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Abstract: The importance of permeable and pervious pavements in reducing urban stormwater
runoff and improving water quality is growing. Here, a new pervious pavement block material
based on recycled polyethylene terephthalate (PET) waste is introduced, which could contribute
to reducing global plastic waste via PET’s utilization for construction material fabrication.
The engineering properties and durability of recycled PET aggregate (RPA) pervious blocks are
verified through flexural tests, in situ permeability tests, clogging tests, and freeze-thaw durability
tests, and their cost-effectiveness is assessed by comparison with existing permeable/pervious pavers.
Their engineering and economic characteristics confirm that the RPA pervious blocks are suitable for
use in urban paving.

Keywords: pervious pavement block; recycled PET aggregate (RPA) block; flexural strength;
permeability; freezing and thawing

1. Introduction

Permeable pavement, including pervious concrete, porous asphalt, and permeable interlocking
pavers, has been widely studied for the management of urban surface runoff and stream erosion
problems [1–3], groundwater recharge [4], and prevention of pollutant inflow into water systems in
urban water quality control [5]. The increasing trend in urban flooding and geotechnical engineering
hazards due to climate change [6] motivates research towards the development of environmentally
friendly permeable pavement materials such as recycled concrete aggregates [2,7], seashells [8,9],
and furnace residues (e.g., fly ash and bottom ash) [10,11].

The rapid global growth of plastic production (288 million metric tons (Mt) in 2012; a 620% increase
since 1975) is accompanied by an increasing plastic waste and pollution problem, with 35% of plastic
waste being from the food packaging and beverage industries [12]. This increase in plastic waste causes
serious environmental threats, especially to oceans and marine ecosystems [13,14]. The Convention on
Biological Diversity report of 2012 stated that all sea turtles, 45% of marine mammal species, and 21%
of seabirds are at risk because of oceanic plastic pollution [15]. Ingested and inhaled microplastics are
also a threat to human health [16]. Despite the significant threats posed by plastic waste and pollution,
the global total of such waste is estimated to increase to 12,000 Mt by 2050, with 4977 t accumulated
in 2015 alone [17]. Attempts have therefore been made to utilize plastic wastes for engineering
construction and building purposes [18–21]. Previous studies of plastic waste recycling have involved
laboratory tests of engineering properties and in situ performance. In this study, synthetic resin
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waste was used as the main binder in the production of pervious blocks from aggregates of recycled
polyethylene terephthalate (PET) waste. The engineering performance of the blocks (flexural strength,
in situ permeability, clogging, and freeze–thaw durability) was tested experimentally.

2. Materials and Methods

2.1. Materials

PET is the most common thermoplastic resin used for food and beverage packaging, including
plastic bottles [22], and thus PET chips were used to produce pervious blocks in this study. PET
has the chemical composition (C10H8O4)n, a melting temperature of 250 ◦C, and a density of
1.35 g cm−1 [23]. Used PET bottles were collected from a waste recycling plant in Incheon, Republic of
Korea, and shredded into small chips of equivalent radius of 10 ± 5 mm to minimize microparticles
(Figure 1a). The resulting PET chips were washed with water and dried for mixing. Coarse-grained
aggregates having grain sizes of 2 × 6 mm, specific gravity (Gs) of 2.69, moist adsorption capacity of
0.51%, and unit weight of 1.46 g cm−3 were used to produce recycled PET aggregate (RPA) blocks.

2.2. Fabrication of RPA Blocks

RPA blocks were fabricated by preheating aggregate in a heating muller mixer at up to 270 ◦C
(Figure 1b). Clean PET chips were added with a 7.5% PET/aggregate mass ratio and mixed for 20 s
at 30 rpm at 270 ◦C ± 5 ◦C. Preliminary mixing and molding (compacting) trials for different PET
contents (2.5%, 5.0%, 7.5%, and 10.0%) indicated the 7.5% PET/aggregate mass ratio, which resulted
in a 30% PET/aggregate volume ratio, to be the most feasible RPA block mixing condition in terms
of thorough mixing and highest final density (2.13 g cm−3) after molding. During heated mixing
(Figure 1c), the PET chips melted and coated the surfaces of the aggregate particles. After mixing,
the melted PET/aggregate mixture was poured quickly into a cuboid mold (200 mm long × 200 mm
wide × 80 mm deep), compressed with a 40 MPa overburden pressure, and cooled to room temperature
(Figure 1d). The block fabrication process (Figure 1a–d) was controlled to provide a void ratio of
0.2–0.3. The average RPA block density was maintained at 2.13 g cm−3.
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Figure 1. Overall procedure for recycled polyethylene terephthalate (PET) aggregate (RPA) block 

