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Geometry of the wave function is a central pillar of modern solid state physics. In this work,
we unveil the wave function geometry of two-dimensional semimetals with band crossing points
(BCPs). We show that the Berry phase of BCPs are governed by the quantum metric describing
the infinitesimal distance between quantum states. For generic linear BCPs, we show that the
corresponding Berry phase is determined either by an angular integral of the quantum metric or,
equivalently, by the maximum quantum distance of Bloch states. This naturally explains the origin
of the π-Berry phase of a linear BCP. In the case of quadratic BCPs, the Berry phase can take an
arbitrary value between 0 and 2π. We find simple relations between the Berry phase, maximum
quantum distance, and the quantum metric in two cases: i) when one of the two crossing bands is flat,
ii) when the system has rotation and/or time-reversal symmetries. To demonstrate the implication
of the continuum model analysis in lattice systems, we study tight-binding Hamiltonians describing
quadratic BCPs. We show that, when the Berry curvature is absent, a quadratic BCP with an
arbitrary Berry phase always accompanies another quadratic BCP so that the total Berry phase of
the periodic system becomes zero. This work demonstrates that the quantum metric plays a critical
role in understanding the geometric properties of topological semimetals.

Introduction.— The Berry phase of electronic wave
functions can have profound effects on vast physical phe-
nomena in condensed matter [1–4]. The significance of
the Berry phase lies in the fact that it is not only gauge-
invariant (up to an integer multiple of 2π) but also geo-
metric. For instance, the Berry phase, normally written
as a line integral of the Berry connection over a loop in
the parameter space, can also be expressed as a surface
integral of the Berry curvature so that it can be under-
stood as an Aharonov-Bohm phase arising from the Berry
gauge flux. The geometric interpretation of the Berry
phase in terms of the Berry curvature answers the origin
of anomalous Hall effect [5] and also allows us to include
various topological phenomena in the realm of the Berry
phase related physics [4].

Interestingly, recent studies of topological phases have
shown that the Berry phase can also serve as a topolog-
ical invariant [6–8]. For instance, in a class of topologi-
cal semimetals having band crossing nodes, the stability
of a nodal point in two-dimensions or a nodal line in
three-dimensions is guaranteed by the quantized π-Berry
phase defined along a loop enclosing the node in momen-
tum space. However, when applied to such band crossing
points (BCPs), the geometric interpretation of the Berry
phase in terms of the Berry curvature does not work un-
less a singular source of Berry curvature is introduced.
This is because the presence of a band degeneracy inside
the loop, on which the Berry phase is defined, prohibits
transforming the line integral for the Berry phase to the
surface integral with the Berry curvature. In fact, the
quantization of Berry phase requires the Berry curva-
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ture to vanish because, otherwise, the Berry phase for a
BCP becomes path-dependent. This indicates that the
geometric character of the Berry phase describing BCPs
should have distinct nature, independent of the Berry
curvature.

In this work, we unveil the wave function geometry
of BCPs in two-dimensional (2D) crystals. Explicitly,
we show that the Berry phase is completely determined
by the quantum metric [9–15], which describes the in-
finitesimal distance between two wave functions in the
parameter space. Together with the Berry curvature,
the quantum metric constitutes the quantum geometric
tensor, which fully characterizes the geometry of quan-
tum states. We first show that the maximum quantum
distance between the Bloch states around a linear BCP
(LBCP) takes the largest allowed value 1 as determined
by an angular integral of the quantum metric along a
loop enclosing the LBCP. This characteristic property of
LBCPs gives rise to the quantized value π of the Berry
phase.

In the case of quadratic BCPs (QBCPs) [16, 17], we
show that the path-independent Berry phase can take an
arbitrary value depending on the Hamiltonian parame-
ters, which modify the quantum metric distribution. We
find simple relations between the geometric quantities
characterizing the BCPs such as the Berry phase, quan-
tum metric, and maximum quantum distance, in two
cases. One is when one of the two crossing bands is
flat [18–24]. The other is when the system has rotation
or time-reversal symmetries. In both cases, we find that
the Berry phase of a QBCP is determined by an angular
integral of the quantum metric along a loop enclosing it,
which is proportional to the maximum quantum distance
of relevant Bloch states.

