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Abstract: This paper proposes a novel coordinated multi-agent deep reinforcement learning (MADRL)
algorithm for energy sharing among multiple unmanned aerial vehicles (UAVs) in order to conduct
big-data processing in a distributed manner. For realizing UAV-assisted aerial surveillance or flexible
mobile cellular services, robust wireless charging mechanisms are essential for delivering energy
sources from charging towers (i.e., charging infrastructure) to their associated UAVs for seamless
operations of autonomous UAVs in the sky. In order to actively and intelligently manage the energy
resources in charging towers, a MADRL-based coordinated energy management system is desired
and proposed for energy resource sharing among charging towers. When the required energy
for charging UAVs is not enough in charging towers, the energy purchase from utility company
(i.e., energy source provider in local energy market) is desired, which takes high costs. Therefore, the
main objective of our proposed coordinated MADRL-based energy sharing learning algorithm is
minimizing energy purchase from external utility companies to minimize system-operational costs.
Finally, our performance evaluation results verify that the proposed coordinated MADRL-based
algorithm achieves desired performance improvements.

Keywords: big-data processing; multi-agent deep reinforcement learning; deep learning; smart grid;
unmanned aerial vehicle (UAV)

1. Introduction

Modern technical advances in next-generation network and communication infras-
tructure enable reliable management and organization by utilizing mobile computing
platforms, e.g., autonomous unmanned aerial vehicles (UAVs) [1–13]. Even though au-
tonomous UAVs are considered major components in next-generation network design and
implementation, it has several research challenges [14,15]. Among the research challenges,
one of major problems is energy efficiency in power-hungry UAV platforms. Therefore,
energy-efficient algorithms are obviously and definitely desired in UAV-based mobile com-
munications and networks. In order to realize energy-aware reliable and robust UAV-based
network design and implementation, the active use of charging infrastructure, such as
charging towers with wireless power transfer technologies [16,17], is widely considered and
discussed [1,11]. According to the fact that the charging infrastructure (including charging
towers) are ground-mounted and AC-powered, the infrastructure gathers energy/power
sources without strict limitations. Furthermore, the charging towers can (i) share their own
energy resources in order to provide reliable and efficient energy resources among them or
(ii) purchase energy resources from their associated utility company (also known as external
local energy market) [18–22]. The dynamic active energy sharing sequential decision control
process is essentially required for this given problem because the energy/power prices
are determined based on auction-based economic theory in the local energy market [23].
Lastly, it is obvious that the charging towers are not only for energy distributors but also
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for intelligent dynamic energy sharing traders, using deep learning computation. Thus, it
it essential to use high-performance computing resources [24,25].

The proposed coordinated multi-agent deep reinforcement learning (DRL) (MADRL)-
based autonomous and intelligent energy sharing in order to minimize energy purchases
from the local energy market for minimizing/optimizing system-wide operational costs
works with two tasks, as follows:

• The proposed algorithm determines the amount of energy sources purchased, where
the corresponding prices can be dynamically updated depending on the energy-
consuming patterns and auction-based economy theory for a local energy market.
Note that the main objective of the proposed algorithm is to minimize this purchase
price, which is also called the system-wide operational cost.

• The proposed algorithm shares energy resources at charging towers via coordinated
MADRL-based cooperation among the charging towers.

For design and implementation of the proposed coordinated MADRL-based energy
resource sharing learning in this paper, the considered charging towers can be considered
MADRL agents and the agents collaboratively and coordinately work for autonomous
and intelligent energy resource sharing under situations of time-varying unexpected ob-
servations. Among various MADRL-based algorithms, the proposed MADRL algorithm
is designed fundamentally based on communications neural network (CommNet), which is
one of the well-known MADRL-based algorithms that obtains performance improvements
via multi-agent intelligence coordination [26]. Furthermore, this proposed coordinated
MADRL/CommNet-based algorithm is beneficial especially for big-data processing appli-
cations due to the fact that the processing requires a lot of computation resources within
power-and-computation limited UAV platforms [27,28]. Therefore, efficient, active, and
autonomous energy sharing mechanisms are essentially required for charging multi-UAV
platforms.

