as components. Jade monitors the state of
mobile devices and applications and automatically deter-
mines whether it offloads a complex code that consumed
high energy to the cloud server. Also, by making a Jade
API, developers can easily implement task offloading. Face
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detection and FindRoute benchmark applications were
implemented, and their energy consumption, CPU load,
and Execution Time were measured and compared.
Pomac was proposed in [21] which is a computation

offloading technique that offloads Method Invocation
Instruction (MII) of applications by intercepting in the
Dalvik VM layer. mInterceptor, sMonitor, Classifier, and
sInterface were implemented in the Application VM and
the offloading decision was made by performing algo-
rithms such as Linear Regression, SVM, NaiveBayes using
some features like energy consumption, response time,
and network status. Using Android benchmark appli-
cations such as DriodSlator, ZXing, and Picaso, they
measured the response time and energy consumption in
OnDevice, OnServer, Optimal, and Pomac situations.
Author in [22] focused on an energyminimization prob-

lem for local computation and task offloading in a single
user system. Later this work is extended to a multi-user
system that combines both financial costs for instance:
network price and energy consumption [23]. Average
latency performance was analyzed in [24] including com-
munications delay and computation delay for large-scale
spatially random networks. In [25], the authors proposed
a hierarchical cloudlet architecture for distributing the
workload to reduce the average response time of a task
request. They further focused on edge computing-based
IoT networks [26]. Conventional offloading techniques
are engineered to reduce energy consumption; however,
little attention has been paid to legitimate communication
module selection.
DeepWear, a deep learning framework was proposed

in [27] to improve the performance and reduce energy
consumption. It is an intelligent and adaptable offloading
strategy to upload from wearable to a paired handheld.
However, the author claimed with the limited processing
capacity of smartphones DeepWear performs poorly and
in addition, no consideration of energy consumption dur-
ing the training procedure. A context-aware task offload-
ing (CATO) technique was proposed in [28], in which
offloading tasks can be properly executed on smartphones
or further uploaded based on the context. However, in
this framework, wearable devices will always upload to the
smartphone if CATO is enabled, which leads to resource
underutilization for wearable devices.
In addition to the above-mentioned research, a system

is used to offload in [29], that acts as a bridge for computa-
tion offloading between a cloud server and mobile device.
For details on cloud computing, studies are available on
the energy efficiency of mobile devices in [30], and study
on classification and the basic structure of offloading tech-
nique in [31, 32]. According to the reviewed cloud offload-
ing mechanisms, a side-by-side comparison is presented
in Table 1.

Proposed offloading technique
Unlike cloud servers, which have unlimited computing
resources, smartphones have limited resources such as
battery capacity. Therefore, when the offloading opera-
tion requested by the wearable device is always received
and processed by the smartphone, it encounters a usabil-
ity issue. In this paper, a heuristic algorithm is proposed
for a smartphone, whether to accept a computation task
uploaded by the wearable device and later offload it to
the cloud server. Ultimately, we proposed a novel compu-
tation offloading technique that can increase the energy
efficiency of smart devices.
The existing offloading schemes have two types of work-

flow. Firstly, offload to a cloud server when processing
a complex computation with high energy consumption,
and later the cloud server returns the result. Secondly, the
smartphone performs as a primary server, but it is located
just between the wearable device. The smartphone only
acts as an intermediary medium to transmit the requested
operation from the wearable device to the cloud server.
On the other hand, the proposedmethod includes a pro-

cess for determining whether to accept a request for the
operation of a wearable device in consideration of smart-
phone energy efficiency and whether to offload themobile
device once to the cloud server.
In Fig. 1, when a specific task is given to a wearable

device, Task Analyzer first analyzes the task through the
workload model and obtains the task size. After that,
we compare the energy consumption with the Bluetooth
communication energy cost according to the amount of
work and make an offloading decision for the wearable
device. According to this proposition, the wearable device
will offload the computation task to the smartphone and
waits for the result to return.
The smartphone judges whether the request of the

wearable device should be accepted or not by compar-
ing the result of the remaining battery energy unit and
the energy consumed when processing the local execu-
tion. Although the smartphone accepts to execute the
task, the smartphone will later offload the same task if
it is more energy efficient to once offload it to the cloud
server usingWi-Fi communication. If the smartphone can
not accept the request of the wearable device, it checks
whether offloading is possible to the cloud server. If not,
the smartphone sends a message to reject the request. In
such a case, a wearable device can use traditional ways to
offload. The result processed by each smart device or the
cloud server is delivered back to the target wearable device
through the Output Manager.