To demonstrate the implication of the continuum
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FIG. 1. Wave function geometry of LBCPs. (a) Mapping between a closed path CBZ in momentum space (left) and
the loop CBS on the Bloch sphere S2

BS (right). The straight-line distance between ň(k1,2) determines the quantum distance
d(k1,k2) between |ψ(k1,2)〉. (b) The band structure around an LBCP at k = (0, 0) obtained by HL(k) with (t1, t2, t3, b1, b2) =
(3.9, 0.25,−3.5, 0, 0). (c) CBS on S2

BS corresponding to CBZ in (b). For an LBCP, the relevant CBS always forms a great circle,
thus the maximum quantum distance is always dmax = 1. The red arrows on CBZ and CBS denote their orientation. The big
black arrow denotes ň(0, 0) which moves counter-clockwisely as the momentum changes along CBZ. (d) Quantum metric g(φ)
in the polar coordinates. While the Berry curvature vanishes everywhere (except at the BCP), the quantum metric is generally

non-zero. The integral
∮
dφ

√
g(φ) = πdmax gives the quantized Berry phase ΦB(CBZ) = π and dmax = 1.

model analysis for the periodic lattice systems, we study
tight-binding models describing QBCPs. In the case with
vanishing Berry curvature over the whole Brillouin zone
(BZ), we find that a QBCP with an arbitrary value of
Berry phase always accompanies another BCP. On the
other hand, when the Berry curvature is finite, we show
that a single QBCP with an arbitrary Berry phase can
exist in the BZ. In both lattice models, the obtained geo-
metric quantities of QBCPs are consistent with our con-
tinuum theory.
π-Berry phase of LBCPs.— The quantized π-Berry

phase of an LBCP (or a Dirac point) [6, 25, 26] has been
understood as follows. For a given LBCP, its Berry phase
is determined by the line integral of the Berry connection
along a loop ` enclosing it in momentum space. Accord-
ing to Stokes theorem, the difference of the Berry phases
computed along two different loops `1, `2 enclosing the
LBCP is given by the integral of the Berry curvature over
the area S`1,`2 bounded by `1, `2. Then the Berry phase
can be path-independent only when the Berry curvature
integral over S`1,`2 vanishes for any choice of `1, `2.

Normally, the Berry curvature integral vanishes when
suitable symmetry exists such as space-time inversion [27,
28] or mirror symmetries [27] (see Supplemental Materi-
als [29]). Below we show that the Berry phase quan-
tization of LBCPs does not rely on the symmetry but
originates from the peculiar geometry of Dirac spinors.
The main role of symmetry is to forbid mass terms so
that symmetry-protected LBCPs can form a stable Dirac
semimetal phase. Even an unstable LBCP appearing at
the critical point between insulators has π-Berry phase.

Quantum distance and quantum metric.— To describe
the quantum geometry of BCPs, we define several ge-
ometric concepts. The Hilbert-Schmidt quantum dis-
tance [9, 30–32] between two states |ψ(k)〉 and |ψ(k′)〉
is defined as

d2(k,k′) = 1− |〈ψ(k)|ψ(k′)〉|2, (1)

which takes the maximal value 1 (minimal value 0) for

two orthogonal (identical) states. For two infinitesimally
close states at the momentum k and k′ = k+dk, respec-
tively,

d2(k,k + dk) = Gij(k)dkidkj , (2)

where the quantum geometric tensor Gij(k), which is
hermitian and gauge-invariant, is given by

