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Deep learning algorithms 
for detecting and visualising 
intussusception on plain 
abdominal radiography in children: 
a retrospective multicenter study
Gitaek Kwon1,8, Jongbin Ryu2,8, Jaehoon Oh3,4*, Jongwoo Lim1,4*, Bo‑kyeong Kang4,5, 
Chiwon Ahn6, Junwon Bae3 & Dong Keon Lee7

This study aimed to verify a deep convolutional neural network (CNN) algorithm to detect 
intussusception in children using a human‑annotated data set of plain abdominal X‑rays from affected 
children. From January 2005 to August 2019, 1449 images were collected from plain abdominal X‑rays 
of patients ≤ 6 years old who were diagnosed with intussusception while 9935 images were collected 
from patients without intussusception from three tertiary academic hospitals (A, B, and C data sets). 
Single Shot MultiBox Detector and ResNet were used for abdominal detection and intussusception 
classification, respectively. The diagnostic performance of the algorithm was analysed using internal 
and external validation tests. The internal test values after training with two hospital data sets were 
0.946 to 0.971 for the area under the receiver operating characteristic curve (AUC), 0.927 to 0.952 
for the highest accuracy, and 0.764 to 0.848 for the highest Youden index. The values from external 
test using the remaining data set were all lower (P‑value < 0.001). The mean values of the internal 
test with all data sets were 0.935 and 0.743 for the AUC and Youden Index, respectively. Detection of 
intussusception by deep CNN and plain abdominal X‑rays could aid in screening for intussusception in 
children.

Abbreviations
CNN  Convolution neural network
AUC   Area under the receiver operating characteristic curve
ROC curve  Receiver operating characteristic curve
DICOM  Digital imaging and communication in medicine
PACS  Picture archiving and communication system
SSD  Single shot multibox detector
ROI  Regions of interest
SGD  Stochastic gradient descent
CAD  Computer-aided diagnosis
CAMs  Class activation map
IQR  Interquartile ranges
SD  Standard deviation
CI  Confidence interval
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Intussusception is an acquired invagination of the proximal segment of the intestine into the distal segment and 
is the most common cause of intestinal obstruction among children aged 3 to 36 months  old1–3. This disease is 
a relatively common cause of emergency room visits in children. Rapid diagnosis and treatment with air enema 
within 24 h from the onset can alleviate symptoms in approximately 84% of patients; however, prolonged cases 
can develop ischaemia, necrosis, and  perforation4,5.

There are several imaging studies available for diagnosing intussusception. Hydrostatic or pneumatic enemas 
were considered the gold standards for both diagnosing and treating  intussusception6. However, these are invasive 
radiologic procedures that must be performed by radiologists and are not always readily  available7. Conversely, 
ultrasonography has been proven to be a reliable first-line diagnostic modality for patients suspected to have 
 intussusception8–10. However, the utility of this procedure is affected by the skill of the operator and variations in 
equipment—the availability of which may be limited in certain areas. Plain abdominal radiography is inexpensive 
and is commonly used as a first-line screening test for intussusception in patients with gastrointestinal signs 
and  symptoms11,12. Despite its low sensitivity (< 50%) and poor rate of inter-observer agreement in diagnosing 
intussusception, it remains an important diagnostic modality and has long been used to screen for other diseases 
such as constipation, ileus, and peritoneal  air6,12,13.

Deep convolutional neural networks (CNN) are used for widespread image detection and classification and 
have been utilised in the fields of radiology and medical image  analysis14–17. An automated method for screen-
ing plain abdominal radiographs and prioritising positive images for rapid review and diagnosis may mini-
mise possible delays in diagnosing intussusception and reduce the incidence of misdiagnoses; this is especially 
important in medical environments, such as primary care institutions, where there is little or no knowledge of 
intussusception during emergency situations. Deep CNN models (1) require large and well-curated training 
data sets that contain significant visual heterogeneity, (2) must be tested through external validation, and (3) 
must undergo optimisation of equipment and settings to ensure high accuracy and performance in various 
clinical  environments17. There are no previous studies on the availability and external validity of deep learning 
in diagnosing intussusception using large data sets of plain abdominal radiographs. This study aimed to create a 
human-annotated data set of plain abdominal X-rays of children with intussusception for internal and external 
validation, and to verify a possibility of deep CNN to detect intussusception with this set.

