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1Abstract—The most conflicting key variables in wireless 

networks are energy efficiency (EE) and spectral efficiency 
(SE). In this paper, we propose an energy-efficient allocation 
algorithm of network resources for multi-input multi-output 
networks distributed with large-scale antenna systems. We 
formulate a multiobjective optimization problem (MOOP) to 
maximize the EE of each distinct user and to show the EE–SE 
trade-off as a MOOP. To find the Pareto optimal solution, we 
transform this MOOP into single-objective optimization 
problem (SOOP) through Tchebycheff scalarization and by 
exploiting it with Dinkelbach's method. To solve the SOOP, we 
apply a joint antenna selection and user scheduling (JASUS) 
algorithm for the joint allocation of antenna scheduled users 
solved through an iterative approach. The power allocations 
are applied distinctly for individual cell users by a subgradient 
iterative method to simplify the SOOP further and improve the 
EE. The simulation results reveal that our proposed MOOP 
has a fast convergence, achieving maximum EE after a few 
iterations. Additionally, our proposed methods unveil an 
interesting trade-off between EE and SE at a faster speed and 
demonstrate that an important performance gain is achieved 
by using the proposed algorithm. 

 
Index Terms—antenna, convergence, energy efficiency, 

optimization, uplink. 

I. INTRODUCTION 

Advanced fifth-generation (5G) communication networks 
support many architectures. The growing power 
consumption among these networks has raised concerns 
regarding the investigation of 5G communication systems. 
Owing to increasing energy costs and rising levels of 
greenhouse gases, energy-efficient wireless communication 
has drawn great interest in the wireless research community. 
Therefore, reducing energy consumption along with 
increasing data transmission rates is crucial for the 
development of future wireless communication networks [1, 
2]. EE is expressed as the ratio of maximum achievable 
throughput of all users to overall power consumption. Over 
the years, many techniques have been studied for enhancing 
EE performance in wireless communication networks [3]. 

More recently, massive multi-input multi-output (MIMO) 
systems have been thoroughly investigated to enhance the 
EE and SE of wireless communication networks. Massive 
MIMO systems with a very large number of numerous 

antennas can successfully overcome small-scale distortion, 
fast fading of channels, and receiver noise [4–7]. By 
contrast, distributed antenna systems (DASs) are one of the 
new technologies available for enhancing EE and SE in 
wireless communications. The DAS is an attractive and 
inspiring candidate for 5G wireless communication 
networks, such as cloud radio access networks (C-RANs) 
[8-9]. A large-scale DAS (L-DAS) is employed with a DAS 
over different base stations (BSs) located in various cells or 
from radio remote heads (RRHs) in the cell that can ease 
high propagation loss by using numerous geographically 
antenna systems.  
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The performance of a wireless network can be calculated 
by capacity, SE, and EE. Recently, the EE-SE trade-off 
investigation has gained much attention [10-14]. In wireless 
communication SE shows how efficiently the bandwidth is 
used while the EE refers to way of limiting the energy 
consumption. It is well-known that maximizing EE and SE 
are conflicting objectives and there exists a fundamental 
trade-off between them [10-14]. The EE-SE trade-off, 
therefore, reveals the theoretical performance boundary of a 
communication system. To meet the need for energy-
efficient 5G wireless communication, DASs have been 
studied for optimization of EE [9–15]. The optimum energy-
efficient power allocation approach has been considered in a 
generalized DAS [16–20]. He et al. explained the problem 
of EE maximization with proportional equality taken into 
consideration [21]. An EE optimization of joint antenna 
selection and power allocation was conducted in which 
multiple sectored antennas were suggested for high EE [22-
23]. SE–EE trade-off in DASs was examined for a single 
user. Power allocation was achieved by an optimal closed-
form solution [15]. Li et al. also performed joint allocation 
of antenna selection and power for a multiuser DAS system 
[17]. They also proposed energy-efficient power allocation 
in a C-RAN with minimum capacity and per-antenna power 
constraints [18]. In a DAS, antenna selection plays a 
significant role in maximizing the system’s EE. A proper 
antenna selection method can significantly improve EE in a 
communication network. Usually, antennas are equally 
distributed, while some are far distant from users. These 
more-distant antennas consume a considerable power 
without having any significant impact on the overall 
capacity. In the case of multiple cells, the nodes of each cell 
may interfere with one another and even reduce the capacity 
[24–25]. Furthermore, there is limited research on the 
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performance of L-DASs under some channel parameters, 
shadowing, and fading. Therefore, a proper antenna 
selection method can significantly improve EE of a massive 
MIMO network.  