Gij(k) = 〈∂iψ(k)|∂jψ(k)〉 −Ai(k)Aj(k), (3)

in which Ai(k) = i〈ψ(k)|∂iψ(k)〉 indicates the Berry con-
nection. The real and imaginary parts of Gij(k) corre-
spond to the quantum metric gij(k) and the Berry cur-
vature Fij(k), respectively.
Two-band Hamiltonian and Bloch sphere.— In gen-

eral, BCPs between two non-degenerate bands can be
described by a two-band Hamiltonian

H(k) = f0(k)σ0 − f(k) · σ, (4)

where σ = (σ1, σ2, σ3) denote the Pauli matrices, σ0

indicates a 2 × 2 identity matrix, and (f0(k),f(k)) =
(f0(k), f1(k), f2(k), f3(k)) are real functions of k. The
occupied state |ψ(k)〉 satisfies

(ň(k) · σ)|ψ(k)〉 =
1

2
|ψ(k)〉, (5)

and the corresponding energy eigenvalue is f0(k)−|f(k)|.
Here, ň(k) denotes a point on the Bloch sphere S2

BS with
radius rBS = 1

2 defined by

ň(k) =
1

2

f(k)

|f(k)|
∈ S2

BS. (6)

From Eq. (6), one can find several important relations
between |ψ(k)〉 in the Hilbert space and ň(k) on S2

BS [29].
For this, let us consider a closed path CBZ enclosing the
BCP in momentum space. Then another closed path CBS

on S2
BS corresponding to CBZ is determined by Eq. (6) [see
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FIG. 2. Wave function geometry of QBCPs. (a)-(b) The band structure and the relevant Bloch sphere around
a QBCP at k = (0, 0) obtained from HQ(k) with (t1, t2, t3, t4, t5, t6, b1, b2, b3) = (−3.8,−0.25,−0.35, 1.8,−1.8, 2.2, 0, 0, 0).
CBS generally has an elliptical shape. (c)-(e) The band structure, the Bloch sphere, and the quantum metric of
a QBCP when one of the two crossing bands is flat, obtained from Hflat(k) with (t1, t2, t3, t4, t5, t6, b1, b2, b3) =
(−1.9, 0.9,−1.65,−1.2, 0.2842,−1.146, 1.9,−0.9, 2.029). CBS (red) is a circle with a diameter dmax ∈ [0, 1]. 2θmax denotes
the apex angle for the solid angle subtended by CBS. The apex angle is determined by dmax: cos2 θmax = 1 − d2

max.∮
dφ

√
g(φ) = 2πdmax, which is twice larger than the case of the LBCP.

Fig. 1(a)]. First, the quantum distance between |ψ(k1)〉
and |ψ(k2)〉 is equal to the straight-line distance between
ň(k1) and ň(k2) on S2

BS

d(k1,k2) = |ň(k1)− ň(k2)|. (7)

We define the maximum quantum distance dmax as the
maximum value of d(k1,k2) for k1,2 ∈ CBZ.

Second, the length of CBS is given by an integration of
the quantum metric along CBZ:

|CBS| =
∮
CBZ

√
gij(k)dkidkj . (8)

Third, the Berry phase ΦB(CBZ) =
∮
CBZ

dk ·A(k), de-

fined along CBZ, can also be described geometrically on
S2

BS. Then, ΦB(CBZ) is given by a half of the solid angle
Ω(CBS) on S2

BS as

ΦB(CBZ) = −1

2
Ω(CBS) (mod 2π). (9)

In general, there is no closed-form expression relating
the three geometric quantities in Eqs. (7)-(9). However,
for LBCPs and QBCPs, we demonstrate below the ex-
plicit formulas connecting them under the condition that
CBS becomes a circle.

