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Abstract: Although network address translation (NAT) provides various advantages, it may cause
potential threats to network operations. For network administrators to operate networks effectively
and securely, it may be necessary to verify whether an assigned IP address is using NAT or not.
In this paper, we propose a supervised learning-based active NAT device (NATD) identification
using port response patterns. The proposed model utilizes the asymmetric port response patterns
between NATD and non-NATD. In addition, to reduce the time and to solve the security issue
that supervised learning approaches exhibit, we propose a fast and stealthy NATD identification
method. The proposed method can perform the identification remotely, unlike conventional methods
that should operate in the same network as the targets. The experimental results demonstrate that
the proposed method is effective, exhibiting a F1 score of over 90%. With the efficient features of
the proposed methods, we recommend some practical use cases that can contribute to managing
networks securely and effectively.

Keywords: Network Address Translation (NAT); supervised learning; port response pattern;
decision tree; network administration

1. Introduction

As the Internet grows dramatically, the allocation of a unique Internet Protocol version 4 (IPv4)
address to each device connected to the Internet has become a problem. Although IPv6 has been
introduced to solve the IP address exhaustion problem, the complete adoption of IPv6 has been
delayed, in part owing to network address translation (NAT) [1]. NAT enables multiple hosts in a
private network to access the Internet with one public IP address. With NAT, IPv4 is likely to dominate
IPv6 for a long time.

Apart from these advantages, NAT exhibits the following problems. Numerous hosts with private
IP addresses can connect to the Internet through a NAT device (NATD). However, it is challenging
for an entity outside the NATD to identify how many hosts are behind the NATD (called NATHs) [2].
A large number of NATHs can generate tremendous traffic that can overload the network. Moreover,
a few of these can conduct malicious behaviors that can impair the Internet. Because the network
administrator acknowledges this traffic to be originating from one IP address, if the administrator
blocks the IP address exhibiting such malicious behavior, both abnormal and normal hosts behind the
NATD will be damaged [3].
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To operate the network effectively and securely, the administrator needs to verify whether the
assigned IP addresses are using NAT or not. In particular, organizations operating large networks
and addressing confidential resources such as documents, servers, and network facilities may prohibit
unauthorized NATDs to prevent these problems. However, it is still a significant challenge to identify
NATD in such large network operation environments.

Various studies to identify NATD have been carried out. They can be classified into two types:
passive and active. In passive NATD identification methods, identifiers first sniff packets from an
IP address and then decide whether it uses NAT by analyzing patterns of TCP/IP headers such as
the identification [4] and time-to-live (TTL) [5] fields in the IP datagram header, timestamp [6], in the
TCP header, and both IP and TCP header fields [7]. In [8], a method to detect NATDs and the NATHs
behind them by using IP TTLs and HTTP user-agent strings is proposed. Methods to identify NATDs
and NATHs using machine learning techniques based on packet sequences are proposed in [9–12].
Most of these passive methods presented their NATD identification methods as parts of techniques
for counting the NATHs behind an NATD. Those passive methods need to monitor the sequence of
packets from or to an NATD. However, the tasks for monitoring packets incur very high computational
complexity and processing time. In addition, the identifier must be located on the same LAN segment
as the NATD, to sniff packets. Passive identification at a remote location is not applicable.

Very few works on active NATD identification methods have been undertaken. In the active
methods, the detector identifies an NATD by communicating with a target host or applications running
on it behind the NATD [13–17]. However, these methods are mostly performed with knowledge of the
presence of the NATD. Furthermore, they are unsuitable for determining whether NATD is used or
not for specific IP addresses.

In this paper, we propose a supervised learning-based active NATD identification method using
port response patterns, which can be performed remotely. We also propose a fast and stealthy
identification method to solve the problems with regard to time and security that supervised
learning-based methods exhibit. The main contributions of the proposed method are as follows.

• The proposed method provides a robust identification of NATDs independent of algorithms
because it operates based on supervised learning.

• The proposed method operates in an active manner. It sends probe packets to the target hosts and
collects the responses from them.

• In order to reduce the computational complexity and to solve the security issue in the collection
of port response patterns, we propose a fast and stealthy identification method using the decision
tree (DT) classification model.

• The proposed method can operate remotely, unlike conventional methods that should operate in
the same network as the targets.

• With the fast, stealthy, and remote features, we also recommend a few practical use cases for secure
network operation and management of an organization utilizing the proposed method.

• The NATD identification and stealthy active scan methods proposed in this paper have a symmetry
feature applicable to a single subnet, small and medium-sized organization-level networks,
and the Internet.