In this paper, we focus on the performance of an L-DAS 
network under constraints such as path loss, fading, and 
other-cell interference. Results are obtained for practical 
situations such as user scheduling and various antenna 
architectures [27-28]. We propose a simple and fast 
converging algorithm for solving the multiobjective 
optimization problem (MOOP) for the energy-efficient 
allocation of resources, e.g., selection of antenna and user 
scheduling with power allocation in full-duplex (FD) MIMO 
L-DASs. We also examine the EE–SE trade-off in L-DAS 
networks. The solution of the optimization problem is 
expressed as a Pareto optimal set based on the MOOP [29–
32].  

The formulated MOOP is nonconvex and a bit tedious to 
handle. To tackle this problem, the weighted Tchebycheff 
method is used to convert it into an equivalent single-
objective optimization problem (SOOP). The SOOP 
obtained is a fractional function of several functions, and 
this function is further solved by an iterative algorithm and 
subproblem approach [33-39]. The Pareto optimal solution 
is derived by applying a dual-Lagrangian method that 
fulfills the Karush–Kuhn–Tucker (KKT) condition. The 
Lagrangian multipliers are obtained and iteratively 
simplified using the subgradient method. The simulation 
results demonstrate that the proposed MOOP optimization 
approach has superior performance and convergence speed. 
The rest of this paper is organized as follows. Section II 
details the system model adopted in the present work. The 
MOOP formulation and its Pareto optimal solution are 
derived in Section III and Section IV. The simulation results 
are discussed in Section V. Finally, we conclude our work in 
Section VI. 

II. SYSTEM MODEL 

We consider L cells where N RRHs in each cell work in 
FD mode. The data are transmitted to distributed users in the 
downlink and received independently at the same time from 
these users in the uplink mode. Each RRH is provided with 
U colocated antennas. The users are randomly 

distributed in each cell with a single antenna. 
maxK

A. Uplink Transmission 

The uplink channel vector between the mth user in the jth 
cell to the RRHs in the ith BS is expressed as 

                                                                        

    

ijm ijm ijmΨg 1 2= h                                     (1)            

where,

  

 1= diag , , ,ijm i jm iNjm U    Ψ I injm injmcd  

 T

, and 

 The symbol  denotes the 

transpose, 

1 , , .
TT T

i jm iNjm  h h h 

injm

ijm 

  is the large-scale fading coefficient between 

the mth user in the jth cell to the nth RRH in the ith cell, 
signifies the Kronecker product, and c and   denote the 

path loss and the path loss exponent at the reference distance 
d, respectively.  

Moreover,  is small-scale fading coefficient which 

represents U × 1 independent and identically distributed 

zero-mean circularly symmetric complex Gaussian random 
variables with unit variance. 

injmh

We consider the worst-case scenario of pilot reuse and 
contamination in which each cell reuses the same set pilot 
sequences that are mutually orthogonal.  

For simplicity, we denote the orthogonal pilot set in each 
cell by [1], [4]. Hence, the received signal at the 

baseband processing unit (BPU) of the ith cell is expressed 
as                              

pX

                
iP P Pi ii i l

l i
P  Y G X G X Z

, , ,G g g g

                        (2) 

Here, max1 2il il i l i l K   

PiZ

 is the channel matrix of all 

users in the lth cell to all the RRHs of the ith cell. The 
symbol  denotes noise matrix independent and 

identically distributed zero-mean circularly symmetric 
complex Gaussian random variables with variance p1/ , 

where P  denotes the signal-to-noise ratio.  