Therefore, the novelties and contributions of our proposed MADRL-based energy
resource sharing learning can be summarized and itemized as follows.

• Joint scheduling: The proposed scheduling in this paper is not only for the matching
between UAVs and charging towers but also for charging energy allocation decisions.

• DRL-based intelligent and autonomous energy management: The proposed algorithm can
dynamically and autonomously control energy sharing among charging towers based
on DRL-based algorithms.

• Multi-agent DRL computation: Lastly, the multi-agent nature in our proposed MADRL-
based algorithm is beneficial in terms of efficient and effective multiple charging-tower
energy-sharing coordination.

The reminder of this paper is organized as follows. Section 2 summarizes related and
previous work. Section 3 proposes a coordinated MADRL/CommNet-based energy source
sharing algorithm among charging towers to minimize operational costs via minimizing
energy purchases from the local energy market. Section 4 intensively evaluates the perfor-
mance of the proposed coordinated MADRL/CommNet-based energy resource sharing
algorithm via data-intensive simulations. Section 6 concludes this paper and provides
future research directions.

2. Related Work

Nowadays, many UAV energy-efficient algorithms have been proposed. Among them,
charging UAV devices via charging infrastructure that can be realized via wireless power
transfer technologies is of interest [1,13]. For charging, the proposed algorithm in [11] de-
signs an optimization framework for joint scheduling/matching UAVs and charging towers
(i.e., charging infrastructure) and charging allocations. However, the proposed algorithm
in [11] is not associated with charging tower coordination that is essentially required for
active energy management. In [26], the proposed algorithm considers intelligent charging
infrastructure coordination; however, scheduling is not considered because scheduling is
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not required for electric vehicle (EV) charging problems because every EV driver decides
where to go and the decision is independent from scheduling decisions. Furthermore,
in [29,30], novel optimization and control algorithms for microgrid systems are discussed.
However, the algorithms focus on infrastructure-level control; thus, UAV- and EV-related
discussions and algorithm designs are not studied. Moreover, artificial intelligence and
deep learning-based algorithms are not actively discussed; thus, the proposed algorithms
in [29,30] are not superior in terms of stochastic and autonomous decision making under
uncertainty. Therefore, to the best of our knowledge, our proposed algorithm is the first
attempt for joint design of scheduling and charging infrastructure coordination.

In reinforcement learning algorithms, the use of a Markov decision process (MDP) is
the simplest approach. Furthermore, mathematical analysis is also available under the con-
cepts of Markov chain and dynamic programming. However, its computational complexity
is huge, i.e., pseudo-polynomial; thus, it takes a lot of time to compute optimal solutions
if the sizes of states are huge in reinforcement learning formulation. Thus, deep neural
network based function approximation is used for reinforcement learning computation,
and this is called deep reinforcement learning (DRL). Among various DRL algorithms,
deep Q-network (DQN) is one of the most successful early-stage initial frameworks [31–33].
The DRL algorithms are extended from single-agent to multi-agent for cooperative and
coordinated computation, and this is called MADRL [34,35]. In MADRL, CommNet [13,26]
and the abstraction mechanism based on two-stage attention network (G2ANet) [36] are
famous. The CommNet trains the multi-agent behaviors in a single deep neural network,
and it assumes that all agents are homogeneous. On the other hand, in G2ANet, the
relationship among agents are represented as graphs when the edge costs stand for the
weights of correlation. Thus, the agents do not need to be homogeneous because the
relationship can be trained with this graph structure. Therefore, G2ANet is beneficial for
representing the sophisticated agent relationship, whereas it is computationally expensive
because the relation graph is trained using two-stage attention models (i.e., hard attention
and scale-dot attention). In considering our charging infrastructure coordination, we do
not need to consider computationally expensive G2ANet because it is trivial to assume
that all charging towers are equivalent. Therefore, a CommNet-based MADRL algorithm
is used for our intelligent and autonomous learning computation.