Offloading decisionmodel
Factors that determine the offloading of smart devices
include the local energy consumption to process compu-
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Table 1 Literature study on offloading mechanisms

Reference Objective Environment Evaluation tools Wearable devices

Shu [15] Energy Cloud + Mobile devices Implementation No

Zhang [16] Energy within delay period Cloud + Mobile devices Simulation No

Songtao [17] Energy + Delay Cloud + Mobile devices Simulation No

Biswajit [18] Energy P2P Implementation No

Kelie [19] Energy + Delay Cloud + Mobile devices Implementation No

Hao [20] Energy + Delay Mobile application Implementation No

Hassan [21] Energy + Delay Mobile + Cloud Implementation No

Jeongho [22] Energy Mobile application Simulation No

Yongjin [23] Cost + Delay Cloud + Mobile devices Simulation No

Seung [24] Delay Mobile edge computing Simulation No

Qiang [25] Delay SDN + cloud Simulation No

Qiang [26] Delay Mobile edge computing Simulation No

Mengwei [27] Energy + Delay Wearable + Mobile + Cloud Implementation Yes

yang [28] Energy + Delay Wearable + Mobile + Cloud Implementation Yes

tations and the communication energy costs that result
from offloading to the cloud server. At first, we describe
the workload format based on the proposed model using
DMIPS in our previous studies [4]. Second, we propose
computation offloading decision models that consider the
communication energy cost that occurs when offloading
from each side of each smart device.

DMIPS based workloadmodel
DMIPS is the value measured by the Dhrystone bench-
mark application used to measure the performance of the

CPU, which means the number of instructions the CPU
processes per second [33, 34].

W = DMIPSm
Udmips

× Utask × ttask (1)

In Eq. (1), Udmips is the CPU utilization when the Dhry-
stone benchmark application is executed, and DMIPSm
is the median considering the outlier in the VAX MIPS
rating value measured using the Dhrystone benchmark
application. The workload W can be obtained by multi-
plying DMIPS per CPU utilization byDMIPSm andUdmips

Fig. 1Workflow chart of the proposed technique



Ko et al. Journal of Cloud Computing           (2021) 10:44 Page 5 of 14

and bymultiplying the CPU utilizationUtask and time ttask
at the task execution.

Wearable device’s decision model
The offloading decision of a wearable device depends
on the energy consumption when the computing opera-
tion is locally processed in the wearable device and the
energy consumption when the work is offloaded to the
smartphone with the Bluetooth connection. In Eq. (2), we
calculate the amount of energy consumed if the wearable
device processes the computation task locally.

Ewear = EW_wear × W (2)

In Eq. (2), EW_wear denotes energy consumed per wear
amount of the wearable device, and W denotes the work
amount obtained through the workload model. When
the wearable device offloads the calculation operation to
the smartphone, the energy consumption of the wear-
able device (Eoffloading_wear) is the energy consumed for the
Bluetooth communication energy cost (Ebluetooth) and the
waiting time until the result is received from the smart-
phone (Pwait_wear × tphone). Equation (3) is the energy cost
model of the wearable device when the wearable device
offloads the calculation operation to the smartphone.

Eoffloading_wear = Pwait_wear × tphone + Ebluetooth (3)

Ebluetooth = Pbluetooth(power)
Tbluetooth(throughput)

× N(datasize) (4)

Ewifi = Pwifi
Twifi

× N (5)

In Eq. (3), Ebluetooth represents the energy cost of the
wearable devices for Bluetooth communication. In the
related research [35], energy cost model such as Eqs. (4)
and (5) were utilized by considering data size, network
throughput, and power consumption in Bluetooth and
Wi-Fi communication. In this paper, we have developed
an energy cost model that considers Bluetooth com-
munication energy cost. The offloading decision can be
determined by comparing energy consumption (Ewear) of
wearable device’s locally performed computation task and
energy (Eoffloading_wear) consumption when offloading to
the smartphone. We can write as follows:{

offloading if Ewear > Eoffloading_wear
non − offloading if Ewear ≤ Eoffloading_wear

(6)

Smartphone’s decision model
When a request for offloading is received from a wear-
able device, the smartphone first determines whether
to accept the request or not. We calculate the energy
(Ephone) consumed when we locally process the operation
requested by the wearable device and compare it with the
remaining energy of the battery (Ebattery). Equation (7)

includes the energy cost for Bluetooth communication to
return the result of the calculated operation, i.e., energy
consumption when the smartphone locally handles the
computation task requested by the wearable device.