The BPU of the ith cell traces the channel vector  

after tallying the received signal and pilot sequence of the 
mth user given by 

ijmg

           P im ijm ikm im
k j

P  y g g z                                  (3) 

where, yPim and zPim are the mth columns of and ZPi, 

respectively. The minimum mean-square error (MMSE)  
 in  is expressed as  

P iY

ˆ
ijmg ijmg

                                                     (4) 1
P

ˆ
ijm ijm im im

 Ψ Q yg

B.   Downlink Transmission 

We used the maximum ratio transmission beamforming 
technique. The precoding vector jmw  of the mth user in the 

jth cell is expressed by  

                   ˆ
jm jm gw jjm                                               (5) 

where, jm  is the normalization constant given by 

H

1

jm

.jm

jm

 
   w w

 In FD mode, the downlink received 

signal at the mth user in the jth cell contributes to the uplink 
co-channel interference given by [1]. 

      H

1 1 1 1

K KL LDi Ui

jm ijm ik ik ik ik ikjm ik jm
i k i k

y P x q
   

     +g w s + n   (6)                     

where, ikx  indicates the data symbol for the kth user in the 

ith cell, which follow a complex Gaussian distribution with 
a random variable with zero mean and unit variance,  

ik ik iks t d  is the transmission signal of the kth uplink user 

in the ith cell.  and  denote the transmission power and 

transmitted data sent from the kth uplink user to the RRH in 
the ith cell, respectively;  represent the channel 

coefficients between the downlink mth user in the jth cell 
and the uplink kth user in the ith cell; and  is the additive 

white Gaussian noise at the mth user in the jth cell. The 
maximum throughput of the mth user in the jth cell is given 
by [1]. 

ikt ikd

ikjmq

jmn
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jm jm jjm jjm

jm KL i

jm jm ljm llk ik ikjm n
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P

P t q
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 
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 
 
  
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

g g
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Here, the fractional term represent signal to noise plus 
interference ratio (SINR),

2
n jm

 is the noise variance at the 

mth user in the jth cell. Now, we define the SE of the 
system, which is equal to the total system throughput per 
unit bandwidth as 

         

 

            (8)   
1

, , , ,
L

SE jm
j m U j


 

    P A U P A Ur 

where,  1 2vec , , , LP P P P  is the transmission power of 

all the scheduled users in L cells;  1 2= diag , , ,j j j jKP P PP 

 1 2, , ,

 

denotes the transmission power of K out of Kmax scheduled 
users in the jth cell; and LU U U U  and 

 1 2, , , LA A A A

cP

 denote the set of scheduled users and 

antennas selected in L cells, respectively. The overall power 
consumption is the linear sum of all transmission-power-
dependent terms of all selected antennas and independent 
power ( ) contributions per cell [10]. The total power 

consumption of the system is expressed as 

     tot
1 1

, ,
1

P = P
L L

j
aij j

a j Aji

P
 



   P A U cP                  (9)         

Here  is the ith antenna in the jth cell, j
ia   indicates the 

power loss coefficient ,  1     denotes the efficiency of 

the power amplifier, and j
ai

P  indicates the transmission 

power of the ith antenna in the jth cell. Accordingly, the EE 
of the whole network can be expressed as [27]. 

                                                  

   
tot

1 1

, ,
, ,

1P
SE

L L
j

a cij j
a j Aji

P P





 




 

  

P A U
P A U           (10)                      

As already mentioned, SE and EE are conflicting metrics in 
an L-DAS. Maximizing the SE of the system is equivalent to 
utilizing all the available resources, e.g., transmission power 
and all antennas. Therefore, the EE of the system may 
degrade drastically as a result of severe power consumption. 
In such cases, maximizing SE or EE may not work out to 
satisfy the QoS requirement. Therefore, investigation of EE–
SE trade-off becomes important. SE–EE trade-off is 
achieved by solving a simplified MOOP in which the total 
power consumption is minimized, and SE is maximized over 
various weight parameters [23]. 