Results
A total of 11,384 images consisting of 1449 positive images and 9935 negative images were collected (Fig. 1). The 
baseline characteristics of participants who provided these images are shown in Table 1. Significant differences 
between the two groups (positive and negative image groups) were observed regarding age and sex in the sets 
gathered from hospitals B and C but not from the set provided by hospital A.

Phase 1: Training evaluation and internal validation tests using two data sets and external 
validation tests using the excluded data set. The diagnostic performance matrix of the internal and 

Figure 1.  Flow chart of data collection and analysis. ED, emergency department.
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external validation tests, including the optimal cut-off values, are shown in Table 2. The values of the internal 
validation test after training with data sets A + B, B + C, and C + A were: 0.966 (0.955, 0.975), 0.971 (0.959, 0.980), 
and 0.946 (0.926, 0.961), respectively, for the AUC (95% CI); 0.952, 0.943, and 0.927, respectively, for the highest 
accuracy; and 0.818, 0.848, and 0.764, respectively, for the highest Youden index. The values of the external vali-
dation test using the excluded sets (external validation of set C as the counterpart of the internal validation test 
using sets A + B, etc.) were: 0.811 (0.784, 0.835), 0.895 (0.874, 0.913), and 0.844 (0.828, 0.858), respectively, for 
AUC; and 0.421, 0.431, and 0.493, respectively, for the Youden indices. All values had a P-value < 0.001 (Table 3, 
Fig. 2).

Phase 2: Internal validation test using all data sets. The results of the internal validation tests are 
summarised in Table 4. The mean values (95% CI) gathered from the internal validation tests were 0.935 (0.928, 
0.941) and 0.743 (0.722, 0.763) for the AUC and the highest Youden index, respectively. The mean values for 
sensitivity and specificity were 0.816 (0.789, 0.842) and 0.925 (0.893, 0.957), respectively, in the highest Youden 
index. (Table 4, Fig. 2).

We visualised the feature maps of images from the second internal validation test where intussusception 
was detected with the highest Youden index (0.731). From the visualisation of 292 images, the correct area was 

Table 1.  Baseline characteristics of participants who provided images for the data sets. Continuous variables 
are presented by mean [standard deviation] and categorical variables are presented by N (%), p < 0.05. The 
independent t-test or the Kruskal–Wallis test were used to compare positive and negative groups according to 
normality. Categorical variables were presented as numbers and percentages and analysed using a chi-squared 
test. *P-values < 0.05 were considered statistically significant.

Positive images Negative images P-value

Set A (n = 3843)

Images, n 318 3525

Participants, n 161 1760

Age, months, mean [s.d.] 21.8 [12.0] 24.0 [17.6] 0.12

Sex, male, n (%) 101 (62.7) 1207 (68.6) 0.13

Set B (n = 5926)

Images, n 716 5210

Participants, n 361 2615

Age, months, mean [s.d.] 22.2 [17.9] 32.8 [17.9]  < 0.001*

Sex, male 228 (63.2) 1461 (55.9) 0.01*

Set C (n = 1615)

Images, n 415 1200

Participants, n 208 602

Age, months, mean [s.d.] 20.9 [16.8] 31.1 [23.8]  < 0.001*

Sex, male 136 (65.4) 305 (50.7)  < 0.001*

All (n = 11,384)

Images, n 1449 9935

Participants, n 730 4977

Age, months, mean [s.d.] 21.7 [15.8] 29.5 [19.3]  < 0.001*

Sex, male 465 (63.7) 2973 (59.7) 0.04*

Table 2.  Diagnostic performance matrix of the internal and external validation tests with optimal cut-off 
values (Phase 1). The optimal cut-off value was estimated based on the highest Youden index in the internal 
validation tests. (A) External validation test with set C set after training and internal validation test with sets 
A + B, (B) External validation with set A after training and internal validation with sets B + C, (C) External 
validation with set B after training and internal validation with sets C + A set. Positive; intussusception, 
Negative; no intussusception. Youden Index is the Sensitivity + Specificity − 1.

(A) Positive Negative (B) Positive Negative (C) Positive Negative

Internal valida-
tion

Predicted 
positive 188 166 Predicted 

positive 214 122 Predicted 
positive 136 141

Predicted 
negative 18 1581 Predicted 

negative 13 1161 Predicted 
negative 13 805

External valida-
tion

Predicted 
positive 329 446 Predicted 

positive 301 1817 Predicted 
positive 466 822

Predicted 
negative 86 754 Predicted 

negative 17 1708 Predicted 
negative 250 4388
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chosen by the network in 255 cases, which indicates that the network has learned how to detect and classify 
intussusception. True positive images are shown in Fig. 3.