3. Coordinated MADRL/CommNet-Based Energy Resource Sharing Learning

Our considered reference system model is explained in Section 3.1, and then, our
considered scheduling algorithm for matching between charging towers and UAVs is
presented in Section 3.2. Lastly, the proposed coordinated MADRL/CommNet-based
energy resource sharing algorithm is introduced in Section 3.3.

3.1. System Model

In order to optimize and compute CommNet/MADRL-based energy resource sharing
learning for charging towers, centralized computing (i.e., a cloud computing platform) is
required in this paper. In the cloud, a deep learning neural architecture exists that opti-
mizes and computes our proposed coordinated CommNet/MADRL-based energy resource
sharing learning. Our cloud autonomously manages its own charging towers, where each
charging tower has an energy storage for storing energy resources. Furthermore, the energy
resources can be shared among charging towers if needed via CommNet/MADRL-based
energy resource sharing learning mechanisms. If the shared energy resources are not
enough to support charging UAVs, energy sources should be purchased from the local
energy market (i.e., a utility company). The local energy market trades the energy based
on the requests of charging towers in real-time.

3.2. Scheduling

The motivation of the scheduler design in our given problem is for efficiently and
effectively providing energy/power resources from charging towers to their associated
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UAVs via wireless power transfer technologies. Therefore, the scheduler should be able to
determine a match between charging towers and UAVs. After that, the scheduler deter-
mines how much energy should be delivered from each charging tower to its associated
UAV.

Thus, we can easily observe that this given scheduling problem is for the joint opti-
mization for both of scheduling and energy resource allocation. Thus, it introduces the
cases where two decision variables are multiplied [11].

3.3. Coordinated CommNet/MADRL-Based Energy Resource Sharing Learning

In order to design and implement MADRL-based algorithms for our given problem,
we first have to identify that the problem cannot be formulated with single-agent deep
reinforcement learning algorithms such as deep Q-network, as shown in Section 3.3.1. After
that, our considering MADRL-algorithm, i.e., CommNet, is introduced to be used in our
proposed coordinated MADRL-based energy resource sharing algorithm in Section 3.3.2.

3.3.1. Deep Q-Network and Its Limitation

In general MADRL problem formulations, states are formulated as matrices where the
sizes is A-by-B, where A and B are the number of agents and the number of state variables,
respectively. Assume that the states of agents can be denoted by S ,

{
s1, · · · , sZ}. The

state S in the policy πθ returns action-value functions. The actions of individual agents are
stochastically determined by following action-value functions [13],

Q(s, a; θ) =
{

max
a

Q(s1, a1; θ), · · · , max
a

Q(sZ, aZ; θ)
}

. (1)

Because dense layer computation in deep learning training occurs for each row in
the state matrix, the actions of individual agents occur independent from the states of the
other agents. Thus, Q(sz, az; θ) in (1) is associated with a policy πθ , and it is independent
from the states of the other agents. Therefore, cooperative and coordinated actions among
the individual agents cannot be expected with this deep Q-network-based deep learning
neural architecture [31–33].

3.3.2. Cooperative Policy (CommNet)

In order to overcome the given problem in previous Section 3.3.1, each agent in Comm-
Net gathers the states of the other agents s−j to realize coordinated MADRL mechanisms.
Here, the other agents can be represented as follows:

s−j ,
{

s1, · · · , sj−1, sj+1, · · · , sJ
}

. (2)

For ∀i and ∀j, the hidden variable hi,j, which is the parameter of the ith hidden
layer, gathers other hidden variables hi,−j and, then, hi,−j takes the mean operation. The
computational process for NADRL/CommNet-based agents is represented as follows:

hi+1,j , g
(

hi,j, ci,j
)