The remainder of the paper is organized as follows. An overview of NAT and related work on
NATD and NATH identification are presented in Section 2. In Section 3, the proposed supervised
learning-based NATD classification using port response patterns is explained. The experimental results
on the effectiveness and the unresolved problems of the proposed method are presented in Section 4.
In Section 5, the proposed stealthy and fast NATD identification method is presented. It is an extension
of the method described in Section 3. In Section 6, some discussions on practical use cases utilizing the
proposed methods are presented. Finally, the conclusions of the study are presented in Section 7.
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2. Background

2.1. Nat Overview

NAT [1] enables multiple hosts with private addresses in private networks to access the Internet
with one public IP address. NAT-enabled routers (NATDs) such as home routers and WiFi access points
have been popularly utilized in homes, offices, public places, etc. In general, a NATD has an interface
with a public IP address, which is connected to the public Internet. It has another interface(s) for hosts
with private addresses in their private network(s). As mentioned before, these hosts with private
addresses behind the NATD are called NATHs. To support applications between the NATHs and hosts
on the Internet, NATD utilizes the network address and port translation (NAPT) method. It maps port
numbers and IP addresses between them whenever they send or receive packets between themselves.

The advantages of NAT are as follows. First, it can solve the IPv4 address exhaustion problem in
the short-term. Second, it enhances security. That is, external hosts beyond an NATD cannot access the
NATHs directly. They can access the NATHs only after receiving request packets from the NATHs or
by using a technique such as port forwarding that is supported by the NATD. Similarly, NATHs can be
protected from malicious behaviors inflicted directly by external hosts.

However, NAT may cause problems for network operators in managing the network safely and
efficiently. Because numerous NATHs may distribute a large amount of traffic simultaneously through
an NATD, significantly more traffic management burdens may be imposed on network operators.
NATDs with insufficient security policies are more vulnerable. For example, vulnerable services
opened through port forwarding may enable attackers to conveniently access the internal network,
and NATHs may be used as zombies for distributed denial of service (DDoS) attacks. When many
NATHs are connected to the private network of an NATD, it is inconvenient for external hosts
or systems to identify the malicious behaviors by any of these or the NATHs exhibiting such
behaviors [2,3,18].

2.2. Related Work

The identification of NATD and NATHs is a highly important practical issue for network
administrators to ensure effective and secure network operations. Many works have been conducted
on the identification of NATD and NATHs, which can be classified into two types: passive and active.

The passive methods identify NATD by analyzing patterns of sniffed TCP/IP header fields. In [4]
and [5], passive methods using IP identification (IPID) and TTL fields, respectively, in datagram
headers have been proposed. As a host increases IPID by one whenever it sends a new packet, NATD
can be identified by monitoring the linearity of the increment pattern of IPID. A packet’s TTL is
decreased by one when it passes a router. When packets from the same IP address have different
TTL values, the device with the address is determined as NATD. Kohno et al. [6] proposed a method
implemented in three stages: (1) store the sequence of timestamp values in TCP header, (2) analyze
its distribution, and (3) identify the IP address as a single host or NATD according to whether the
distribution follows a normal distribution or not, respectively. Park et al. [7] proposed a method to
enhance the identification accuracy by combining IP and TCP header fields.

In [8], an HTTP user-agent string is utilized for NATD identification. In [19], domain name system
(DNS)-based NATD detection has been proposed. As DNS requests are typically sent to a fixed IP
address of the resolver, the IP-ID field of DNS requests is incremental. By tracking values of IP-ID of
DNS requests coming from a single device, NATD can be detected.

Methods to identify NATD and NATH by using machine learning (ML) techniques based on
packet sequences have been proposed. Li et al. [9] proposed a method using support vector machine
(SVM) algorithm. Herein, the number of transmitted and received TCP, UDP, DNS, SYN, FIN, and RST
packets was selected as the features and recorded every 2 min. Their algorithm exhibited an accuracy of
75%. Abt et al. [10] proposed a C4.5 DT algorithm based on flow information such as the IP addresses
and port numbers of sender and receiver, protocol, and number of bytes and packets exchanged on
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an IP address. The method resulted in an accuracy of 89%. Gocken et al. [11] compared the two
machine learning algorithms Naive Bayes and C4.5 DT, with flow information as the features for
NATD identification. They used 76 types of flow information and demonstrated that C4.5 DT exhibited
higher performance than Naive Bayes. Komarek [12] proposed an identification method based on
linear SVM and logistic regression (LR) by collecting HTTP proxy logs with eight HTTP features such
as IP address, user-agent string, web browser, OS, connection status, upload and download byte,
and the number of HTTP requests. The identification accuracy is 68% for three NATHs and 96% for
five or more NATHs. Zhang [20] also proposed methods to detect NATD using ML algorithms such
as SVM, C4.5, and alternative decision tree on HTTP data set artificially generated by the authors
of [12], and the host identification behind the detected NATD using TCP/IP headers. In [21], a method
to detect vulnerable Internet of Things (IoT) devices connected behind a NATD by applying ML
algorithms has been proposed.

To apply passive methods, the identifier is requested to be located in the same network as
the NATDs because it has to sniff packets from/to the NATDs. Moreover, the identifier needs to
collect, store, and analyze packets in real time, which consumes excessive amounts of resources.
Therefore, these methods may not be practical for a large-scale network. In addition, the available
passive methods may be limited depending on the system environment. IPID is infeasible on Linux and
Windows 10 OSs because these OSs alter the IPID field dynamically for security. The timestamp option
is not a default in Windows. HTTP-based methods can be used only when the hosts are connected
to the Internet. Thus, it is not available in an intra-network environment. Furthermore, deep packet
inspection to examine the HTTP information in the application layer is required.