Discussion
The classic triad of intussusception—red currant jelly stools, colicky abdominal pain, and vomiting—was seen 
in less than 40% of the children in this study; these nonspecific signs and symptoms make the diagnosis of 
intussusception challenging and force clinicians to rely only on the patient’s history and physical examination 
 findings18–20. Point-of-care ultrasound, when performed by an emergency medicine physician, has a high diag-
nostic accuracy for intussusception, with sensitivity and specificity values of 0.94 and 0.98, respectively; these 
results are similar to those of radiologist-performed  ultrasounds21. Ultrasound is easy for other physicians—even 
novice ones—to perform, and it allows minimisation of radiation exposure for the patient. However, because the 
mean annual intussusception incidence rate is approximately 30 per 100,000 live births in the first 3 year of  life3, 
using ultrasound as a screening exam to rule out intussusception in all children who present with nonspecific 
signs and symptoms is difficult.

In a study on the use of risk stratification in evaluating intussusception in children, it was found that abdomi-
nal radiography could be used as the initial diagnostic modality to identify children at risk with sensitivity and 
specificity values of 0.77 and 0.79,  respectively22. However, these radiographs were interpreted by paediatric 
radiologists using predefined criteria such as small bowel obstruction, target or crescent signs, and findings con-
sistent with ileocolic intussusception. Kim et al. reported that drawing rectangular ROI indicators on abdominal 
radiographs could allow deep learning-based algorithms to aid in screening for right upper quadrant ileocolic 
intussusception in young patients. According to a 75-image internal validation test, the sensitivity and specificity 
values of their algorithm were 0.76 and 0.96, respectively, which are better than those of a radiologist who was 
found to have sensitivity and specificity values of 0.56 and 0.92,  respectively23. In our study, we drew a rectangular 
ROI that encompassed the entire abdomen; the ranges of the sensitivity and specificity values after conducting 
training and internal tests using two data sets were 0.913–0.943 and 0.851–0.905, respectively. In a study on the 
use of deep learning for diagnosing small bowel obstruction using plain abdominal radiography, the detection 
accuracy was found to significantly improve with the number of positive training radiographs  used24. We believe 
that our algorithm, which used a large volume of data, improved the outcomes of using deep learning to detect 
intussusception. The application of this deep learning-based algorithm as a screening tool in the hospitals that 
provided the data sets used can decrease the unnecessary use of abdominal ultrasonography.

The AUC and Youden index values from all three external validations that were performed were found to be 
lower by approximately 0.15 and 0.4, respectively, than the values from the internal test. Possible explanations for 
these findings include differences in data volume, variations in the proportion of positive and negative images, 
and differences in the quality of each data set. However, the sensitivity of the external validation test was higher 
by at least 0.65; this indicates that the completed model, which was trained using two hospital data sets, can be 
transferred to other hospitals and used as a screening tool for diagnosing intussusception. In internal validation 
tests with fivefold cross-checking and training with all sets, all values of the Youden index, including sensitivity 
and specificity, were higher than values from the external validation tests with other set after the training and 
internal validation with two sets. To optimise performance in specific environments, hospitals that will use the 
model must train it using their own positive and negative images. In our study used CAM for visualisation, we 
showed which part of the plain abdominal X-rays the model focused on.

There are several limitations to this study. First, we did not compare the performance of our model against that 
of physicians with respect to key factors such as clinical outcomes, the time required to arrive at a diagnosis, and 

Table 3.  Outcomes of the internal validation test after the training with two data sets and of the external 
validation test using the excluded data set (Phase 1). (A) External validation with set C after training and 
internal validation with sets A + B, (B) External validation with set A after training and internal validation with 
sets B + C, (C) External validation with set B after training and internal validation with sets C + A, (D) Internal 
validation after training with sets A + B + C. Positive, with intussusception; negative, without intussusception. 
AUC, area under the receiver operating characteristic curve (ROC). Accuracy, the fraction of the correct 
predictions over the total number of predictions. The Youden index, sensitivity + specificity – 1—that is, the 
vertical distance between the 45° line and the point on the ROC curve. In the external validation tests, we 
selected the optimal cut-off value based on the highest Youden index value in the internal validation tests. 
CI, confidence interval. Sen, sensitivity. Spe, specificity. *P-values < 0.05 indicate a statistically significant 
difference.