, (3)

ci,j ,
| hi,−j |

J − 1
, (4)

where g(·) and ci,j mean an activation function and the communication variable of jth
agent, respectively. The considered individual agents can receive average messages among
them via this communication neural architecture. Notice that

s−j ,
⋃
j′ 6=j

{
sj′
}

, (5)

hi,−j ,
⋃
j′ 6=j

{
hi,j′
}

, (6)
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where i and j are the orders of the neural layer and the agent, respectively. Figure 1 presents
the neural-architectural comparison between deep Q-network and CommNet. As shown
in Figure 1, the actions from the deep Q-network-based policy are independent from other
agents; therefore, coordinated actions cannot be realized. On the other hand, the actions
from this MADRL/CommNet-based policy are dependent on them because they share a
single deep-learning neural architecture, and thus, coordinated and cooperative MADRL
actions can be realized and obtained. Therefore, this MADRL/CommNet-based policy has
only one policy, but it is possible to create a system that coordinates and cooperates while
sharing learning information among them. The input and output of the deep learning
neural architecture for performing training optimization in MADRL/CommNet-based
energy resource sharing learning computation are the states (charging tower energy status
values) and actions (charging decision values), respectively [26].
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Figure 1. The comparison of deep Q-network and CommNet architectures in terms of the communi-
cations among individual agents.

4. Performance Evaluation

This section consists of the performance evaluation setting and setup (refer to Section 4.1)
and the corresponding results (refer to Section 4.2).

4.1. Evaluation Setup

This section presents the basic setup for evaluation of the proposed coordinated
MADRL/CommNet-based energy resource sharing learning in multi-UAV networking
systems.

For the network simulation setup in performance evaluation, the movement coverage
values of individual UAVs are set to 10× 10 and the entire simulation topology is defined
as an urban Manhattan grid 4390× 2500. In addition, the number of UAVs and charging
towers are |U | = 30 and |C| = 4, respectively, where U and C are defined as the sets of UAVs
and charging towers. The other simulation-based performance evaluation parameters and
settings are presented in Table 1.

Table 1. Simulation-based performance evaluation parameters.

Parameters Value

The number of UAVs 30
The number of charging towers 4
Maximum energy generation of PV 17.7 W
Energy capacity of charging towers 500 Wh
State of charge ranges Min: 25%, Max: 50%
Available energy of ESS 125 Wh
ε-greedy parameter, ε 1
ε decay, γ 10−4

Wasted energy reward parameter, σw 200
Purchased energy reward parameter, σp 4000
Shared energy reward parameter, σs 27
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This simulation-based performance evaluation is conducted while comparing the per-
formances of following two methods with our proposed coordinated MADRL/CommNet-
based energy resource sharing algorithm (denoted as Proposed in this paper).

• Our proposed coordinated MADRL/CommNet-based energy resource sharing with-
out efficient and effective scheduling is considered one possible candidate for com-
parison. Our considered scheduling algorithm is introduced in Section 3.2, but this is
excluded for performance comparison. Note that this algorithm is denoted as Random
Scheduling in this paper.

• For the second algorithm, in order to conduct performance comparison, we consider
the algorithm with efficient and effective scheduling in Section 3.2 but without coordi-
nated MADRL/CommNet-based energy resource sharing. Note that this algorithm is
denoted as Random Sharing in this paper.

As discussed in Section 2, the joint scheduling and DRL-based coordinated energy
sharing in a charging infrastructure is not studied. Therefore, comparing our proposed
algorithm with random scheduling and random sharing algorithms is considered in this
performance evaluation.