                                                                                                    

III. PROBLEM FORMULATION 

The objective of our work is optimization of the EE of 
each user and improved EE–SE trade-off. The equivalent 
MOOP can be formulated by maximizing the EE and SE of 
each user simultaneously, which is expressed as the 
following equation: 

  max , , , , ,   P,A,U
P A U P A U                            (11)                                                       

      min

s.t.

C1 : , , ,jm jR j m   P A U Ur
     (12)  

         C2 : 0 ,jm j m  P jU                 (13) 

                          (14)  
 

, max
1 1

C3 : ,
nU

j
a nii U n

n j
   

  P P

          C4 : ,j j j A A                  (15) 

          C5 : ,j j j U U                  (16) 

           ,C6 : 0j j
ja ii

P a  A j                 (17)         

In (11), constraint C1 represents the minimum bit rate of 
all selected users. In C2, we impose a limit for the users to 
transmit power. C3 imposes a constraint on the overall 
transmission power of a given RRH. C4 and C5 address 
antenna and user selection. C6 indicates zero transmission 
power for all antennas without transmission. 

IV. PROPOSED SOLUTION 

It is obvious that the aforementioned MOOP has a 
nonconvex objective in C1 and C2. Consequently, we 
implement a method to solve it by using two subproblems 
with regard to A and U, as well as with regard to P. Now, 
problem (11) is compressed to an optimization problem 
subjected to A and U for an initial feasible P that satisfies 
constraints C2, C3, and C6. Therefore, we propose an easy 
and effective joint antenna selection and user scheduling 
(JASUS) algorithm for A and U. We denote this as 
subproblem 1. Then, we solve subproblem 2 by obtaining 
the suboptimal P that satisfies C1–C3 and C6. Here, we 
transform the objective function from fractional to a 
subtractive form and find a suboptimal solution using 
Dinkelbach’s method [38].  

A. JASUS Algorithm 

We propose a JASUS algorithm that can easily be 
employed in an L-DAS. The basic idea is based upon a 
greedy algorithm that successively removes the worst 
antenna (i.e., the one causing performance degradation) at 
each iteration (t). Meanwhile, at each iteration, it 
successively selects the set of users that experiences a 
promising level of orthogonality. The algorithm seeks to 
construct three parts. It starts by initializing the set of all 
antennas in sequence independently in all L cells. In a 

similar way to the antenna set tA  we calculate user set U .  t

After the antenna and user selections are made, the 
iterative process starts by updating them one by one based 
on the maximum achievable throughout criteria. The entire 
process is repeated for the next network cell until 
convergence is reached. 
 

ALGORITHM 1. JASUS ALGORITHM 

1. Initialization: 0U  and 0A . 

2.  ˆ ˆH . Let  antenna M with the 

largest  

m
m

d = diag G G

md  be used to  create 0 .A  

3. According to 0A ,  

calculate ,  0 0
ˆ ˆ= diag H

k U A U Aall all k

d G G 
 
 

  

4. Select the users ( )K M with largest kd  
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5. Create 
0 .U  

6. Let t = 0, where maxt = maximum number of 

iterations, 1 ,t  U  
1 ,t    


A

0 0, , t-1= A UT 0t
a A , and B 0t

u U . B

7. Iterative updating of antenna and user: 

8. While    1 1,t t t t  U U A A
9. do 

10. ˆ
t t

iU
t F

a
a  A

A
argmint*

i
t
i

= G   

11. Formulate *\a

t
t
i

A   

12. Find 

 
* ˆ

i

t
i Uac Ft

i

a
a


 A

Gargmax   

13. If  t
u   *

*
,\

t t t
i at

i

aa  
 
 

 A U B , B     

14. Then Update  1 *
*\ a

 A A

1 tt t
ia T = T

t t
t i
i

a , 

1 1t t
a
  A  and *.  B

15.  Else 

16.  
1t t A A

17. End if 
18. Find  * 1arg m ax ,t t

i a
t t
i U

u
u

t
u 


B B   

19. Formulate *\   
t

tui
U

20. If u   1 * 1
*\

,t t t t
t i au i

u   
 
 