In the active NATD identification method, a detector actively communicates with NATHs or
NATDs. However, to our knowledge, no practical active method has been studied. Rather, methods to
support peer-to-peer communication between NATHs and external hosts beyond NATD have been
proposed, such as NAT traversal or hole punching techniques [13], MAC address relaying [14],
NATH identification with proxy authentication [15], Vulnerable NATH and NATD identification using
UPnP [16], and WebRTC [17].

3. Supervised Learning-Based Active Natd Identification Using Port Response Patterns

3.1. Port Response Patterns

A port (or port number) is a virtual and logical identifier to distinguish between different services
that operate over transport protocols such as TCP and UDP. It is represented as a 16-bit unsigned
integer, thus ranging from zero to 65,535. A port is opened when it is assigned to a specific service
running and closed when not in use. Therefore, the status of a port depends on whether the service
assigned to it operates or not. With port scanning techniques, the status of ports can be determined.
A port scanner sends request packets to the target ports of a host and then determines if they are in use
(or open) by analyzing the responses on the ports’ status from the host, called the port response pattern.

There are six typical responses when a TCP-SYN packet is sent to a port of a host, as shown in
Table 1 [22,23]. The six responses are presented as indexes, 0x00, 0x01, · · · , 0x05, in Table 1. There are
three representative states of the port: open, closed, and filtered [24]. The open state indicates that the
port is open and actively accepting TCP connections. The closed state implies that it is accessible
although no services are operating through it. As a port response pattern for TCP-SYN, it may receive
TCP-SYN/ACK or RESET segments explicitly when the port is open or closed, respectively. The filtered
state denotes that it cannot determine the exact status of the port because the TCP-SYN packet may
not have reached the port because of firewalls, access rules, or others. For a port in the filtered state,
the host may respond with an ICMP error message with type 3 and codes 1, 10, or 13; or may not reply.

Table 2 presents the responses when UDP packets are used for port scanning. Here too, there are
six response indexes. When the port is open, the host may respond very occasionally with a UDP
packet. Meanwhile, an ICMP error message with type 3 and code 3 is sent when the port is closed.
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Furthermore, it may not reply or may respond with ICMP error messages with type 3 and codes 1, 10,
or 13. In these cases, it is determined to be in filtered states.

Table 1. Typical response patterns on a TCP-SYN scan.

Index Response Protocol State Notes

0x00 SYN/ACK TCP open TCP flag:0x12

0x01 RESET TCP closed TCP flag:0x14

0x02 no response - filtered -

0x03 type3,code13 ICMP filtered communication administratively prohibited

0x04 type3,code10 ICMP filtered host administratively prohibited

0x05 type3,code1 ICMP filtered host unreachable

Table 2. Typical response patterns on a UDP port scan.

Index Response Protocol State Notes

0x00 UDP response UDP open -

0x01 type3,code 3 ICMP closed port unreachable

0x02 no response - open or filtered -

0x03 type3,code13 ICMP filtered communication administratively prohibited

0x04 type3,code10 ICMP filtered host administratively prohibited

0x05 type3,code 1 ICMP filtered host unreachable

3.2. Architecture of Supervised Learning-Based Natd Identification

We found that most of the devices, including NATDs and NATHs, have asymmetric port response
patterns depending on different manufacturers and different products. For example, several IPtime
and DLink NATDs have UDP port 67 and UDP port 68 closed (“0x01 Port Unreachable”). Apple’s
NATD, e.g., Airport, responds “0x03 admin prohibited” on all ports. Non-NATDs generally have TCP
ports 22, 23, 80 and 443 and UDP ports 137 and 5353 open, with high “0x01 RESET” and “0x01 Port
Unreachable” response rates. However, as IP devices including NATDs and NATHs evolve and release
rapidly, their port response patterns may continue to change over time. Therefore, as the primary
approach for the NATD identification, we consider a machine learning-based classification model that
has trained on massive port response patterns of NATD and non-NATD.

The system architecture of the proposed supervised Learning based NATD identification method
is shown in Figure 1. Herein, the overall process is divided into two phases: training and identification.
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3.2.1. Training Phase

The training phase generates an optimal classification model fθ̂. Here, θ is a set of parameters
comprising multiple coefficients and a constant.

It is considered that there are N training hosts represented by a set of H = {h1, h2, · · · , hN}. Here,
hi denotes the i-th training host, i = 1, · · · , N. Let ci ∈ {true, f alse} be the classified value for the i-th
training host. It is known beforehand whether it is a NATD or not. That is, ci = true for a NATD,
whereas ci = f alse for an ordinary host.

The training phase consists of three components: the port scanner, feature extractor (FE),
and classification model optimizer (CMO), as shown in Figure 1.