Our simulation software is implemented with Python 3.6.5 over the Ubuntu
18.04 LTS operating system machine. For scheduler implementation, well-known op-
timization tools, i.e., CVXPY 1.1 and MOSEK 9, are used [37,38]. In addition, our pro-
posed MADRL-based algorithm is implemented with tensorflow-gpu 1.5.0. For the
MADRL/CommNet algorithm implementation, the two-layer neural network architecture
of energy resource sharing is configured as follows. It includes 6 hidden layers, where the
number of units in the first three layers (layer 1, layer 2, and layer 3) is 512 for each and the
remainder (layer 4, layer 5, and layer 6) has 1024 units for each. The hyperbolic-tangent
(denoted as tanh) and rectified linear unit (denoted as ReLU) functions are considered
activation functions for the first three and reminder layers, respectively. Moreover, a Xavier
initializer is used for weight initialization; andan Adam optimizer is used for parameter
learning optimization. During the neural network training procedure, an ε-greedy method
is used to make the charging tower agents explore a variety of actions.

Figure 2 presents the photovoltaic (PV) power generation distribution in each charging
tower over time. The individual charging towers have their own PV power generation
distribution because they have their own individual PV power generation capacities,
locations, solar radiation quantities, and so forth. The loads of charging towers are defined
as the numbers of UAVs determined to be charged by the towers (determined as explained
in Section 3.2), and the numerical values and their fluctuations are illustrated in Figure 2.
Lastly, the power/energy prices from the local energy market can be presented as a
probabilistic distribution depending on time-of-use (ToU) at each unit time.
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Figure 2. Photovoltaic power generation distributions in individual charging towers.
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4.2. Evaluation Results

This section presents the simulation-based performance evaluation results for our
proposed coordinated MADRL/CommNet-based algorithm (i.e., Proposed) compared with
two algorithms, i.e., Random Scheduling and Random Sharing. This simulation-based evalua-
tion is performed in terms of scheduling (refer to Section 4.2.1) and energy sharing (refer
to Section 4.2.2). Lastly, the summary of this simulation-based performance evaluation is
presented in Section 4.2.3.

4.2.1. Scheduling

Our proposed scheduling in Section 3.2 is designed for energy resource balancing
among charging towers. Thus, the performance evaluation is conducted in this perspective.
Figure 3a,b show the remaining battery/energy capacities distribution in UAVs. The
initial batteries/energies of UAVs are uniformly randomly selected in [5283, 5870]mAh. As
presented in Figure 3, the Proposed algorithm is superior to the Random Scheduling algorithm
because Figure 3a shows better energy-aware behaviors. Moreover, as presented in Table 2,
the average and variance of residual battery/energy amounts in UAVs are summarized
for both Proposed and Random Scheduling. In Table 2, we can confirm that the Proposed
algorithm takes higher average values of residual energies over the entire time period. The
reason for this is that the number of charged UAVs with the Proposed algorithm is higher
than the number of charged UAVs with the Random Scheduling algorithm. Furthermore, it
can be also observed that the standard deviation of the Proposed algorithm is smaller. This
means that the Proposed algorithm is able to provide charging services under consideration
of energy charging load-balancing and fairness.

Table 2. Residual battery/energy amounts of unmanned aerial vehicles (UAVs) (unit: percentage)
for both of the Proposed algorithm and the Random Scheduling algorithm, where µ and σ stand for
the average and variance of UAV battery/energy remains.

Proposed Random
Scheduling

t [min] µ σ µ σ

0 min–5 min 90.1% 0.2 89.9% 0.2
6 min–10 min 79.8% 0.3 78.2% 0.2

11 min–15 min 71.1% 0.9 68.1% 0.3
16 min–20 min 63.0% 1.5 58.9% 1.0
21 min–25 min 57.3% 1.9 50.4% 2.1
26 min–30 min 51.2% 2.7 42.2% 2.9
31 min–35 min 41.9% 3.2 36.5% 3.6
36 min–40 min 32.0% 2.7 31.1% 4.5

(a) Proposed. (b) Random Scheduling.

Figure 3. UAV residual battery/energy distribution comparison between (a) the Proposed algorithm
and (b) Random Scheduling algorithm.
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Figure 4a,b are the energy consumption (also called loads) in the charging towers when
the Proposed algorithm and the Random Scheduling algorithm are utilized. In Figure 4c, the
distributions of differences in terms of energy consumption (or loads) between the Proposed
algorithm and the Random Scheduling algorithm are presented. As observed in Figure 4c,
relatively fair energy consumption over time can be achieved with the Proposed algorithm
compared to the energy consumption over time with the Random Scheduling algorithm.