Training and internal validation test External validation test P-value of 
difference 
between two 
validation 
(95% CI)Data set AUC 

Highest 
accuracy

Highest 
Youden index Sen Spe

Optimal cut-
off value Data set AUC Youden index Sen Spe

(A) A + B 0.966 (0.955, 
0.975) 0.952 0.818 0.913 0.905 0.02 C 0.811 (0.784, 

0.835) 0.421 0.793 0.628  < 0.001* 
(0.128, 0.183)

(B) B + C 0.971 (0.959, 
0.980) 0.943 0.848 0.943 0.905 0.06 A 0.895 (0.874, 

0.913) 0.431 0.947 0.485  < 0.001* 
(0.059, 0.102)

(C) C + A 0.946 (0.926, 
0.961) 0.927 0.764 0.913 0.851 0.01 B 0.844 (0.828, 

0.858) 0.493 0.651 0.842  < 0.001* 
(0.080, 0.125)
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the equipment needed to use the model as a screening tool. Second, we did not annotate the actual location of 
intussusception on the X-ray images. Thus, we trained deep CNN under weak supervision using only the exist-
ence of intussusception. Better performance can be expected with full supervision and coordinated information 
regarding the location of the intussusception. Third, there was a difference in resolution between the medical 
images and the input images of the deep CNN. The resolution of extracted medical images in our data set was 
approximately 3000 × 4000, while the resolution of input images for our model was only 224 × 224. Therefore, 
it is possible for information loss to occur when attempting to detect intussusception since the medical images 
were downsampled. However, if the image size is too large, both the number of computations and the size of 
the memory consumed increase exponentially; this might render the operation too slow or even impossible to 
perform. Therefore, further studies that minimise information loss by appropriate resizing of images or selection 

Figure 2.  Receiver operating characteristic (ROC) curves of internal and external validation tests in Phase 
1 and 2 experiments. (A) External validation with set C after training and internal validation with sets A + B, 
(B) External validation with set A after training and internal validation with sets B + C, (C) External validation 
with set B after training and internal validation with sets C + A, (D) Internal validation after training with sets 
A + B + C.
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Table 4.  Outcomes on the internal validation test after training with all data sets (Phase 2). AUC, area under 
the receiver operating characteristic curve (ROC). The Youden index, the sensitivity + specificity – 1—that is, 
the vertical distance between the 45° line and the point on the ROC curve. In the internal validation tests, after 
training with all data sets, we selected the outcome values based on the highest Youden index. CI, confidence 
interval. Sen, sensitivity. Spe, specificity.

Test

Outcomes

AUC (95% CI)Highest Youden index Sen Spe

1st 0.737 0.816 0.921 0.936 (0.918–0.950)

2nd 0.731 0.784 0.936 0.946 (0.931–0.958

3rd 0.760 0.817 0.943 0.949 (0.934–0.961)

4th 0.726 0.844 0.882 0.922 (0.904–0.937)

5th 0.760 0.817 0.943 0.949 (0.934–0.960)

Mean (95% CI) 0.743 (0.722–0.763) 0.816 (0.789–0.842) 0.925 (0.893–0.957) 0.935 (0.928–0.941)

Figure 3.  Class activation map (CAM) for images which were true positive in the 2nd internal validation 
test using all data sets. The images in the odd row are the original images while those in the even row are 
images with CAM applied. Unidentified areas was highlighted by CAM in images from the 6th row, whereas it 
highlighted the correct areas in the 2nd and 4th rows.
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of only the ROI are needed. Fourth, differences of age and sex between negative and positive group could make 
other information including body shape and bone growth in images and influence the training and detection 
of intussusception with deep CNN. Fifth, we stored the images with 8-bit JPEG gray scale format. This process 
could cause degradation of the data, since the image intensity levels and contrast for details are reduced and 
removed. Finally, although the ratios of training datasets were equally assigned for positive and negative cases 
by mini-batch training, the imbalanced testing dataset would decrease reliability of testing results.

In conclusion, we verified a possibility of a deep CNN algorithm that consists of abdominal detection and 
intussusception classification networks using plain abdominal X-rays to help physicians screen for intussus-
ception. This algorithm can be trained by hospitals that can provide images before being transferred to other 
hospitals and used to screen for intussusception in children.