Ephone = EW_phone × W + Ebluetooth (7)

Ebattery = Bcurrent × V × 3600s (8)

Equation (8) is used to determine whether the smart-
phone can offload, by converting the residue battery of
the smartphone into an energy unit. In addition, the
smartphone judges whether or not to accept the request
of the wearable device. It measures and compares the
energy consumption when offloading to the cloud server.
Equation (9) calculates the consumed (Eoffloading_phone)
energy when the smartphone offloads the wearable
device’s request to the cloud server once again and waits
until the smartphone receives the results from the cloud
server (Pwait_phone × tcloud). Bluetooth energy (Ebluetooth)
and Wi-Fi energy (Ewifi) are consumed to return to the
wearable device and smartphones, respectively.

Eoffloading_phone = Pwait_cloud × tcloud +Ewifi +Ebluetooth
(9)

In order to improve the energy efficiency of smart-
phones, the decision to offload is made through the
following two comparisons.
{
offloading if Eoffloading_phone < Ephone ≤ Ebattery
non − offloading if Ephone ≤ Ebattery ≤ Eoffloading_phone

(10)

{
offloading if Eoffloading_phone < Ebattery < Ephone
refusal if Ebattery < Ephone ≤ Eoffloading_phone

(11)

Upon receiving a request from a wearable device, a
smartphone can calculate if the energy consumed (Ephone)
is equal to or less than the remaining energy of the battery
(Ebattery). If acceptable, the smartphone will upload to the
cloud server. In addition, if the smartphone can not locally
process, but the energy cost (Eoffloading_phone) of offload-
ing to the cloud server is less than the battery residual
energy, the smartphone offloads once to the cloud server.
However, if the energy consumption during off-loading
is greater than the remaining energy of the battery, the
smartphone rejects the request of the wearable device.
For a better understanding of our offloading strategy we

present a sequential diagram in Fig. 2. A strategic inter-
action among wearable, smartphone, and cloud through
Bluetooth and Wi-Fi is depicted here.
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Fig. 2 Sequential diagram of offloading process

Experiment setup
Test devices
The experiment first measured the workload based on
the DMIPS and the energy consumption according to the
workload change in terms of the wearable device and the
smartphone. We used the LG GWatch Urbane Wi-Fi that
is a smartwatch based on the Android operating system as
a wearable device, and the LG Nexus 5 as a smartphone.
We also used a PC instead of a cloud server. Table 2 shows
the specifications of the test devices.

Benchmark applications
The benchmark application used in the experiment is an
Android application that handles the Hanoi tower algo-
rithm. The Hanoi tower algorithm exponentially increases
the number of recursive function calls as the number of
disks increases. Besides, the amount of work done by the
CPU increases proportionally, which is the time complex-
ity of the Hanoi Tower algorithm. We chose the Hanoi

Table 2 Test Device Specification

Wearable
Device

Smartphone Cloud Server

Device LG G Watch
Urbane W150

LG Nexus 5 PC

CPU Qualcomm
Snapdragon
400, 1.2 GHz

Qualcomm
Snapdragon 800,
2.26 GHz

Intel Core
i7-3770 3.40 GHz

Architecture ARM tortex-A7 Qualcomm Krait 400 -

Performance 1.9 DMIPs/MHz 3.39 DMIPS/MHz -

RAM 512 MB 2 GB 8 GB

OS Andriod Wear Android
Marshmallow 6.0.1

645-bit
Windows 10

Battery
Capacity

410 mAh 2300 mAh -
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Tower as a benchmark application because we can adjust
the number of disks without changing other variables and
review diverse energy consumption. The Hanoi Tower
benchmark application is implemented with two Android
applications for smartwatches and smartphones and a Java
application for running on PC. Each of them includes
Bluetooth and Wi-Fi communication functions and per-
forms arithmetic off-loading with a smartphone or PC.
Along with the Hanoi Tower benchmark application,

we also used the Dhrystone benchmark application as a
benchmark application to measure the workload of each
smart device. We calculate the DMIPS value per CPU uti-
lization by using the VAX MIPS rating value measured
by the Dhrystone benchmark application and the CPU
utilization at that time, and obtain the workload as the
number of disks in the Hanoi Tower increases from each
smart device. We use these values to create a workload
model.

