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Abstract: Nitrogen oxide (NOx) emissions from the South Korean cement industry are investigated
with remote-sensing measurements, surface observations, and in situ aircraft measurements. In the
Yeongwol, Danyang, and Jecheon regions of central South Korea, six closely located cement factories
produce 31 million tons of cement annually. Their impact on the regional environment has been a
public-policy issue, but their pollutants have not been continuously monitored nor have emissions
inventories been fully verified. Using a newly developed downscaling technique, remote-sensing
analyses show that Ozone Monitoring Instrument (OMI) NO2 column densities over the cement
kilns have more than twice the modeled concentrations, indicating that the kilns are one of the most
dominant NOx emission point sources in South Korea. Observed NOx emissions are stronger in the
spring, suggesting that these sources play an important role in the formation of surface ozone and
secondary particulate matter. These emissions also slightly increased in recent years, even while
most major South Korean cities posted a declining trend in NOx emissions. Photochemical models
(during May to July 2015) demonstrate that emissions from the South Korean cement industry have
significant environmental impacts, both on surface ozone (up to approximately 4 ppb) and PM2.5

(up to approximately 2 µg/m3).

Keywords: cement industry; NOx emission; OMI; air quality; health impact

1. Introduction

Cement manufacturing has serious environmental impacts at all stages of production, emitting
airborne dust during the collection of raw materials in quarries and releasing kiln gases during the
factory operation, among other effects. As cement is one of the most popular building materials
worldwide, the cement industry is a major source of emissions, with its impacts on regional air quality
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and public health reported globally [1–6]. In South Korea, the impact of cement factories on nearby
residents has become a public issue [7–10]. Leem et al. [11] investigated case clusters of pneumoconiosis
among residents of Yeongwol, South Korea, suggesting that long-term exposure to cement dust from
factories and mines may lead to the development of pneumoconiosis. Kim et al. [12] also showed
that the rate of ventilation impairment in residents near cement plants is higher, likely due to their
long-term exposure to particulate dust generated by these plants.

The major gaseous emission released during cement production is carbon dioxide (CO2) from the
calcination process of limestone and the combustion of fuel in the kiln, accounting for around 5% of
global CO2 emissions [13–17]. Cement kilns require a high temperature, around 2000 ◦C in their main
burner, leading to high emissions of nitrogen oxide (NOx). Sulfur dioxide (SO2), carbon monoxide
(CO), and other toxic gases are also emitted [18]. Dust emissions come during the collection of raw
materials (e.g., stock piles, quarrying, and transportation) and factory operations (e.g., kiln operation,
clinker cooling, and milling) [19].

Understanding the impact of emissions from cement factories requires continuous monitoring of
these facilities. However, surface monitoring of emissions may be limited by the number and locations
of available monitoring sites. Space-borne, remote-sensing instruments can, however, continuously
monitor small-scale, local sources of emissions. In this study, we utilize the nitrogen dioxide (NO2)
vertical column density (VCD) detected from space as a proxy of NOx and other emissions from the
cement industry. Though NO2 itself is an important pollutant, categorized as one of the six National
Ambient Air Quality Standards’ principal pollutants, it also generally indicates other emissions from
the cement industry, with actual emission factors complicated by differences in fuel type [18,20–22].

The subsequent sections address the following: (1) Whether or not satellites can detect small-scale
local emission sources, such as cement kilns; (2) whether the current South Korean emissions inventory
is correct for the cement industry; and (3) whether NOx emissions signals detected by satellites are
consistent with measurements by surface monitoring and aircraft. Finally, we (4) quantitatively
estimate the environmental impacts of the cement industry, using both previously reported and
satellite-constrained emissions. Section 2 describes the model, satellite, and data-processing
methodology, and Section 3 compares the satellite-detected signals and the model. Finally, Section 4
concludes the paper.

2. Data and Methodology

2.1. Satellite

We utilized tropospheric NO2 VCD data from the Ozone Monitoring Instrument (OMI, onboard
NASA’s Earth Observing System Aura satellite), specifically the Royal Netherlands Meteorological
Institute’s (KNMI) DOMINO (Dutch OMI NO2) version 2.0 product obtained from the European
Space Agency’s Tropospheric Emission Monitoring Internet Service (TEMIS) [23]. The OMI instrument
is a nadir-viewing imaging spectrograph that measures backscattered solar radiation across a
2600 km-wide swath of the surface using a telescope with a 114◦ viewing angle, a measurement
wavelength ranging from 270 to 500 nm, and a 0.5 nm spectral resolution. The OMI’s footprint pixel
size is 13 km (along) × 24 km (across) at nadir in normal global operation mode and 13 km × 12 km in
zoom mode [24]. To assure data quality, we disregarded pixels with cloud fractions over 40% or other
contaminated pixels (i.e., row anomalies) using quality flags. NO2 column-retrieval algorithms and
error analysis are available from Boersma et al. [25,26].