Methods
Study design. We conducted a retrospective study at three tertiary academic hospitals (Seoul and Gyeo-
nggi-Do, Republic of Korea) between October 2019 and January 2020 to evaluate the role of deep learning in 
diagnosing intussusception using plain abdominal X-rays. This study was approved by the Institutional Review 
Board (IRB) of Hanyang University Hospital (ref. no. HYUH 2019-06-015), the IRB of Hanyang University 
Guri Hospital (ref. no. GURI 2020-01-006), and the IRB of Seoul National University Bundang Hospital (ref. 
no. B-1907-555-102) and the requirement for informed consent were waived by the IRBs of Hanyang University 
Hospital, Hanyang University Guri Hospital, and Seoul National University Bundang Hospital. All methods and 
procedures were carried out in accordance with the Declaration of Helsinki.

Data set. Plain abdominal X‑rays of patients diagnosed with intussusception (positive images). We gathered 
data on patients who were diagnosed with intussusception and treated with hydrostatic or pneumatic enema at 
the emergency room from the medical records of Hanyang University Hospital (set A) and Hanyang University 
Guri Hospital (set B) from January 2005 to August 2019, and from Seoul National University Bundang Hospital 
(set C) from January 2010 to August 2019. The inclusion criterion was age ≤ 6 years. We obtained the supine and 
erect views of plain abdominal X-rays in all eligible patients; these images were validated, and a diagnosis of 
intussusception was made by radiologists before an abdominal ultrasound was performed.

Plain abdominal X‑rays of patients not diagnosed with intussusception (negative images). The candidate images 
for inclusion in the negative group were identified using X-rays of patients of the same age who visited the emer-
gency room with complaints of abdominal pain, vomiting, or diarrhoea that was not indicative of intussuscep-
tion. Their reports were stated by radiologists as ‘unremarkable study’, ‘non-specific finding’, ‘rule out paralytic 
ileus’, or ‘rule out gastroenteritis’. We collected these images from the same hospitals and within the same time 
period.

The collected images had a positive-to-negative ratio of approximately 1:3–1:12. All candidate images were 
extracted in the Digital Imaging and Communications in Medicine (DICOM) format used by the picture archiv-
ing and communication system (PACS, Centricity, GE Healthcare, Milwaukee, WI, USA), using a custom-built 
automated image retrieval system. We stored the images in an 8-bit JPEG grayscale format.

Abdominal detection and Intussusception classification. The overall workflow of the proposed 
intussusception screening system is shown in Fig. 4. Our architecture consists of (1) an abdominal detection 
model that detects the abdominal region and (2) an intussusception classification model that detects intussus-
ception.

Abdominal detection model. We used the Single Shot Multibox Detector (SSD) for the abdominal detection 
 model25. The SSD generates default boxes with various ratios and scales from multiple feature maps to learn the 
regression model for object coordinates and the classification model for object label confidence. As we needed 
to detect the abdominal region, we changed the last fully connected layer to predict two classes: the abdo-
men and the background. Moreover, we retrained the last fully connected layer to compute the coordinates and 
confidence values for the abdominal region and the background. To train the abdominal detection model, we 
manually annotated the abdominal regions using Python 3.7 (https ://www.pytho n.org). Using the images of 
the patients’ abdomens, we selected rectangular regions of interest (ROI) spanning the diaphragm to the upper 
margin of the acetabulum along with the corresponding lateral borders.

Intussusception classification model. Among the deep learning CNN models for classification, which includes 
AlexNet, VGG, ResNet, and DenseNet, we used ResNet (Residual Network) as the intussusception  classifier26–29. 
ResNet uses a skip connection that adds the input feature to the output of the residual layer. Because the skip 
connection allows the model to learn the difference between input and output features, it solves the gradient 
vanishing problem that occurs as the layer becomes deeper. Furthermore, we modified the last fully connected 
layer to predict the class probability of intussusception. A sigmoid activation function placed after the last fully 
connected layer normalised the class probability values to [0, 1]. The network weights were updated by the 
binary cross-entropy loss,

(1)BCE(x) = −

C=2
∑

i=1

[

yilogp(Y = i|X)+
(

1− yi
)

log
(

1− p(Y = i|X)
)]

,

https://www.python.org
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where yi is the ground-truth label of the i th class in C ∈ {Intussusception, Normal}, and p(Y = i|X) denotes the 
probability for the i th class that the proposed method predicts for X as the input X-ray image.