Profiling tools
To measure CPU utilization when measuring DMIPS
using the Dhrystone benchmark application, we used the
Android Debug Bridge (ADB), which can send various
commands to Android-based mobile devices.
To measure the CPU utilization and the task execution

time of the Hanoi Tower benchmark application, we used
the Dalvik Debug Monitor Server (DDMS) of the Android
Device Monitor, a profiling tool provided by Android
Studios [36]. In the experiment, when the Hanoi Tower
benchmark application is executed, the Inclusive Real
Time value indicating the working time of the method and
the Inclusive Cpu Time% indicating the CPU utilization is
measured by using the method profiling of the DDMS.
And also, we used the Monsoon Power Monitor [37], a

tool that can analyze the power consumption of all elec-
tronic devices using up to 4.55V batteries to measure the
varying energy consumption as the number of disks in the

Hanoi Tower benchmark application increases with each
smart device. Figure 3 shows the connection between the
Monsoon Power Monitor and smart devices.

Method
Experiments were conducted in two parts. One is to mea-
sure the CPU utilization of the Dhrystone benchmark
application and DMIPS to obtain the workload, the other
is to measure the energy consumption of each smart
device.
To determine the workload of a smart device, we run

the Dhrystone benchmark application 100 times to mea-
sure the actual performance of the smartphone. In this
case, we use the ADB command (adb shell top -s cpu -
m 5 -d 0.1) to profile the top five CPU utilization rates
of the processes running on the smartphone, so that the
CPU utilization of the Dhrystone benchmark application.
As the number of disks in the Hanoi tower increases, the
workload time required to obtain the changing workload
and the CPU utilization during the work are measured
using DDMS, and nonlinear regression analysis is per-
formed based on the collected data to create a workload
model for the experiment.
The energy consumption of each smart device is mea-

sured based on three scenarios. In each, the number of
disks in Hanoi Tower increases from 13 to 23, and we
have used Monsoon Power Monitor to measure energy
consumption. In the first scenario, a wearable device
(smartwatch) processes computation tasks locally, and the
energy consumption of the smartwatch (Ewear) is mea-
sured. In this scenario, the result is expressed in terms
of S1.Wear for convenience.
The second scenario is when a smartwatch offloads a

task to a smartphone and is processed locally by the smart-
phone. In this scenario, the energy consumption of smart-
watches (Eoffloading_wear), which includes the Bluetooth
communication energy cost, and the energy consumption

Fig. 3 Connection between the Monsoon Power Monitor and Smart Devices
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Table 3 Experiment Scenario

Scenario Content Measurement

1 Local execution of
wearable device.

S1.Wear Ewear

2 Offloading a computation
task to smartphone, and the
smartphone executes locally.

S2.Wear Eoffloading_wear

S2.Phone Ephone

3 Offloading a computation
task that wearable device
offloads to the cloud server
once again.

S3.Wear Eoffloading_wear

S3.Phone Eoffloading_phone

of the smartphone (Ephone) to execute the computation
tasks requested by smartwatch are measured. For conve-
nience, the energy consumption of the smartwatch and
the smartphone is expressed as S2.Wear and S2.Phone,
respectively.
The third scenario involves the smartwatch first offload-

ing a computation task and offloading the smartphone to
the cloud server once again. In this scenario, the enaergy
consumption of the phone (Eoffloading_phone) including
smart watch’s energy consumption (Eoffloading_wear), Blue-
tooth, and Wi-Fi communication energy costs is mea-
sured. As for the other scenarios, the energy consumption
of smartwatches and smartphones is expressed as S3.Wear
and S3.Phone, respectively. Table 3 shows a description of
each experimental scenario.

Results
The proposed technique is to offload complex computa-
tion tasks with high energy consumption from a wearable
device to a smartphone or a cloud server to increase the

energy efficiency of the smart device. In the proposed
method, the smartphone accepts the request of the wear-
able device or offloads it to the cloud server considering
its current battery status and energy efficiency. In this
section, we first show the measured workload based on
DMIPS. Later analyze the energy consumption results of
each smart device measured by Monsoon Power Moni-
tor in three experimental scenarios, and compare the total
energy efficiency.

Workloadmeasurement
In order to calculate the workload per Hanoi tower
disk in the smartphone, ADB measured the CPU uti-
lization rate and found the median value as 48.596%.
The median value of DMIPS measured by the Dhrys-
tone benchmark application was 3266. Along with these
two values, we obtained the workload (W ) of the smart-
phone (LG Nexus 5) by substituting the CPU utiliza-
tion measured by the DDMS function of Android Device
Monitor and the task execution time into the workload
model formula (1). Figure 4 shows the workload of LG
Nexus 5 according to the number of disks in Hanoi
Tower.