2.2. Surface Monitoring and Field Campaign

Hourly observations of NO2, PM10, SO2, and CO from surface-monitoring sites were obtained
from the National Institute of Environmental Research, Korea [27]. Aircraft measurements were
obtained from the KORea-United States Air Quality Study (KORUS-AQ) field campaign conducted
during May to June 2016 (for detailed information on the campaign, see KORUS-AQ) [28].



Atmosphere 2020, 11, 881 3 of 14

2.3. Model and Emissions

A meteorology-chemistry-emission modeling framework was used to simulate tropospheric
chemical components, and its simulation outputs were compared to the satellite-retrieved data.
The system simulates an air-quality forecast system over East Asia (27 km) and South Korea (9 km) that
has been operational since May 2012 and uses multiple configurations of meteorological and chemical
models. The system comprises both forecast and hindcast systems using multiple models and has been
used for various short- and long-term air-quality studies [29–32]. For the study, 11 year simulations
during 2005–2015 were conducted using three emissions inventory data sets.

To simulate meteorology, this study used the Weather Research and Forecasting Model (WRF)
version 3.4.1, initialized with the National Center for Environmental Protection’s final operational
(FNL) global analysis data. The FNL product uses the global forecast system model with additional
data assimilated using the global data assimilation system. The Community Multiscale Air Quality
Model (CMAQ) [33], version 4.7.1, is used to simulate chemistry, with the Meteorology-Chemistry
Interface Processor (MCIP) version 3.6 used as a preprocessor and the AERO5 aerosol module and
Statewide Air Pollution Research Center version 99 (SAPRC99) [34] used as chemical mechanisms.

Regarding anthropogenic emissions for the CMAQ simulation, we used three sets of emissions
inventory combinations. First, we used the Intercontinental Chemical Transport Experiment–Phase
B (INTEX-B) 2006 emission inventory (http://mic.greenresource.cn/intex-b2006) [35] for all Asian
countries besides South Korea; for emissions inside South Korea, we used the Clean Air Policy
Support System (CAPSS) 2007. The second emission set utilizes the CAPSS 2010 emission inventory,
paired with the Model Inter-Comparison Study for Asia (MICS-Asia) 2010 emission inventory [36].
Third, the CAPSS 2013 emissions inventory and the Comprehensive Regional Emissions Inventory for
Atmospheric Transport Experiment (CREATE) 2013 [37] were used to represent the latest changes.

The CAPSS emission inventory has four emissions sectors: Point, area, on-road, and non-road.
Categories at multiple levels for each emission sector are also available: Combustion in energy
industries and in waste treatment and disposal (point); agriculture and other sources/sinks (area);
non-industrial combustion plants, combustion in manufacturing industries, production processes,
and storage and distribution of fuels (point and area); solvent use, other mobile sources, and machinery
(mobile); and fugitive dust (mobile and area). CO, NOx, SOx, PM10, and VOCs emission for each
of these upper-level categories are provided, except for fugitive-dust emissions [38]. For biogenic
emissions, we used the Model of Emissions of Gases and Aerosols from Nature (MEGAN) [39]. Biomass
burning and dust emissions were not included. Other studies have evaluated the general model
performance [29,30,40].

2.4. Conservative Downscaling

One common problem in comparing satellite-based NO2 observations to fine-scale NO2 simulation
is that satellite-based NO2 is typically too low at rural locations and too high at urban locations [41–44].
Kim et al. [44] demonstrated that typical urban NO2 plumes are too fine for resolution in current OMI
footprint pixels, causing serious bias, especially for small-scale local sources. In this study, we applied
the conservative downscaling technique suggested by Kim et al. [44] to adjust systematic biases caused
by geometric error in spatial sampling. This method conservatively regrids OMI observations spatially
into the target domain. Each OMI pixel is reconstructed by applying a spatial-weighting kernel from
the finer model simulation and then regridded into the domain grid using a fractional weighting
of each portion overlapped between the OMI pixels and domain grid cells. Column densities are
calculated as