We used the MatConvNet deep learning library (version 1.0-beta25, https ://www.vlfea t.org/matco nvnet /) 
from MATLAB R2019b (https ://mathw orks.com/) to implement our detection and classification models. The 
trainings and tests were performed using a GTX Titan Xp GPU (NVIDIA, Santa Clara, CA, USA). The network 
weights were initialised from a pre-trained model on  ImageNet30, and the network was trained end-to-end using 
stochastic gradient descent (SGD). We trained the model in batches of 16 with an initial learning rate of 0.001 
that was linearly decreased over 100 epochs to 0.00001.

Data augmentation and balanced training. Due to difficulties in acquiring large-scale medical images, 
effective augmentation of training data was needed to conduct robust training for the deep learning CNN. 

Figure 4.  Intussusception screening system architecture. The proposed architecture consists of the abdomen 
detection model (top) and the intussusception classification model (bottom). The abdomen detection model 
detects the abdominal region from the entire X-ray image. The intussusception classification model detects 
intussusception on X-ray images that were cropped by the abdomen detection model.

https://www.vlfeat.org/matconvnet/
https://mathworks.com/
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Although we collected approximately 11,384 images, which is not a small data size for evaluating the diagnos-
tic capability of the algorithm, there remained immense potential to improve diagnostic performance through 
data augmentation. Therefore, we performed elaborate augmentations on the images by applying random rota-
tion and translation changes. Overfitting problems would degrade diagnostic performance as the proportion of 
negative images was much higher than that of positive images. Thus, we sampled mini-batch training data that 
included the same number of positive and negative images to balance the training.

Data experiments. We validated the performance of our method through two experimental phases. First, 
we used images from two of the three hospitals as the sets for training and internal validation tests, while the 
images from the other hospital were used as the external validation test set. The data from the two hospitals were 
separated as training (80%) and internal validation test (20%) data, to determine the optimal cut-off value for the 
external validation test. Since there were three hospital data sets, three cases of external validations were exam-
ined. Second, we performed training and internal tests using data from all three sets (A, B, and C). Eighty and 
20% of each data set were used for training and internal validation tests via fivefold cross-validation, respectively. 
Any data used in these tests were excluded from the initial training data set.

The proposed method is a computer-aided diagnosis (CAD) system that assists radiologists and emergency 
physicians in analysing medical images. Therefore, it is better to show areas that are suspicious for intussusception 
rather than simply determining whether the input X-ray image is a case of intussusception or not. To intuitively 
identify intussusception, we visualised which areas of the X-ray image were predicted to contain the diagnosis 
using class activation maps (CAMs)31. To generate CAMs, we extracted the activation map, fk , before the last 
global average pooling layer of the intussusception classification model. When the intussusception classification 
model determined the input X-ray image as intussusception, CAMs were obtained by multiplying the extracted 
activation map, fk , with the weight in the final classification layer for the feature map k leading to pathology y wk

Outcomes and validation. Our primary outcome was a favourable performance in detecting intussus-
ception in our data sets. In the internal validation test, we used the AUC, highest accuracy, and highest Youden 
index to measure  performance32. Accuracy measures the fraction of correct predictions over the total number 
of predictions. The Youden index is defined as sensitivity + specificity – 1, that is, the vertical distance between 
the 45° line and the point on the ROC curve. In the external validation tests, we selected the optimal cut-off 
value based on the highest Youden index  value33 from the internal validation tests; this was done because plain 
abdominal radiography is commonly used as a first-line screening test for intussusception in patients with gas-
trointestinal signs and symptoms. Furthermore, we applied the cut-off values in the external validation to deter-
mine the AUC and Youden index values.

Statistical analysis. All the data were compiled using a standard spreadsheet application (Excel 2016; 
Microsoft, Redmond, WA, USA) and analysed using NCSS 12 (Statistical Software 2018, NCSS, LLC. Kaysville, 
Utah, USA, ncss.com/software/ncss). The Kolmogorov–Smirnov test was used to verify that all data sets had a 
normal distribution. We generated descriptive statistics and presented them as frequencies and percentages for 
categorical data, and as medians and interquartile ranges, (IQR) (non-normal distribution), means and standard 
deviation (SD) (normal distribution), or 95% confidence intervals (95% CI) for continuous data. The independ-
ent t-test or the Kruskal–Wallis test was used to compare the positive and negative groups. Categorical variables 
were presented as numbers and percentages and analysed using a chi-square test. Two-tailed p-values < 0.05 were 
considered statistically significant. We used a single ROC curve and cut-off analysis for the internal test and two 
ROC curves with the independent groups design for comparing the ROC curves of the external and internal 
validation tests. Two-tailed p-values < 0.05 were considered statistically significant.
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