The port scanner operates as follows: Let M be the number of predetermined ports to be scanned
for each host. It sends M probe packets to all the target ports of a training host. This scan process is
carried out repeatedly for all the training hosts. Then, M port response patterns are gathered from
each host. Let Ri be the set of response patterns on M ports for the i-th training host. Then, we have

Ri = {ri,j | j = 1, · · · , M}, (1)

where ri,j ∈ {0x00, 0x01, 0x02, 0x03, 0x04, 0x05}. Note that ri,j is one of the response indexes presented
in Tables 1 and 2.

FE represents each host as a two-Tuple such that hi ≡ (Ri, ci). Then, it combines all the hosts as a
set of H. Note that ci is known prior to the training phase. Then, it extracts a feature set R and a class
vector C. Here, R = [R1, R2, · · · , RN ]

T and C = [c1, c2, · · · , cN ]
T . That is, R is denoted by an N ×M

matrix as follows.

R =


R1

R2
...

RN

 =


r1,1 r1,2 · · · r1,M
r2,1 r2,2 · · · r2,M

...
...

. . .
...

rN,1 rN,2 · · · rN,M

 (2)

The input to the CMO is R and C from FE. Let fθ be a classification model selected by the
CMO. Any type of supervised learning-based classification models can be applied to this component.
Then, CMO determines an optimal set of parameters θ̂ as follows,

θ̂ = arg min
θ

N

∑
i=1

L{ fθ(Ri), ci}, (3)

where L can be any of the loss functions depending on the classification model, e.g., Softmax loss
function used in multilayer perceptron (MLP) [25]. Finally, the output from the CMO is an optimized
classification model fθ̂.

The procedure for the training phase explained above is described in Algorithm 1. The operations
of the port scanner, FE, and CMO are presented in lines 2, 3–4, and 6–8, respectively.

3.2.2. Identification Phase

The identification phase determines whether a target host (ht) is an NATD or not, without prior
knowledge, i.e., ct ∈ {true, f alse}. The phase utilizes the optimized classification model generated
in the training phase, fθ̂. Three of its components are similar to three of the training phase: the port
scanner, FE, and classifier.

The operations of the port scanner and FE are similar to those in the training phase. The operations
in the identification phase are performed only for the target host, whereas they are performed for all
the training hosts in the training phase.

The classifier applies the port response patterns Rt of the target host from the FE to its classification
model fθ̂. Then, it generates a Boolean value ct, true or f alse, indicating whether the target host is an
NATD or not, respectively.
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Algorithm 1 Training Phase

Input: Training Host Set H = {h1,h2, · · · , hN} // hi ≡ (Ri, ci)
Output: Classification Model fθ̂

1: for i = 1 to N do

2: Ri = PortScan ( hi ); // Port Scanner (Equation (1))
3: Append Ri to R ; // Feature Extractor (Equation (2))
4: Append ci to C ;
5: end for
6: repeat

7: fθ̂ = optimizeModel( fθ̂, R, C); // CMO (Equation (3))
8: until θ̂ converge
9: return fθ̂

3.3. Selection of Target Ports

For the identification process, the port scanner sends probe packets to M ports of each host.
The maximum value of M is 131,072, which is the sum of 65,536 and 65,536 (the number of TCP and
UDP ports, respectively). The maximum M is very small compared to the number of features utilized
in other ordinary machine learning applications, e.g., image processing. The processing time to learn
and create the optimal model fθ̂ from the port response patterns in the proposed identification method
is lesser than those of other applications. However, it consumes a significant length of time to obtain
the port response patterns by scanning those ports of all the training hosts. This will be discussed in
detail in Section 5.1.

As not all ports affect the identification, the scan time can be reduced by selecting only some
effective ones for the identification. Nmap [24] provides an open source scanning tool with a fast scan
method that can be used for this purpose. The fast scan of Nmap scans 200 ports including well-known,
registered, and some commonly used dynamic ports for efficient data collection. Therefore, the port
scanner of the proposed method also utilizes Nmap’s fast scan method.

4. Evaluation

This section describes our evaluation of the feasibility of the proposed NATD classification
by applying a few well-established supervised learning models. Owing to the non-availability of
active-based identification methods, as mentioned in Section 2, only the proposed method is considered.
For the evaluation, the dataset and comparable classification models that we use are first described.
Next, we define metrics generally used in machine learning. Then, we present the validation of
the proposed method and demonstrate which is the most effective classification model among the
comparable models.

4.1. Dataset and Environment

We collected the datasets from five acting subnets operated in our university and access points
(APs) open to the public so that we could identify whether each host was an NATD or not. We also
collected a dataset from public access points outside our university that were using NAT. Table 3 shows
the collected dataset with 264 NATDs and 302 normal hosts. With the dataset, we performed the Monte
Carlo cross-validation. All samples were randomly divided into the training and test sets, and then
the test was repeatedly performed a thousand of times to obtain the validated result. The size ratio of
the training set to the test set has been set to 8:2. The proposed method has been implemented on a
desktop computer with an Intel Core 2 i7-2600 and 16 GB of RAM using Python language, which is the
fast and simple programming language and provides the wealth of machine learning libraries and
frameworks. For the implementation, the Scikit-Learn package [26], one of the best known machine
learning libraries, was utilized. The code and dataset for the evaluation are given at [27].
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Table 3. Dataset for evaluation.