C j =

∑
(Pi·Ki, j)· fi, j∑

fi, j
(1)

http://mic.greenresource.cn/intex-b2006
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where i and j are indices of data pixels, P, and grid cells, C. Ki, j is a pixel-specific spatial-weighting
kernel (see Figure 5 in Kim et al. [44]). The overlapping fractions, fi, j, are calculated as

fi, j =
Area

(
Pi ∩C j

)
Area

(
C j

) (2)

As spatial regridding is applied separately for each OMI pixel, strict mass conservation is
guaranteed. Notably, this conservative downscaling method theoretically assures the best agreement
between satellite and model by reconstructing fine-scale structures, so the differences between satellite
and model in this comparison might be a lower limit on the discrepancy. Actual differences could
be larger.

3. Results

3.1. Space-Borne Monitoring

NOx emission signals from the cement industry in South Korea can be detected from OMI
observations even before applying the conservative downscaling method. Figure 1A shows the spatial
distribution of the OMI NO2 VCD during springtime, averaged over April to June 2005–2014, using
normal spatial regridding. As mobile sources (62%), power plants (13%), and industrial sources (17%)
in South Korea are all major contributors to NOx emissions [38], the general distribution of OMI NO2

VCD agrees well with the locations of major cities (e.g., Seoul, Busan, Daegu, and Gwangju), power
plants (e.g., on the western coast), and industrial regions (e.g., Ulsan and Kwangyang) in the country.
Geographical distributions of major point sources of NOx emissions listed in the CAPSS 2010 emissions
inventory are also shown in Figure 1B for comparison with the OMI NO2 VCD distribution. Most strong
point sources in the emissions inventory are recognizable from the satellite signals, although the power
plants on the western coast have much weaker satellite signals than in the inventory. Interestingly,
two major locations for the cement industry are well distinguishable in the OMI NO2 VCD distribution:
The Yeongwol-Danyang-Jecheon (YDJ) region of central South Korea (marked with a gray box in
Figure 1C), and the Donghae-Samcheok region on the eastern coast.
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Figure 1. Spatial distributions of (A) Ozone Monitoring Instrument (OMI) NO2 volume column density
(VCD), (B) NOx emissions from the Clean Air Policy Support System (CAPSS) 2010 emission inventory,
and (C) difference in NO2 VCD between Community Multiscale Air Quality Model (CMAQ) (with
averaging kernel) and OMI (downscaling applied). See the body of the paper for details about the
averaging kernel and downscaling techniques. The gray box indicates the YDJ region.
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The OMI NO2 VCD is further compared to the modeled NO2 VCD to evaluate NOx emissions from
the inventory. To remove discrepancies due to the footprint pixel-resolution issue [44,45], we applied
the conservative downscaling technique as described in the methodology section above, and we
also applied averaging kernel information to adjust the difference in vertical sensitivity between the
satellite product and the model. Figure 1C plots the difference between the modeled NO2 VCD and
OMI NO2 VCD. The modeled NO2 VCD is clearly overestimated over the Seoul Metropolitan Area
(SMA) region and underestimated over several point sources, especially over the two regions where
cement factories are located. This study further focuses on the YDJ region, because the signals from the
Donghae-Samcheok region are likely mixed with NOx emissions from adjacent power plants.

Figure 2A shows the geographical coverage of the YDJ region. Six active companies in the region
produce 31 million tons of cement every year. The amount each company produces and their estimated
NOx emissions from the CAPSS 2010 inventory are listed in Table 1. Figure 2A shows zoomed-in
plots of this region, showing the locations of six cement factories and two surface-monitoring sites
operated by the National Institute of Environmental Research (NIER) Ambient Monitoring System
(AMS) network. Locations of point sources in the current emissions inventories were confirmed using
pictures from Google Earth (Figure 2B). As expected, the distributions of OMI NO2 VCD averaged over
April to September, 2005–2015 likewise confirmed good agreement between the emissions inventory
for the factories and satellite-observed NO2 VCD distributions.

Table 1. Six cement factories in the YDJ region, listed with number of kilns, production capacity, and
NOx emissions (CAPSS 2010) from each factory.