Wave function geometry of LBCPs.— The most gen-
eral form of the k linear Hamiltonian is

H
(0)
L (k) = (b1kx + b2ky)σ0 +

3∑
a=1

(vaxkx + vayky)σa,

(10)

where b1,2, vai (a = 1, 2, 3, i = x, y) are constants. In

general, H
(0)
L (k) does not have any symmetry. But its

Berry curvature vanishes at every k so that the BCP
at k = 0 has a path-independent Berry phase, either 0
or π, depending on b1,2, vai. Here, the Berry curvature

vanishes because every term in H
(0)
L (k) is linear in k, i.e.,

H
(0)
L (k) is a homogeneous-order Hamiltonian of degree 1.

After successive unitary transformations [29], H
(0)
L (k)

becomes

HL(k) =t3kyσ1 + (t1kx + t2ky)σ2 + (b1kx + b2ky)σ0.
(11)

We note that t1,3 6= 0, because otherwise, H
(0)
L (k) de-

scribes a nodal line, not a single LBCP. Comparing
Eq. (11) to Eq. (4), we find f(k) = (−t3ky,−t1kx −
t2ky, 0), which forms a plane passing through the
origin in the three-dimensional space spanned by
(f1(k), f2(k), f3(k)) when k is varied. For a closed path
CBZ enclosing the origin [see Fig. 1(b)], the correspond-
ing CBS forms a great circle on S2

BS. In this case, the
maximum quantum distance dmax becomes 1. Hence, we
obtain a nodal point at k = 0 with dmax = 1. The band
structure, the Bloch sphere, and the quantum metric of
Hlinear(k) are shown in Figs. 1(b-d).

For an LBCP described by HL(k), the quantum met-
ric tensor gφφ(φ) ≡ g(φ) takes a closed form [29] which
is plotted in Fig. 1(d) as a function of φ = tan−1(ky/kx).
As the eigenstates of HL(k) are independent of |k|, they
depend only on φ so that the relevant Berry curvature
vanishes, which is generally valid for any homogeneous-
order Hamiltonian. As the Berry curvature is zero, the
quantum metric is the only gauge-invariant geometric
tensor. When φ changes by 2π along a loop CBZ, ň(k)
also forms a closed loop CBS with the length |CBS| =∮
dφ
√
g(φ) = π [see Eq. (8)]. We note that |CBS| is also

given by πdmax since CBS is the great circle with diam-
eter dmax. The relevant Berry phase is ΦB(CBZ) = π, a
half of the solid angle Ω(CBS) = 2π as noted above [see
Fig. 1(c)]. The geometrical property of an LBCP can be
summarized as follows:

dmax =
1

π

∮
dφ
√
g(φ) = 1, ΦB(CBZ) = π. (12)

QBCPs.— Now we consider QBCPs generally de-
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scribed by the Hamiltonian

H
(0)
Q (k) =

3∑
a=0

2∑
m=0

va,mk
m
x k

2−m
y σa, (13)

where va,m (a = 0, 1, 2, 3, m = 0, 1, 2) are constants.

H
(0)
Q (k) has a QBCP at k = 0 [Fig. 2(a)] and the

Berry curvature around it is always zero as H
(0)
Q (k) is

a homogeneous-order Hamiltonian. After successive uni-

tary transformations, H
(0)
Q (k) becomes

HQ(k) = (b1k
2
x + b2kxky + b3k

2
y)σ0 + t6k

2
yσx

+(t4kxky + t5k
2
y)σy + (t1k

2
x + t2kxky + t3k

2
y)σz, (14)

where b1,2,3 and t1,2,··· ,6 are real constants [20]. Here
f(k) describes a cone in (f1(k), f2(k), f3(k)) space as k
is varied. As a result, CBS is no longer a circle but a
closed loop with an elliptical shape [see Fig. 2(b)]. Con-
trary to LBCPs, there is no simple expression connect-
ing the quantum metric and dmax for HQ(k) in general.
Nevertheless, CBS becomes a circle with arbitrary radius
when C3 or C6 symmetry exists or a great circle when
time-reversal symmetry is further imposed, depending on
the symmetry representation. In such cases, the relevant
Hamiltonian can be reduced to the Hamiltonian describ-
ing a flat band with a QBCP, by adding a term pro-
portional to the identity matrix with an appropriate co-
efficient. As this procedure does not change the wave
function and its geometry, the relevant geometric prop-
erties are also identical to those of the flat band with a
QBCP, which is discussed below. More details on the
QBCPs with rotation and/or time-reversal symmetries
are provided in Supplemental Material [29].