Area (C Class) Total NAT Non-NAT

- . - . 196 . 0/24 31 20 11
- . - . 20 . 0/24 76 24 52

- . - . 197 . 0/24 114 26 88
- . - . 19 . 0/24 122 39 83
- . - . 21 . 0/24 167 99 68

public APs 56 56 0

Total 566 264 302

4.2. Classification Models and Metrics

As we illustrated in Section 2.2, existing methods focused on passive-based approaches. The main
objectives of those conventional methods were to figure out counting NATHs and their behaviors
behind NATD. Accordingly, as there are no appropriate conventional methods to compare to the
proposed method, the following six typical supervised learning algorithms are used for comparing
the algorithms for the application to NATD identification as well as the evaluation of the proposed
method: Logistic Regression (LR) [28], Support Vector Machine (SVM) [29], K-Nearest Neighbors
(KNN) [30], Multi-Layer Perceptron (MLP) [25], Decision Tree (DT) [31], and Random Forest (RF) [32].

LR is a probabilistic model in order to predict discrete outcomes in binary classification.
Unlike linear regression, logistic regression transforms its output using the logistic sigmoid function
to return a probability value which can be mapped to classes. It is easy to implement and interpret,
but there is a high probability that underfitting will occur.

SVM builds the hyperplanes as a classification boundary among the dataset by solving a quadratic
programming problem. After training phase, the optimal hyperplane is selected. To overcome
the low performance of linear classification, the original finite-dimensional space be mapped into
a higher-dimensional space so that nonlinear classification is possible. It was the most powerful
classification algorithm until the neural network became popular. SVM is not greatly influenced by
noise and overfitting does not occur frequently. However, to train massive data, it requires more
resources than other algorithms and it is difficult to understand how classification model were built
and to analyze model.

KNN is an algorithm to classify with labels of adjustable parameter k, the number of nearest
neighbors. The class is determined by a plurality vote of k neighbors. KNN does not required
explicit training phase, but neighbors can be thought of as the training set for the algorithm.
Because of neighbors can provide an explanation for the classification result, it is easier to understand
than other black-box algorithms. However, the runtime speed is slowed down as the number of
neighbors increases.

MLP is also known as an artificial neural network, which is an iterative optimization model
that reduces the error rate by Feed-Forward and back propagation. It is a structure that connects
several perceptrons which are linear classifiers and the gradient descent method calculates the optimal
parameters of each perceptron. MLP is known as the most effective method for complex input such as
computer vision domain, but it costs a lot of resources.

DT repeats the best split of data set according to classification criterion, resulting in a tree structure.
The criterion for measuring the best split can be different for different algorithms. For example,
ID3, C4.5, and C5.0 DT uses entropy-based metrics called information gain. The Classification and
Regression Tree (CART) uses Gini impurity. DT is simple and fast. It is also a white box-based
algorithm so that it is easy to find which conditions have affected the classification results. On the
other hand, DT is a heuristic algorithm based on greedy algorithm, so it does not guarantee optimal
tree generation.

RF is an algorithm to improve the disadvantages of DT. It creates one model by combining several
DTs which are slightly different by randomness. Because it guarantees diversity, it is superior in
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classification performance, but it cannot have intuition which is the advantage of DT in the analysis
because it is a method which is a combination of multiple DTs.

The metrics used for the evaluations are precision, recall (also known as sensitivity or true positive
rate (TPR)), accuracy, F1 score, and receiver operating characteristic (ROC) curves. These metrics are
commonly used in machine learning approaches based on the confusion matrix presented in Table 4.

Table 4. Confusion matrix.

XXXXXXXXXPrediction
Type NATD Normal Host

NATD TP (True Positive) FP (False Positive)

normal host FN (False Negative) TN (True Negative)

They are defined as follows,

Precision = TP/(FP + FP). (4)

Recall = TP / (TP + FN), (5)

Accuracy = (TP + TN) / (TP + TN + FP + FN), (6)

F1 = 2 · Precision · Recall
Precision + Recall

. (7)

The ROC curve is a probability curve. It plots the sensitivity of Equation (5) against the specificity,
also known as the true negative rate (TNR) or the one-false positive rate, at various threshold settings.
The specificity is defined as follows,

Speci f icity = TN / (TN + FP). (8)

With an ROC curve, we can also have the area-under-the-curve (AuC) metric. It is an essential
evaluation metric for examining the performance of a classification model. The closer the AuC is to
one, the more effective the classification model is.

4.3. Performance Evaluation

In Table 5, the evaluation results (averages) of the performance metrics such as precision, recall,
accuracy, F1 Score, and AuC for the different classification models are compared. As is evident from
Table 5, LR and SVM exhibit the highest recall. However, they are lower than others in terms of the
other metrics. The precision, accuracy, and F1 performances of KNN and MLP are higher than those of
LR and SVM, albeit lower than DT and RF. From the observations, we can conclude that RF and DT
exhibit relatively higher overall performances than the other models do. Because RF is an ensemble
technique that combines several DTs, it performs marginally better than DT.