 A U, B B   

21. Then Update  1 *
*\

t t u itui

  U U   

22. Else 

23. Update 1t t U U  

24. End if 

25. t = t + 1 

26. Until  maxt t

ALGORITHM 2. ITERATIVE ALGORITHM FOR FLAG CONVERGENCE 

1. Initialization: Iteration number t = 0, 
flag = 1, weight coefficient =   

2. While flag, flag > 0.01, do 

3. Update t = t + 1; 
t+1

4. According to
t+1

A U,   

5. Calculate from Algorithm 1  

    { , }
t t

f A U A U( , );  ;   

6. Calculate flag 
t t -1
j,m j,m

j,m
f f f =max ‐ ;    

7. End while 

 
B. Proposed MOOP Algorithm 

The equivalent MOOP can be formulated by maximizing 
the SE of the network for each user and minimizing the total 
power consumed simultaneously, which is expressed as the 
following equations:  

                                 (18)          
 

 

1
1

2

max ( )

min ( ) P

j

L

jm
j m U

f

f


  





P P

P P

r
                                               

s.t. (C1)–(C3) and (C6)                                     (19) 
 

In this section, multiple objectives can be linearly coupled 
as a SOOP by using a weighting parameter that indicates the 
trade-off among multiobjective [40-42]. To solve above 
problem, we apply the concept of Pareto optimal. In above 
problem, the weighted Tchebycheff method can be regarded 
as EE-SE tradeoff among users. It is most effective method 
to solve MOOP. It is difficult to achieve Pareto optimal 
resource allocation from the above problem (18). Therefore, 
to transform the MOOP into a SOOP, we adopt the weighted 
Tchebycheff technique [37]: 

 min max ( ), (1 ) ( )1 2f f 
P,A,U

P P                       (20)  

       s.t. (C1)–(C3) and (C6)                                     (21)  
Here,   is a vector of weights. The above problem (20) is 

an example fractional programming, in which the maximum 
of numerous fractions is minimized [43-49]. Problem (20) 
can be converted into a quasiconvex problem by using the 
following approach given in [42], [50]. 

C. Dual-Lagrangian Analysis and KKT Conditions  

The Lagrange dual multiplier method is an efficient tool 
for optimization problems [21]. Thus, we first derive the 
Lagrangian function to solve (20) is Pareto optimal which 
can be derived from constraint (21).    

   
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ˆ
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P
R

P t qik
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











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  

  
   

    

   
       
         

 
  
 

g g

g g

U
 

where, ,  m m  , and m  are the positive Lagrangian 

multipliers. Now, by applying KKT conditions, the closed-
form expression for jmP  can be obtained by taking 

derivative of is given by ( ,jm , , )m m mL P     with respect to 

and setting it to zero which is given by jmP

2 2

DL

1

ln 2

1

j j jm
j m mij

ji

jm

m

m mA u a u
a A

jm jm

L

P



   





 








 
                 
    

   
  

w w  (23)                  

  
Then we apply the sub-gradient method [49] to update the 

parameters. Repeating the process until Lagrangian function 
converges. In each cell, the gradient update equations can be 
defined as 
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      (25) 
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       
 aP




          (26) 

Here,   ≥ 0 is the iterative step size of λm, μm, and τm, and t 

is the iteration index. The gradient updates of (24), (25) and 
(26) are assured to converge to the optimal λm, μm, and τm, on 
the assumption that ( )t  is chosen. In this paper we 

consider
0.1

( )t
t

  .  In the successive iterations, the optimal 

values of λm, μm, and τm are used to determine Pjm. The 
iterative process continues until convergence. 