Region Danyang Yeongwol Jecheon
Company A B C D E F

Kilns 4 5 6 2 5 4
Capacity

(tons/year) 2,904,000 9,686,000 7,131,000 3,960,000 3,537,000 4,146,000

NOx Emission
(tons/year)

CAPSS 2007 1195 7650 6185 6839 3560 5312
CAPSS 2010 785 9652 5129 7089 3946 5448
CAPSS 2013 1036 8913 7579 6926 3812 7863
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Figure 2. (A) Geographical locations of six cement factories in the Yeongwol-Danyang-Jecheon (YDJ)
region and of National Institute of Environmental Research (NIER) Ambient Monitoring System (AMS)
surface-monitoring sites (Jecheon and Danyang) over the OMI NO2 VCD distribution (April–September
average from 2005 to 2015, Downscaled). (B) Satellite pictures of factories.
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Seasonal variation in the OMI NO2 VCD over the YDJ region also demonstrates characteristics of
the cement industry. Figure 3A shows the annual variation in OMI NO2 VCD over the SMA, the YDJ,
and pixels where cement kilns are located. The blue line indicates annual variation in the OMI NO2

VCD over the SMA region, which shows typical seasonal variation: High during the cold season and
reaching a minimum during summer. The profile for the YDJ region shows a similar general variation
but with slightly enhanced NO2 concentration during spring, when NO2 VCD becomes clearer for cells
where cement kilns are located. This seasonal profile matches the annual profile of cement production;
the CAPSS 2010 emissions inventory shows that cement production is highest in springtime, peaking
in May (the gray dotted line in Figure 3A), likely varying with demand from the construction industry.

Figure 3B,C show the inter-annual variation in OMI NO2 VCDs over the SMA and the YDJ region.
Red bars indicate OMI-observed NO2 VCD, and light and dark blue bars indicate modeled NO2 VCD
using CAPSS 2007, 2010, and 2013 emission inventories, respectively. Over the SMA, NO2 VCDs
simulated using information from CAPSS 2010 and CAPSS 2013 are lower than that simulated using
CAPSS 2007, reflecting the impact of continuous NOx emission reduction in the SMA region, especially
from the mobile sector. In spite of year-by-year variations, the OMI NO2 VCD generally agrees with
these simulations, located between modeled values, implying generally good performance over the
SMA. On the other hand, comparison of the modeled and satellite NO2 VCD over the YDJ region shows
significant discrepancies. NO2 VCDs modeled using both CAPSS 2007 and 2010 emission inventories
are just around or less than half of the satellite-measured NO2 VCDs. We noticed substantial observed
springtime NO2 VCDs over the YDJ region.

Interestingly, OMI-observed NO2 VCDs over the YDJ region were as high as the SMA average,
while the model seriously underestimates NO2 VCD over the six cement factories. The 11 year
springtime average over the YDJ region is 12.75 × 1015 mole/cm2, slightly less than the SMA average,
13.35 × 1015 mole/cm2, but this average is much higher when counting only kiln pixels (e.g., 18.83 ×
1015 mole/cm2). The yearly variation in NO2 VCD also raises an important question. During the study
period, the observed OMI NO2 VCD over the YDJ region slightly increased, implying the possible
addition of unknown sources of NOx emissions or degradation in the current facilities’ emissions
control efficiency. We have no evidence to specify the reason for this regional increase in NO2 VCD
and suggest that future studies should further investigate this change.

3.2. Surface Monitoring

We further examined observations from surface-monitoring sites. As mentioned above, two NIER
AMS monitoring sites are available, in Jecheon and Danyang. The Jecheon site has a longer archive
dating back to early 2000, whereas observations from the Danyang site are available from 2011. Figure 4
shows the diurnal variation in NO2 concentrations over the two surface monitoring sites in the YDJ
region, with the distribution of SMA NO2 concentration in the whisker plot. The Jecheon site is located
near road traffic, so its diurnal variation matches the typical diurnal variation in surface-monitoring
sites in the SMA affected by traffic-related NOx emissions: It has two peaks, one during early rush
hour near 09:00 and a second in the evening around 21:00. We therefore cannot conclude that these
observations from the Jecheon site represent chemical activity from the cement factories.