Figure 2 shows the ROC curves of the classification models. The AuC values obtained from the
ROC curves for all the models, as illustrated in Table 5, are similar and are in the range between
0.94 and 0.97 (close to one). Moreover, the F1 scores for all the classification models are higher than
90%. In particular, the F1 scores of DT and RF are above 94%, significantly higher than those of the
others. This implies that the proposed model based on port response patterns is highly effective for
NATD identification.

Figure 3 shows the average elapsed time to train and test the classification models. KNN and DT
exhibit the first and second fastest training times, respectively, among the algorithms. Note that the
test time is more important than the training time. This is because in general, it is required to operate in
real time, whereas the training phase is not. LR and DT exhibit highly similar and the fastest test times
among the algorithms. As is evident from Table 5, LR exhibits significantly lower average precision,
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accuracy, and F1 values than DT. Thus, DT is the most efficient algorithm considering both the test and
training times.

Table 5. Performance comparisons of classification models.

LR SVM KNN MLP DT RF

Precision 88.4% 82.6% 90.4% 90.0% 92.1% 92.4%
Recall 97.5% 97.4% 95.2% 95.8% 96.7% 97.3%
Accuracy 92.9% 89.3% 93.1% 93.1% 94.7% 95.1%
F1 92.6% 89.2% 92.5% 92.7% 94.2% 94.7%
AuC 0.944 0.950 0.944 0.943 0.940 0.962
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Figure 2. Receiver operating characteristic (ROC) curves for the classification models.
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Figure 3. Average elapsed times for the training and test phases by classification models.

5. Decision Tree-Based Fast and Stealthy Natd Identification

5.1. Limitation of Supervised Learning-Based Approach

In Sections 3 and 4, we presented the proposed approach toward supervised learning-based NATD
identification using port response patterns, and its evaluation. It exhibited very high effectiveness,
with F1 scores of over 90%. Notwithstanding this high effectiveness, the supervised-learning approach
has the following two main problems in practical applications.

First, it requires a very long time to collect port response patterns. It scans at a maximum of
65,536 ports for each of TCP and UDP, a total of 131,072 ports. To demonstrate the effect of the
number of ports to be examined on the identification time, we configured two hosts as a scanner and
a target. These were connected in the same subnet through an Ethernet switch with 1 ms latency.
Then, the scanning on the ports was performed using Nmap [24] rather than the proposed system to
provide a more general insight. The round trip time (RTT) was measured as the difference between
the time when the scanner sends a probe packet and the time when it receives the response from the
target. Note that after collecting all the response patterns on all the target ports, the classification or
the identification task followed. In addition, we measured the processing time of the classification or
identification task.



Symmetry 2020, 12, 1444 11 of 17

Figure 4a shows the elapsed time results of the TCP ports by varying the number of target ports.
The RTT increases linearly as the number of ports increases. The processing consumes approximately
2 s independent of the number of ports. The elapsed times for the UDP port scans also increases
linearly as the number of target ports increases, as shown in Figure 4b. However, the degree of increase
is significantly larger than that of TCP. A comparison of Figure 4a,b reveals that the time for the
TCP scan is not high compared to that for UDP scan. The UDP port scan was measured to consume
approximately 1 s per UDP probe packet. UDP scan consumes a significantly longer time than TCP
does because UDP is a stateless and connectionless protocol. The host should wait for a possible reply
that may be processed. Furthermore, although the time-out value is set to zero for waiting, Linux OS
places a limit of one reply per second for ICMP messages. According to Table 2, a UDP port may
respond with an ICMP packet while the probe packet is filtered. This is why we selected 200 TCP and
UDP ports for the experiments described in Section 4.
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Figure 4. Average elapsed times to scan all targets (a) TCP and (b) UDP ports.

Second, intrusion detection systems (IDSs) and firewalls may consider probe packets as a threat
or an attack. Because port scanning techniques have been typically utilized by malicious users to
identify vulnerabilities of target hosts, IDSs and firewalls are generally configured to block the port
scan packets as well as the host that sends the packets. To detect the port scan threat, a few studies and
commercial services have defined their thresholds in the unit of packets per second (PPS). To detect
TCP-SYN and UDP flooding attacks, threshold values were set to 20 incomplete TCP-SYN and 10 UDP
PPS in [33] and 200 incomplete TCP-SYN and 300 UDP PPS in [34]. Commercial network devices
such as routers and firewalls also have default rules unique to them to detect these attacks as follows,
128 incomplete TCP-SYN and 500 UDP PPS for Cisco [35] and 25 incomplete TCP-SYN PPS in the
Juniper Networks firewall [36]. The threshold values are summarized in Figure 5.