V. SIMULATION RESULTS 

We present the simulation results of our proposed MOOP 
optimization in this section. The convergence performance 
of our proposed algorithms is also estimated through 
simulation results. We consider that the RRHs with two 
antennas (U = 2) are fixed in a square grid. The number of 
RRHs (N) and number of selected antennas (M) are fixed in 
the range of 100–1000. The number of cells (L) is 4. The 
maximum number of users ( maxK out of K) is 4–20. The 

power amplifier efficiency is 0.37 [51-53]. The distribution 
of users in the cell is uniform. The independent transmission 
power per cell (Pc) is 40 W. Under the framework of the 
path loss model, the path loss exponent α is 3.7. We also 
assume a power loss coefficient ν of 2.63 [17]. Parameter c 
is fixed to 1, and the downlink signal-to-noise ratio ( DL ) is 

set to 30 dB. The minimum bit rate is 1 bit/s/Hz.  
Fig. 1 shows the graph of EE versus the number of 

iterations performed to achieve the maximum converged 
value of EE. It can be noticed that the convergence speed of 
our algorithm for different numbers of K and M is high. The 
values of  of each RRH are different, e.g., 0 dB, 5 dB, 

and 0 dB. When = 0 dB, there is no power scaling at the 

BS and users. So, in this case, the fractional term in equation 
(7) tends to infinity, the harmful effects of noise and 
interference terms all diminish, while the desired signal is 
maintained.  
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Figure 1. EE versus the number of iterations performed in the proposed 
algorithm 

We can observe that our approach always achieves 
maximum EE within a few iterations. For M = 500 antennas, 
K = 8, and  = 0 dB, the maximum EE achieved is 1.9 

bits/J/Hz. Similarly, for M = 250 and K = 4, the EE is 
maximum for  = 5  dB compared to  = 0 dB is 

highly efficient in achieving its optimal EE rapidly. 
Therefore, the proposed MOOP resource allocation scheme 
achieves maximum EE quickly.  

maxP

maP x maxP

 
Figure 2. Convergence with regard to different initial values of users 
  

Fig. 2 provides insight into the convergence performance 
of Algorithm 1. The calculated flag value according to 
Algorithm 2 indicates the accuracy of the convex procedure 
for determining SE. The plot of flag convergence versus 
number of iterations for various users according to different 
initial users (Algorithm 1) is given in Fig. 2. The ordinate in 
Fig. 2 denotes the change in the number of the convergence 
flag. The smaller the number of the flag convergence, the 
better is the accuracy of the convex approximation. It can be 
observed that our algorithm (Algorithm 2) converges very 
quickly, and with the increase in users, it has a minor impact 
on the speed of convergence.  

When the flag convergence value is zero, the allocated 
power according to Dinkelbach’s method remains the same 
irrespective of the number of iterations and users. This 
observation, together with the previous result, ensures that 
proposed Algorithms 1 and 2 are applicable in FD-MIMO-
enabled L-DAS networks.  

Fig. 3 shows the SE–EE trade-off where the number of 
antennas installed at the BPU is different. It can be clearly 
seen from this figure that the EE is a concave function of the 
SE. Moreover, also apparent is that the maximum value of 
the EE and SE improves and diminishes with the number of 
antennas increasing from 80 to 120. This means that SE–EE 
trade-off is maximum with fewer antennas and vice versa. 
Alternatively, the consumption of energy of the system also 
spikes as the quantity of antennas rises. Interestingly, the 
density of available spatial channels improves with more 
antennas installed at the BPU. The spatial channel density 
raises the throughput and thereby the SE. In addition,  
having a greater number of existing antennas leads to higher 
energy consumption, and the network EE decreases, to some 
extent, after achieving a maximum accordingly. 

Furthermore, we evaluated the optimal performance of 
our proposed multiobjective algorithms (Algorithm 1 and 
Algorithm 2) by comparing our approach with the standard 
exhaustive search method for optimization problems. 
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Figure 3. EE versus SE with different numbers of antennas 

 
We chose a small scale because of the exponential 

computational complexity requirement of exhaustive search, 
considering small-scale users, e.g., K = 8 and N = 4. Fig. 4 
shows the performance comparison of the EE–SE trade-off 
proposed by our algorithm and the reference exhaustive 
search method. We can observe that the performance of our 
proposed MOOP algorithm is very close to that of the 
exhaustive search method with regard to EE–SE trade-off. 