The profile from the Danyang site is very different. In general, its NO2 concentration is very low
compared to the concentrations from the Jecheon site or from the SMA sites. However, it shows a
very high peak of emissions concentration at a specific time of the day, around 10:00. We suggest two
possible reasons for this abnormal peak in the morning. First, it could be related to the intermittent
operation of factory facilities. Second, we expect a typical diurnal wind direction change because this
region is surrounded by mountains. Mountain-valley breeze, which happens due to the difference in
thermal capacity between mountain top and valley, can cause a routine change in wind direction at a
certain time of the day. If the signal were truly caused by a routine mountain breeze, surface monitors
could detect emissions signals only when they are located on the downwind side of the emissions
sources. Therefore, with a real emissions signal shown only in the morning, the actual emissions from
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cement factories at other hours of the day would be as high as the concentrations only detected in the
morning, implying the real emissions would be higher than the ones inferred from the observations.
While we do not have near observations of wind direction, westerly winds are dominant in the model
(Figure 5).
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region, especially, the NO2 concentration surpassed 30 ppb downwind of cement factories at the 1.5 
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flight path, shows much lower concentrations, only 30% to 50% of that observed over the YDJ region. 
Model concentrations only reach up to 10 ppb in the Donghae-Samcheock region, and up to 5 ppb in 
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analyses are presented.

3.3. In-Situ Measurements

Additional evidence of excessive NOX emissions from the cement industry in the YDJ region is
available from the KORUS-AQ field campaign measurements. Figure 6 shows the spatial distribution
and time series of NO2 concentration measured by a King Air aircraft on 3 June 2016 KST. The aircraft
flew over cement facilities in Donghae-Samcheock (around 10:30) and in the YDJ region (around 11:45).
Over both regions, enhanced NO2 concentrations, up to 40 ppb, were observed. Over the YDJ region,
especially, the NO2 concentration surpassed 30 ppb downwind of cement factories at the 1.5 km level.
On the other hand, the modeled NO2 concentration (thick red line), retrieved along the flight path,
shows much lower concentrations, only 30% to 50% of that observed over the YDJ region. Model
concentrations only reach up to 10 ppb in the Donghae-Samcheock region, and up to 5 ppb in the YDJ
region. This implies that the actual emissions rate could be more than twice as high as the current
emissions inventory. This result is consistent with the satellite comparison.

3.4. Impact Assessment by Model

We further performed photochemical transport model simulations to quantitatively demonstrate
the impact of emissions from the cement industry on local and regional air quality. Three simulations—a
base and two sensitivity runs—were conducted to represent the so-called known and actual impact
assessments. Considering general characteristics of constructing bottom-up emissions inventories,
the locations and types of released emissions from the cement industry are well-established in
the CAPSS inventory. The actual amount of release, however, is always challenged by bottom-up
approaches. The “BASE” simulation used CAPSS 2013 emissions, less emissions from the cement
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industry. The “CEMENT” simulation used the CAPSS 2013 emissions inventory, and the “CEMENT2”
simulation used doubled cement emissions (i.e., CEMENT2 = BASE + (CEMENT−BASE) × 2).
We decided to model doubled cement emissions based on the satellite NO2 VCD comparison described
in the previous section, a decision we believe is rather conservative. We lack clear evidence that
other (non-NOx) emissions are also doubled, but the synchronized behavior of other components in
Figure 4B may justify the use of NO2 VCDs as indicators of the industrial activity of cement facilities.Atmosphere 2020, 11, x FOR PEER REVIEW 9 of 15 
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Figure 6. (A) Spatial distribution and (B) time series of NO2 concentration measured by King-Air
aircraft on 3 June 2016 during the KORea-United States Air Quality Study (KORUS-AQ) field campaign.
The thick red line shows modeled NO2 concentrations from the CMAQ model. Distances from the
aircraft to six YDJ cement factories are shown in the bottom panel.

To separate the emissions of the cement industry, we examined whole CAPSS Source Classification
Codes (SCCs), identifying those codes related to the cement industry. Table 2 lists eight-digit
CAPSS SCC codes related to the cement industry, with four levels of categories. In total, we
have removed 32 emissions sources from CAPSS to separate emissions from the cement industry.
Table 3 summarizes total emissions from the cement industry for each province in South Korea. For
NOx emissions, CAPSS 2013 has eight major classification categories [46]—‘combustion in energy
industries (177,219 tons/year),’ ‘Nonindustrial combustion plants (88,769 tons/year),’ ‘Combustion
in manufacturing industries (178,034 tons/year),’ ‘Production processes (55,151 tons/year),’ ‘Road
transport (335,721 tons/year),’ ‘Other mobile sources and machinery (246,027 tons/year),’ ‘Waste
treatment and disposal (9529 tons/year),’ ‘Other sources and sinks (165 tons/year).’ Most cement
industry NOx emissions belong to the industrial combustions.