The port scanner of the proposed system architecture described in Section 3 sends 100 TCP-SYN
and 100 UDP PPS per host to collect its port response patterns. When there are numerous hosts
to be scanned, PPS values increases tremendously and exceeds the thresholds shown in Figure 5.
Then, the probe packets are all filtered by IDSs or firewalls.

0 PPS50 100 150 200 250 300

Juniper[36]

Trabelsi et al. [33] Thremos[34]

Cisco[35]

UDP(10)

TCP(20)

TCP (25) TCP (128)

TCP (200) UDP (300)

Thremos[34]

Figure 5. Default packets per second (PPS) values of intrusion detection systems (IDSs) and firewalls
to detect TCP-SYN and UDP flooding attacks.
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5.2. Dt-Fs: Dt-Based Fast and Stealthy Natd Identification

A simple method to solve the limitation illustrated in the previous subsection is to send fewer
probe packets for a time period long enough to evade detection by IDSs or firewalls. However,
this time period becomes excessively long as the number of hosts increases, which may be impractical.
There have been some works to avoid the situation by optimizing the scanning rate considering
congestions and throughput in wireless LAN environments [37], IP addresses and their collected
features for Internet-wide scan [38], and so on. However, the scan target for those existing methods
are not applicable to NATD identification. Therefore, another effective method is required to solve
the problem.

Here, we propose a fast and stealthy NATD identification method based on DT (called DT-FS),
to overcome the limitations of the supervised learning-based approach. With the evaluation results in
Section 4.3, we select DT as the fundamental classification model. This is because it exhibited relatively
higher performances, with 94.7% accuracy and 94.2% F1 score and lower elapsed times for the training
and identification phases, than those of the others. In addition, the DT constructed in the training
phase exhibits a hierarchical tree structure. Herein, the NATD identification rules are represented by
the paths from the root to the leaf nodes. The identification process is repeated until it reaches the leaf
node starting from the root. Similarly, because it does not visit all the nodes within the tree, we can
achieve fast identification by inducing the port scanner to send probe packets only to the ports that it
will visit on the DT’s path.

The algorithm for DT-FS is presented in Algorithm 2. Each node z is represented as the feature
vector [c, m, r, zc], where c ∈ {true, f alse, TBD} is the outcome at the node. In general, c at the root
and intermediate nodes is set to TBD. It denotes To Be Determined. Meanwhile, c at the leaf node
is true or false. m and r are the port number to be probed and its response pattern, respectively.
zc = {zc(r)| r = 0x00, 0x01, · · · , 0x05} is the set of child nodes that it can be branched into. Here, zc(r)
is the child node to be branched for a response pattern r.

Algorithm 2 functions as follows. First, it examines c in z. If c is TBD, it implies that the node
is not a leaf node and needs more response pattern. Then, it sends a probe packet to the port m
of the host h and obtains the response pattern r from h by using the function SendProbePacket( ).
Here, r ∈ {0x00, 0x01, · · · , 0x05} (lines 1–2). Then, it branches to zc(r), which is the child node to be
branched by r among those listed in zc, and repeats the function DT-FS( ) (line 3). If c is true or false,
it implies that the node is a leaf, and it returns c as the identification value (line 5).

Because DT-FS is based on DT as its classification model, its performances with regard to precision,
recall, accuracy, F1 score, and AuC are identical to those of the supervised learning-based NATD
identification method with the DT model (DT-SL) presented in Table 5.

However, unlike DT-SL, which collects all the response patterns on all the target ports of a host,
DT-FS sends probe packets only to the ports that it will visit on the DT’s path. Accordingly, DT-FS can
reduce the time for NATD identification significantly, and that too with a substantially smaller number
of port response patterns than that for DT-SL.

Algorithm 2 DT-FS Algorithm

Input: z and h // z = [c, m, r, zc], h is a target host
Output: boolean value // true or false
function DT-FS (z, h):

1: if c == TBD then

2: r = SendProbePacket (m, h); // get port response
3: DT-FS ( zc(r), h ); // branch to child node
4: else if c == true OR false then

5: return c; // identification result
6: end if

end function



Symmetry 2020, 12, 1444 13 of 17

Figure 6 shows the cumulative distribution function for the number of probe packets required
for the NATD identification. Here, γtrain and γtest denote the ratio of the training set and of the
test set, respectively, to the total dataset. Note that γtrain + γtest = 1. As is evident from Figure 6,
the identification can be conducted with a very small number of probe packets for a few hosts.
For example, 40% of the hosts can be identified by at most five probe packets. With less than 30 probe
packets, all the hosts are identified for all the cases of γtrain and γtest.
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Figure 6. Detection ratio of decision tree (DT)-based fast algorithm by varying the number of probe
packets for various dataset environments.

Furthermore, it is evident that the larger γtrain is, the higher the number of probe packets that
need to be sent. This is because as γtrain increases, the paths from the root to the leaf nodes become
deeper, and it requests more port response patterns. However, for all the cases, the tree depth for
DT-FS can be optimized by a maximum of 30 probe packets.