Time complexity
Figure 4 shows that the workload increases exponentially
with the time complexity (O(2n)) of the Hanoi Tower
algorithm. According to the Hanoi Tower algorithm, we
can forward only one task at a time from wearable to
the smartphones or smartphone to cloud server. Based
on this, a non-linear regression analysis was performed
using the measured results to create a workload model

Fig. 4 The workload of the LG Nexus 5 according to the number of disks
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to be applied to the experiment. In our previous study
[4], DMIPS, CPU utilization, and task execution time dif-
fer according to the CPU performance of each smart
device, and as a result, the workload models are sim-
ilar to each other. Therefore, we can analyze that the
workload of the LG G Watch Urbane Wi-Fi, which is
the wearable device used in the experiment, is not dif-
ferent from the LG Nexus 5 workload. Table 4 shows
the results of the non-linear regression analysis of LG
Nexus 5.

Energy consumptionmeasurement
The energy consumption of each smart device ismeasured
based on three experimental scenarios. In Scenario 1, the
energy consumption (S1.Wear) of the smartwatch is mea-
sured when the complex computation with high energy
consumption was processed locally by the smartwatch.
Scenario 2 is the case where smartwatch offloads compu-
tation tasks to a smartphone and the smartphone process
it locally. The energy consumption of the smartwatch
(S2.Wear) and the energy consumption of the smartphone
(S2.Phone) is measured. In Scenario 3, smart watch’s
energy consumption (S3.Wear) and smartphone energy
consumption (S3.Phone) is measured when the smart-
watch offloaded the computation task offloaded from the
smartphone to the cloud server once again. Figure 5 shows
the energy consumption of the smartwatch (S1.Wear,
S2.Wear, S3.Wear) in each experimental scenario and we
can easily understand that offloading to the cloud server
can stabilize the energy consumption.
As shown in Fig. 5, in Scenario 1, the energy consump-

tion (S1.Wear) of the smartwatch increases exponentially
as the number of disks in the Hanoi Tower benchmark
application increases. In Scenario 2, the increase in the
energy consumption of the smartwatch (S2.Wear) is sim-
ilar to when the task is executed locally in Scenario 1
(S1.Wear). However, since the performance of a smart-
phone that performs computation tasks of a smartwatch
is relatively good compared to that of a smartwatch, we
can observe a 77% reduction compare to the maximum
disk in Scenario 1. In addition, the energy consump-
tion of Bluetooth communication to offload computation
tasks, energy consumed waiting for the return of opera-
tion result, consumes more energy than when smartwatch
executes computation operation locally in a section with

Table 4 The non-linear regression analysis

Formula Workload∼ a ∗ exp(b ∗ Disk) + c

Device Var Estimate Std. Error T Value Pr(> |t|)
LG Nexus 5 a 9.991e−02 4.154e−02 2.405 0.0428

b 6.16e−01 1.813e−02 33.986 6.14e−10

c −1.093e+03 8.490e+02 −1.288 0.2339

fewer disks. In Scenario 3, despite the increase in the num-
ber of Hanoi tower disks due to the superior performance
of the cloud server, the amount of energy consumed by
the smartwatch is almost constant. The energy consumed
by the smartwatch includes the energy consumed for a
short period until the result of the offloading operation is
returned and the Bluetooth communication energy cost
consumed in offloading.
Figure 6 compares the energy consumption of the

smartwatch (S1.Wear, S2.Wear, S3.Wear) as the num-
ber of Hanoi towers increases in the three experimental
scenarios. From 16 Hanoi tower disks, the smartwatch
offloads computation tasks to smartphones, which means
less energy is consumed. Also, since the number of disks
in Hanoi Tower is 18, it should be offloaded to the cloud
server, but in the 16− 18 sectors, it needs to be processed
in the smartphone to consume less energy.
Figure 7 shows the energy consumed as the work-

load (W ) of the smartwatch obtained from the regression
model in the three test scenarios increases. If the workload
of the smartwatch is larger than the intersection point (α)
between S1.Wear and S2.Wear, offloading to the smart-
phone without processing the computation operation is
less energy-consuming. On contrary, if it is larger than
the intersection point (β) of S1.Wear and S3.Wear, it is
better to offload the task requested from the smartwatch
once again to the cloud server in terms of the energy effi-
ciency of the smartwatch. Besides, if the intersection point
(γ ) of S2.Wear and S3.Wear is larger than that of the
smartwatch, the energy consumption of smartwatches can
be reduced by processing computation in a cloud server
rather than a smartphone. According to this, no optional
strategy can be adopted for offloading, rather the network
should strategically decide to offload.
As shown in Fig. 8, in Scenario 2, the energy