As shown in Figure 5a,b, for the Proposed algorithm and the Random Scheduling
algorithm, the purchased energy from local energy market in Figure 5a is obviously smaller
than that of Figure 5b because of the novelty of the Proposed algorithm. This means that
our proposed scheduling is efficient in terms of energy consumption load-balancing among
charging towers.
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Figure 4. Energy consumption (load) in each charging tower with (a) the Proposed algorithm,
(b) the Random Scheduling algorithm, and (c) comparison of the total amount between the Proposed
algorithm and the Random Scheduling algorithm.
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(b) Random Scheduling.
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(c) Random Sharing.

Figure 5. Purchased energy from a local energy market utility company with (a) the Proposed
algorithm, (b) the Random Scheduling algorithm, and (c) the Random Sharing algorithm.

The surplus energy stands for the energy that overflowed due to unnecessarily energy
purchases from the local energy market. As presented in Figure 6a,b, the amounts of surplus
energies in the Proposed algorithm and the Random Scheduling algorithm are numerically
simulated. The simulation results in terms of surplus energy show that the amount in
Figure 6a is smaller than that of Figure 6b because our Proposed algorithm outperforms
the other. The amounts of surplus energy in the Proposed algorithm is smaller because the
corresponding loads in Figure 4 are bigger.
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Figure 6. Surplus energy with (a) the Proposed algorithm, (b) the Random Scheduling algorithm, and
(c) the Random Sharing algorithm.

In our consideed charging systems for UAV networks, facilitating energy resource
sharing among charging towers is obviously beneficial in terms of the minimization of
energy purchase from the local energy market because sharing can increase the possibility
of energy provisioning in charging towers that do not have sufficient energy resources. As
shown in Figure 7a,b, the Proposed algorithm has relatively larger energy sharing among
charging towers, whereas the Random Scheduling algorithm leads to dramatically less
sharing during the last simulation runs. The reason for this is that the energy sharing
with the Random Scheduling algorithm becomes exhausted due to the failure of energy
consumption load-balancing.
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Figure 7. Shared energy among charging towers with (a) the Proposed algorithm, (b) the Random
Scheduling algorithm, and (c) the Random Sharing algorithm.

4.2.2. Learning-BASED Energy Sharing

The performance of coordinated MADRL/CommNet-based energy resource shar-
ing learning was evaluated. As presented in Figure 5a,c, our Proposed algorithm has
much less energy purchase from the local energy market because the reward of the
MADRL/CommNet-based method in this paper is negative for energy purchase. There-
fore, the Proposed algorithm minimizes energy purchase costs (which is strongly related
to system-wide operational costs). Figure 6a,c show the distributions of surplus energies
(set to negative reward in our MADRL/CommNet). As shown in Figure 7a compared to
Figure 7c, the Proposed algorithm presents more frequent energy resource sharing because
it maximizes positive reward in our proposed MADRL/CommNet. As shown in Figure 7c,
the average amount of shared energy with the Proposed algorithm is larger than the amount
with the Random Sharing algorithm.

4.2.3. Summary

As clearly stated in our simulation-based performance evaluation results, it has been
verified that the Proposed algorithm is efficient in terms of energy consumption load-
balancing among charging towers. As presented in Figure 8a, convergence of the total
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reward of our proposed MADRL/CommNet verifies that the Proposed algorithm outper-
forms the other methods; thus, intelligent and efficient energy management and control
can be realized. Our Proposed algorithm eventually converges to positive optimal rewards,
whereas the other two comparing algorithms, i.e., Random Scheduling algorithm and Ran-
dom Sharing algorithm, converges to negative values, as shown in Figure 8a. Furthermore,
the values in Figure 8b,c of our Proposed algorithm are lower than the others because
they present negative reward values, i.e., purchased energy and surplus energy. Similarly,
values in Figure 8d of our Proposed algorithm is the highest in general, because it shows
positive reward (i.e., shared energy).