Flat band with a QBCP.— Interestingly, the geometric
properties of HQ(k) can be fully characterized by the
quantum metric, if one of the two crossing bands is flat
as in Fig. 2(c). We denote such a flat band Hamiltonian
by Hflat(k). It is worth noting that CBS corresponding to
Hflat(k) is a circle with diameter dmax [29] as shown in
Fig. 2(d).

The quantum metric g(φ) of Hflat(k) also has a closed
form [29] which is plotted in Fig. 2(e). We find |CBS| =∮
dφ
√
g(φ) = 2πdmax. Here the additional multiplica-

tion factor 2, compared to Eq. (12), arises from the fact
that Hflat(k) = Hflat(−k), thus ň(k) at φ and φ+ π are
identical. As ň(k) winds twice for one cyclic change of
φ, CBS is two-fold degenerate.

A straightforward calculation gives

dmax =
1

2π

∫
dφ
√
g(φ) =

|t4|
(2t24 + 4t1t3 − t22)1/2

, (15)

which shows that dmax > 0 (dmax = 0) when t4 6= 0
(t4 = 0) [22]. The flat band with dmax > 0 (dmax = 0) is
called a singular (non-singular) flat band [20].

The solid angle subtended by CBS is Ω(CBS) = 4sπ(1−
cos θmax) where the apex angle 2θmax satisfies cos θmax =
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FIG. 3. A tight-binding model Hdouble(k) exhibiting
a flat band with two QBCPs. (a) The honeycomb lat-
tice with two sublattices A and B. Black arrows denote the
hopping interactions. Other hopping processes related by C3

rotation are not shown for clarity. (b) The band structure for
t = 0.8 displaying two QBCPs at Γ and K′ points, respec-
tively. The energy difference between two bands is indicated
by the intensity plot on the top. (c) The trajectory of the
occupied eigenstate on S2

BS as the momentum changes along
a circle enclosing the BCP at Γ. A similar circular trajectory
with the opposite orientation can be found for the BCP at
K′. (d) The quantum metric g(φ), evaluated along a small
circle enclosing the BCP at Γ.

√
1− d2

max, and s = sign( t1t6t4 ) = +1 (−1) indicates the

counter-clockwise (clockwise) orientation of CBS. Note
that the apex angle is defined so that θmax is not greater
than π/2 as shown in Fig. 2(d). Hence, the Berry phase
is determined by dmax as

ΦB(CBZ) = 2sπ
√

1− d2
max (16)

modulo 2π. We note that the Berry phase around
a QBCP can take any value between 0 and 2π (mod
2π). Although vanishing Berry curvature guarantees
path-independent Berry phase, its value depends on the
Hamiltonian parameters. Also, the quantum metric or
the quantum distance is a more useful geometric quan-
tity than the Berry phase for describing BCPs because
the Berry phase cannot distinguish singular BCPs with
dmax = 1 and non-singular BCPs with dmax = 0. We
note that dmax of a QBCP becomes 0 or 1, which in-
dicates that the Berry phase is zero modulo 2π, when
space-time inversion symmetry exists [29].
Tight-binding model.— We construct a lattice model

displaying our result on a flat band with QBCP. This
model is defined on the honeycomb lattice including the
hoppings up to third nearest-neighbor sites [Fig. 3(a)].
The lattice Hamiltonian with C3 symmetry is given by