consumption of the smartphone (S2.Phone) increased
exponentially, similar to the smartwatch energy consump-
tion measurement in (S2.Wear). However, on average
smartphones consume more energy than smartwatches
because their screens are much larger than a smartwatch
and it comprises energy costs for returning results via
Bluetooth communication.
The energy consumption of the smartphone measured

in Scenario 3 (S3.Phone) includes the cost of Wi-Fi com-
munication energy consumed to offload the computation
job once again to the cloud server, the energy consumed
during the waiting for the result to return. And Bluetooth
communication energy consumed when returning results
to a smartwatch.
Figure 9 compares the energy consumption of smart-

phones (S2.Phone, S3.Phone) due to the increase in the
number of Hanoi tower disks in Scenarios 2 and 3.
From the number of disks in Hanoi Tower is 17, it is
better to offload a task requested from a smartwatch
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Fig. 5 Energy Consumption Measurement Results of Smart Watch

to the cloud server once on the smartphone’s energy
efficiency side.
Figure 10 is a graph showing the energy consumed by

the smartphone as the workload (W ) obtained from the
regressionmodelingmethod increases in scenario 2 and 3.
If energy is consumed by the smartphone (S2.Phone) to
locally execute the computation operation is smaller than
the current energy level of the battery, i.e., Ebattery =
0.1, the smartphone accepts the offloading request of the
smartwatch. At this time, it can be seen that if the work-
load of the smartphone is larger than the intersection (α)
between S2.Phone and S3.Phone, offloading to the cloud

server is better in terms of the energy efficiency of the
smartphone. Although the energy (S2.Phone) consumed
by the smartphone is larger than Ebattery, when the energy
consumed for offloading the operation once to the cloud
server is less than Ebattery, the energy consumption can be
reduced.

Energy efficiency comparison of smart devices
In the previous section, our experimental results demon-
strated that the energy consumption of smart devices in
each scenario increases with the number of Hanoi tower
disks (or workload). When the number of disks is 17, the

Fig. 6 Comparing the energy consumption of Smart Watch according to the number of disks
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Fig. 7 Energy consumption of Smart Watch according to workload

smartwatch consumes less energy when the offloading
operation is not offloaded once to the cloud server and
processed by the smartphone. At this time, offloading one
more time to the cloud server from the smartphone side is
more energy efficient.
However, as you can see in Fig. 11, the overall energy

consumption of the smartphone is lower than the one
offloading to the cloud server. This is due to the energy
consumed by the smartwatch for Bluetooth communi-
cation to offload the computation task and the energy
consumed to complete the computation task in the cloud
server.

Conclusion
In this paper, we proposed a computation offloading
technique to solve the problem of low usability of
smart devices caused by small battery-powered wearable
devices.
The existing computation offloading techniques are

offloading from a smartphone to a cloud server via Wi-
Fi, 3G/LTE network environment, or offloading to a cloud
server using a smartphone as a simple intermediary in
a wearable device. In contrast, the proposed technique
uses a smartphone as a server that accepts offloading of
a wearable device, offloads it once to the cloud server in

Fig. 8 Energy Consumption Measurement Results of Smartphone
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Fig. 9 Comparison of energy consumption of Smartphone according to number of disks

consideration of the battery status and energy efficiency
of the smartphone.
In this paper, we dealt with a workload model based on

DMIPS and created the energy cost model including Blue-
tooth, and Wi-Fi communication energy cost to deter-
mine the computation offloading of a wearable device
and smartphone. To evaluate the actual efficiency of the

proposed method, the Hanoi Tower benchmark applica-
tion was implemented. The local energy consumption of
each smart device and the total energy consumption of
the smart device were measured and analyzed based on
the three experimental scenarios. As a result, we con-
firmed that offloading from wearable devices to smart-
phones from a certain point and offloading once to the

Fig. 10 Comparison of energy consumption of smartphone according to workload
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Fig. 11 Total energy consumption of smart devices

cloud server is low energy consumption on the side of
the wearable device. On the smartphone side, it is possi-
ble to accommodate requests from wearable devices, but
offloading once to the cloud server is energy efficient.
When we compared the local energy consumption and

the total energy consumption of each smart device from
the experimental results, it is evident that offloading a task
requested from the wearable device to the cloud server
without locally processing is not good in terms of energy
efficiency; however, the total energy efficiency is better.
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