Atmosphere 2020, 11, 881 10 of 14

Table 2. CAPSS Source Classification Codes corresponding to emissions by the cement industry.

Code SCC1 SCC2 SCC3 SCC4

03021300 Industrial Combustion Furnace Cement

03022000 Industrial Combustion Furnace Misc.

03010100 Industrial Combustion Combustion facilities 1–3 class boiler

04990201 Industrial processes Misc. manufacturing Cement
(Carbon removing) Point source

04080202 Industrial processes Ammonia consumption SNCR Industrial

09010201 Waste disposal Waste incinerator Industrial waste <200 kg/h

Table 3. Emissions from the cement industry in the CAPSS 2013 emissions inventory.

Provinces CO NOx VOC NH3 SOx PM10 PM2.5 PMC

Gangwon-do 767 40,973 92 93 6847 83 35 65

Chungcheongbuk-do 63 25,637 45 4 3885 120 61 72

Chungcheongnam-do 8 23 1

Jeollabuk-do 3 2

Jeollnam-do 22 1036 3 785 1

Three months were simulated, May to July 2015. Figure 7 shows the impact of cement emissions
on surface ozone concentration. By adding emissions from the cement industry to the base case, MDA8
ozone—the daily maximum of the eight-hour ozone moving average—showed significant changes.
At the location of cement facilities, MDA8 ozone strongly decreased due to strong titration, increasing
significantly in neighboring areas. Increased simulated MDA8 ozone concentrations reach as high as 3.5
and 4.1 ppb during June (for “cement” and “cement2” simulations, respectively). The impact on PM2.5

concentration is also highest during June, reaching up to 1.131.95 µg/m3 and 1.95 µg/m3 in the “cement”
and “cement2” simulations, respectively (Figure 8). Depending on the wind direction, these impacts
can reach the highly populated southern Gyeonggi province, and they may affect visibility in national
parks (e.g., Woraksan and Sobaeksan) and fruit production in Gyeongbuk province.Atmosphere 2020, 11, x FOR PEER REVIEW 11 of 15 
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4. Discussion

Because regional air quality is a serious public issue in South Korea, increasing interest has been
drawn to the role of emissions from major point sources. While the impact of electricity-generating
power plants drew early attention [32], the role of emissions from major industrial facilities also needs
more investigation. This study investigated NOx emissions from the South Korean cement industry
using remote-sensing measurements from space, surface observations, in situ aircraft measurements,
and a regional chemical-transport model. We focused on the YDJ region, where six cement factories
are located.

We identified NOx emissions signals from cement kilns in the YDJ region using the OMI NO2 VCD.
Compared to other point sources in South Korea, the YDJ region showed one of the most dominant
NO2 signals, especially during the spring. Compared to the OMI NO2 VCD, the modeled NO2 VCD is
much lower in the YDJ region, implying possible underestimation of NOx emissions in this region by
current emission inventories.

The findings of this study are as follows.

1. The OMI NO2 VCD detected signals from the South Korean cement industry. Additionally,
application of the downscaling technique helped pinpoint small-scale, local emission sources.

2. Emission rates from the South Korean cement industry need further investigation. The model
simulation can explain only half of currently observed OMI NO2 VCDs. Although this study
only described NOx emissions, such emissions may indicate other emissions that could be an
important subject of future research.

3. Observations from surface-monitoring sites and aircraft measurements also support the detections
by satellite. We also suggest that additional, continuous surface-monitoring sites be established
downwind of cement factories to monitor their emissions. On-site measurements, if available,
should be made available to the public for further investigation.
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4. Modeling analyses demonstrate that cement industry emissions have significant impact even with
the current emissions inventory. We estimate that actual emissions exceed current inventories by
more than a factor of two, suggesting significant environmental impacts, both on surface ozone
(up to approximately 4 ppb) and PM2.5 (up to approximately 2 µg/m3).

Finally, we suggest further investigation of the impact of emissions from the cement industry
using a fine-resolution modeling study. As the YDJ region is surrounded by mountains, fine-scale
modeling down to 3 or 1 km resolution is required to identify the real impact of those emissions. As the
YDJ region is located near the center of South Korea, emissions from the cement industry could affect
the SMA, southern South Korea (near Busan), Sejong City, or all these populated areas. In addition,
use of more recent emissions inventories and recently launched space-borne instruments with finer
observing resolutions (e.g., TROPOMI) [46] is strongly recommended.
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