With the result shown in Figure 6, NATD identification for a host can be performed with a small
number of probe packets. Then, we can conveniently compute the elapsed time for identifying all the
hosts in the networks managed by an IDS or firewall for its network protection as follows. Let ∆ and
Kth be the time unit and the threshold value of the number of packets for the detection of abnormal
behaviors by an IDS or a firewall, respectively. Let M and N be the number of probe packets and hosts,
respectively, for the NATD identification. Then, we have the total time of NATD identification without
being detected by the IDS or firewall as TNATD = N · ∆ · dM/Kthe. Here, dxe denotes the smallest
integer larger than x. For example, let us consider M = 30 and N = 1. Then, it requires 1 s for [35,36],
and 2 s for [33,34], as shown in Figure 5.

6. Discussion: Practical Use Cases

6.1. Remote Natd Identification for Organization Networks

As mentioned earlier, whereas NAT provides various advantages, it may cause potential threats
to network operations. To operate the network effectively and securely, the network administrator
may have to verify whether an assigned IP address is using NAT or not. Conventional methods
for the NATD identification have been based on passive ways focusing on detecting behaviors of
NATHs behind a NATD, as shown in Figure 7 and proved their effectiveness. However, the NATD
behavior detection should be done in the same subnet where the NATD is connected to, and its
IP address is given in advance. Alternatively, the IP address of the NATD may be determined by
capturing and storing all packets to and from all terminals in the subnet and analyzing the behaviors
associated with each IP address. It may cause too big memory and computational burdens. To apply
these passive methods, the network administrator must perform NATD identifications separately to
individual subnetworks managed by it. This is highly complicated and unpractical for medium- or
large-sized networks. In particular, as NATD is used as an IoT gateway these days, many NATDs will
be installed in buildings [39,40]. Virtual NATDs implemented with virtual environment technology
such as Docker [41] can also burden on network management.
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Figure 7. Passive NATD behavior detection by conventional methods.

Meanwhile, the proposed method for the NATD identification can perform on networks remotely
to which the target IP address does not belong. The process by the proposed method is illustrated
in Figure 8 and operates as follows. The network administrator installs a stealthy port scanner for
NATD identification, selects target networks or hosts for scanning. Then, it scans all the hosts in
the selected networks or the target hosts to collect their port response patterns. As mentioned in
Section 5.2, the scan process can be performed remotely, stealthy, and fast. With the collected port
response patterns, it can be determined whether each IP address uses NAT or not.

In this manner, the network administrator can classify whether or not IP addresses of all the
networks he/she manages use NAT. Then, the IP addresses using NATDs may be stored in a database
for their further management. Because NATDs with new port response patterns may emerge, it is also
necessary to reconfigure the dataset for training and to update the CMO periodically.

Organization
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Figure 8. Use of proposed method in an organization.

6.2. Counting NATHs behind NATDs and Detecting Their Abnormal Behaviors

In order to ensure the stable and secure operation of an organizations’ networks, it may be
necessary not only to estimate the number of NATHs behind each NATD, but also to detect their
abnormal behaviors. Numerous works have been undertaken to resolve the issue based on the
analysis of the information of headers and payloads of packets captured from a NATD [4,8,42,43].
However, these conventional methods can be operated only with prior knowledge of the IP address of
the NATD. Because the proposed method can be performed remotely, it is feasible to manage all the IP
addresses of NATDs in an integrated manner. For example, the NATD identifier shown in Figure 8
acquires fast and stealthy all the IP addresses of the NATDs in an organization, and provides the
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addresses to the NATD behavior detector. The NATD behavior detector can capture packets from and
to the identified NATDs remotely at a gateway point connected to the external network, estimate the
number of NATHs behind the NATDs, and analyze the behavior of NATHs. With the collaboration of
the security process, it can also detect and control NATDs with NATHs doing malicious behaviors
behind them.

7. Conclusions

In this paper, we proposed a supervised learning-based active NATD identification method
using port response patterns. The proposed method can perform the identification remotely,
unlike conventional methods that should operate in the same network as the targets. Experiments were
conducted on approximately 600 samples with various feasible classification models. The experimental
results demonstrated the effectiveness and feasibility of the proposed method, which exhibited an F1
score of over 90%. Comparisons among the various models revealed the DT model’s relatively high
performances. In addition, to reduce the time and to solve the security issue in the collection of port
response patterns, we proposed a fast and stealthy identification method using the DT classification
model, called DT-FS. It can identify NATDs by sending less than 30 probe packets.

We have recommended a few practical use cases of the proposed method. Traditional NATD
identification schemes can be performed for devices connected in the same subnet due to their passive
natures. Instead, the proposed method can detect NDTDs within an organization domain network via
a remote active scan. We showed that the proposed scan could work stealthy and fast, not affecting
internal firewalls and subnets within the domain. After NATDs have been identified, the behavior
and status of NATHs behind each NATD can be investigated by monitoring packets with IP addresses
for NATDs, not capturing all packets as in conventional methods. Though we discussed the practical
use cases within an organization domain, it can be extended to the Internet-wide applications as
in [38]. They are likely to contribute to secure and effective management of networks operating
in organizations.
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