Two points can be noticed from this graph. First, EE is a 
concave function of SE, as already proved above. Second, 
the EE performance proposed through our MOOP 
Algorithms 1 and 2 is superior to that of other algorithms 
such as existing exhaustive search methods. Therefore, it 
can be inferred that the algorithm developed in this study 
offers better speed and convergence to achieve the optimum 
EE and a better EE–SE trade-off. The SE increases while the 
EE increases at a slower rate owing to the increasing 
transmission power and number of available antennas. 
Power consumption is higher when the number of BSs 
increases, which confirms that EE first increases and then 
exhibits a decreasing trend with more antennas. 

Fig. 5 shows the EE versus the number of antennas for 
various users (K = 4, 8, and 16). It is verified that the EE 
first increases to a maximum and then decreases when the 
number of transmission antenna varies from 100 to 1000. 
Maximum EE is achieved at M = 400 for all cases. If we 
compare the EE for different numbers of users (K = 4, 8, and 
16), we see that it increases with the number of users in the 
cell.  

 
Figure 4. EE–SE trade-off    

 
Figure 5. EE versus number of antennas 

 

The EE improves when the number of antennas varies 
from M = 100 to 400. During the increase in the number of 
antennas to up to 400, the number of users, K = 16, 8, and 4, 
the maximum EE can be achieved, at EE = 6, 5.5, and 4.8 
bits/J/Hz. However, EE further drops from M = 400 to 1000 
owing to the progressive increase in power consumption 
associated with the more extensive antenna network.  

Fig. 6 presents the SE versus the total number of antennas 
at the BSs. We observe that SE increases when the number 
of antennas increases from M = 100 to 1000. This means 
that a large number of antennas is beneficial for achieving 
higher SE.  

 
Figure 6. SE versus number of antennas 

 
If we compare the SE for different numbers of users (K = 

4, 6, and 16), SE increases slowly for K = 4 while SE 
increases rapidly when K = 8 and 16. The SE is 42 bits/s/Hz 
for K = 4, 97 bits/s/Hz for K = 8, and 118 bits/s/Hz for K = 
16. 

As expected, the SE is maximum (118 bits/s/Hz) when          
K =16 and M = 1000, indicating that an increase in the 
number of users increases SE proportionally when M varies 
from M = 100 to 1000. An exponential variation is observed 
for K = 8 and 16 while the rate of increase in SE is slightly 
lower for a small number of users (K = 4). This implies that, 
by simultaneously serving many users in the L-DAS cell, we 
can increase SE effectively.               

VI. CONCLUSION 

In modern wireless communication networks, the trade-
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off between SE and EE is very important for energy 
efficiency optimization, owing to the conflicting nature of 
EE and SE with fixed radio resources. Individual 
optimization of SE or EE becomes a challenging task when 
a large number of distributed users exist in a network with a 
number of conflicting variables. Therefore, we formulated a 
multiobjective optimization problem in this work for an L-
DAS network. We studied EE optimization by JASUS by 
maximizing SE and minimizing total power consumption 
simultaneously. Further, we studied the SE–EE trade-off and 
optimality of our algorithm by flag convergence methods 
and compared the results with those of the exhaustive search 
method, which serves as a benchmark. Therefore, joint 
optimization of EE and SE can be achieved by maximizing 
SE and minimizing the total power consumption 
simultaneously 

In this study, we developed a resource allocation 
algorithm for multi-cell MIMO L-DASs in FD mode. We 
proposed a MOOP framework based on the weighted 
Tchebycheff method to study the multiobjective 
optimization of EE and trade-off between EE and SE. The 
nonconvex MOOP was transformed into an equivalent 
SOOP and solved optimally to get the Pareto solution set. 
Furthermore, we examined the relationship between EE and 
SE for an L-DAS. We used an antenna selection and user 
scheduling method based on large-scale fading to minimize 
power consumption and to improve EE. We also used a 
subgradient method to obtain power allocation. The results 
demonstrate that the proposed algorithm converged quickly 
within several iterations in MIMO L-DASs, in terms of EE–
SE performance.  
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