Hdouble(k) =

(
t2|g(k)|2 −tω∗(g(k))2

−tω(g∗(k))2 |g(k)|2
)
, (17)

where g(k) = e−
i
3 (k1+k2)(1 +ωeik1 +ω−1eik2), (k1, k2) =

(kx,
1
2kx +

√
3

2 ky), ω = e
2πi
3 , and t is a real parameter.
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flat band with a single QBCP. (a) The band structure of
Hsingle(k). A flat band has a QBCP at Γ. The energy differ-
ence between two bands is indicated by the intensity plot on
the top. (b) The trajectory of |ψflat(k)〉 on S2

BS as the momen-
tum changes along a circle enclosing the BCP at Γ. (c) The
Berry phase along the hexagonal closed loop C(L). Near the
BCP (L < L∗), ΦB [C(L)] '

√
2π in accordance with Eq. (16).

Because of non-zero Berry curvature, ΦB [C(L)] changes as L
increases. C(4π/3) corresponds to the BZ boundary, and the
relevant Berry phase (ΦB [C(4π/3)]) vanishes.

The relevant band structure exhibits two QBCPs at
Γ = (0, 0) and K ′ = ( 2π

3 ,−
2π√

3
), respectively, [see

Fig. 3(b)]. For the QBCP at Γ (K ′), we find CBS with

dmax = 2|t|
t2+1 ( 2|t|

t2+1 ) [see Fig. 3(c)], and ΦB = 2π t
2−1
t2+1

(−2π t
2−1
t2+1 ) satisfying Eq. (16). Hence, the Berry phase

can have an arbitrary value depending on t. We note that
the model has zero Berry curvature in the BZ except at
the BCPs, hence a single BCP at Γ with a nonzero Berry
phase must accompany another BCP at K ′ so that the
total Berry phase computed along the BZ boundary be-
comes 0 (mod 2π).

Meanwhile, a flat band can exhibit a single QBCP with
an arbitrary Berry phase when finite Berry curvature ex-
ists away from the BCP. To demonstrate this, we con-
struct a lattice model on the honeycomb lattice. Explic-
itly, the Hamiltonian is given by

Hsingle(k) =
1

4

(
|g2(k)|2 −g1(k)g∗2(k)

−g∗1(k)g2(k) |g1(k)|2
)
, (18)

where

g1(k) = e−
i
3 (k1+k2)

(
2− (1 + i)eik2 − (1− i)e−ik1+ik2

)
,

g2(k) = e−
i
3 (2k1−k2)

(
2− e−ik2 − eik1−ik2

)
. (19)

The band structure exhibits a single QBCP at Γ =
(0, 0) with dmax = 1/

√
2 [see Figs. 4(a)-(b)]. Since the

Berry curvature vanishes only near the BCP, the Berry

phase ΦB [C(L)], computed along the hexagonal closed
loop with edges of length L, is path-independent when
the path is close enough to BCP [see Fig. 4(c)]. In accor-

dance with dmax = 1/
√

2, ΦB [C(L)] converges to
√

2π as
L→ 0. We note that a single BCP can exist alone as the
non-zero Berry curvature makes the Berry phase along
the BZ boundary to vanish.

Discussion.— We have focused on BCP(s) in two-band
models. However, real materials always contain addi-
tional bands whose influence can be understood pertur-
batively. Namely, starting from the full band structure
where two bands form a BCP at k0, the effective Hamil-
tonian Heff(q) for the “crossing bands” near the BCP
at k0, where k = k0 + q, can be obtained following the
Löwdin perturbation theory [33]. Then the geometric
properties of Heff(q) can be analyzed using our theory as
shown in Supplemental Material [29].

Finally, we note that some lattice models exhibit multi-
fold degeneracies where more than two bands cross. For
example, recent studies of 3D and 4D multi-fold fermions
have shown that the quantum metric is closely related to
the Chern number or tensor monopole charge [34–38].
Understanding the quantum geometry of 2D multi-fold
degeneracies, using higher-dimensional Bloch spheres,
would be an important problem for future study.
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