Finally, we can confirm that our proposed coordinated MADRL/CommNet-based en-
ergy resource sharing learning achieves desired performance improvements by optimizing
its own reward function that depends on purchased energy (negative reward), surplus
energy (negative reward), and shared energy (positive reward), as also verified based on
the performance evaluation data in Table 3.
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Figure 8. Various reward value distributions in terms of (a) total reward, (b) purchased energy,
(c) surplus energy, and (d) shared energy, respectively, while comparing the Proposed algorithm, the
Random Scheduling algorithm, and the Random Sharing algorithm.

Table 3. The list of each obtained reward value and load of charging towers.

Parameters Proposed Random
Scheduling

Random
Sharing

Load of charging tower (Wh) 360.8 360.8 360.8

Reward of purchased energy (negative) 137.9 475.4 472.8

Reward of surplus energy (negative) 180.5 449.9 498.9

Reward of shared energy (positive) 18,547.3 15,620.9 12,210.8

5. Applications in Big-Data Processing Platforms

Our considered multi-UAV networks can be widely used for many applications.
Furthermore, the proposed coordinated charging system and its related intelligent and
autonomous algorithms are also definitely useful.
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Especially, multiple UAV devices are able to gather extremely large-scale surveillance
and cellular network big-data [39–41]. For surveillance, multiple UAV devices can be
utilized for monitoring extreme harsh areas and then for gathering security big-data from
extreme areas such as dense forests and seaside coasts where network infrastructure cannot
be established. Furthermore, the proposed coordinated algorithm can be also used for
extending network coverage because individual UAVs are able to work as mobile base
stations. Then, each UAV can gather big-data information such as massive user association
and large-scale traffic patterns.

The mentioned surveillance and mobile cellular networks data are generated in real-
time and the amounts are quite large. Thus, corresponding big-data processing algorithms
are essentially required and it is obvious that the algorithms are generally computationally
expensive and thus requires large amounts of energy resources. Therefore, design and
implementation of energy-aware algorithms in UAVs as well as charging infrastructure
such as charging towers are desired.

6. Concluding Remarks and Future Work

According to the autonomous and flexible characteristics of UAV networks, they are
widely and actively used for next-generation mobile network design and implementation.
The utilization of autonomous UAV systems can realize high-mobility aerial surveillance
and mobile wireless cellular network base station deployment; therefore, large-scale flexible
big-data processing where the data were gathered via multiple UAVs can be consequen-
tially achieved. In order to facilitate the use of power-hungry UAVs for big-data computing
applications, active and efficient energy-aware charging mechanisms for autonomous
UAVs are required via wireless power transfer technologies. Therefore, the use of charging
towers is required. In this system, we propose joint scheduling and coordinated energy
sharing algorithm for energy-aware system management. For scheduling, the match-
ing/scheduling between UAVs and charging towers is considered along with the optimal
decision for energy/power source allocation amounts. In addition, fFor minimizing the
operational costs in our considering systems, the energy stored in individual charging
towers should be shared among charging towers in order to minimize energy purchase
from the local energy market. Therefore, our proposed energy resource sharing learn-
ing algorithm minimizes operational costs by coordinating MADRL/CommNet-based
intelligent cooperation among charging towers. This type of MADRL-based algorithm is
beneficial because it realizes stochastic and autonomous decision making under uncertainty.
Lastly, our simulation-based performance evaluation results verify that the proposed joint
scheduling and coordinated MADRL/CommNet-based energy resource sharing algorithm
achieves desired performance improvements.

As potential future work directions, we can consider safe deep reinforcement learning-
related design and implementation, which is useful to consider safe, robust, and privacy-
aware operations in UAV charging scheduling control and optimization. Furthermore,
larges-scale data-intensive simulations are also valuable for more deep-dive discussions in
terms of performance evaluation.
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