fabrication: (a) chopped PET chips; (b) aggregate heating; (c) RPA chips heated aggregate mixing; (d) 

shape molding with pressure; (e) fabricated RPA block; (f) X-ray CT profile of RPA block specimens. 
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fabrication: (a) chopped PET chips; (b) aggregate heating; (c) RPA chips heated aggregate mixing;
(d) shape molding with pressure; (e) fabricated RPA block; (f) X-ray CT profile of RPA block specimens.
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2.3. Material Testing

2.3.1. Flexural Strength Test

The flexural strength test involved the application of a transverse load through a steel bearing
plate (6 mm thick) along with the center line of an RPA block supported by two rods 175 mm apart,
as per American Society for Testing and Materials (ASTM) C67 requirements [24]. The modulus of
rupture at the plane of failure (S) was calculated by Equation (1):

S (Pa) =
3Wl
2bd2 (1)

where W = maximum load (N), l = support spacing (175 mm), b = net width (200 mm), and d = depth
(80 mm). The test was repeated with five samples to ensure consistency.

2.3.2. In Situ Permeability Test

Surrounding disturbed or unstable soil may cause clogging of pavement surfaces, reducing
permeability. In situ infiltration testing was undertaken using a single-ring infiltrometer to infiltrate
3.6 kg of water after prewetting the test block, following ASTM C1701 requirements [25]. The penetration
time was measured at 0.1 s intervals for 2 min, and the infiltration rate (I) was calculated using
Equation (2):

I
(
mm h−1

)
=

K ×M
D2 × t

(2)

where M = mass of the infiltrated water (3.6 kg), D = inner diameter of the infiltration ring
(300 mm), t = time (s) required for of the total water (M) to infiltrate, and K = conversion coefficient
(4,583,666,000 mm3

·s (kg·h)−1). The test was repeated with three different samples to obtain a reliable
average value.

2.3.3. Sand-Clogged Permeability Test

Laboratory-based sand-clogged permeability tests were performed under controlled clogging
conditions that were based on an earlier study [26]. The RPA blocks were placed in a leveled supporting
mold on a shaking table. Sand clogging of intergranular pore spaces in RPA blocks was achieved
through a two-stage procedure: (1) 24 g of ‘jumumjin’ sand (Cu = 1.94, Cc = 1.09, emax = 0.89, emin = 0.64,
Gs = 2.65, D50 = 0.52 mm, USCS = SP) was spread evenly over a dry RPA block and vibrated at 60 Hz
for 30 s to allow the sand particles to penetrate the block; (2) water (400 mL) was poured onto the block,
followed by a further 30 s of vibration, and permeability was assessed by the time required for the
water to penetrate through the block. The test was conducted with three different samples to obtain a
reliable average value.

2.3.4. Freeze–Thaw Durability Test

Cubed RPA specimens were used in rapid freeze–thaw cycles in accordance with ASTM C666 [27].
Hot-mixed PET/aggregate was poured into acrylic 80-mm-cubed molds, compressed, and cooled for
hardening. Ten such RPA samples were prepared and placed in a freezing chamber with water, with a
thermometer attached to the center of the top of each block. Freeze–thaw cycles were applied by
freezing at −18 ◦C and thawing at +4 ◦C. The freezing stage was applied for 3 h and the thawing stage
for 1 h, as per ASTM C666. A total of 120 freeze–thaw cycles were performed over 20 days. Durability
was assessed by measuring the mass loss of each block after each of the 30 freeze–thaw cycles by
removing loose particles and spalled materials via washing. Washed particles and spalled materials
were collected and dried in an oven to determine the mass loss [27]. All ten samples were subjected to
120 freeze–thaw cycles.
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3. Engineering Properties of RPA Blocks

The engineering properties (flexural strength, in situ permeability, sand-clogged permeability, and
freeze–thaw durability) of the RPA block assessed via standard test methods [24,25,27] are summarized
in Table 1 and compared to general design criteria for permeable pavements [28–32]. Details of each
engineering property are described in the following sections.

Table 1. Engineering properties of the RPA block assessed by this study and relevant international
design criteria.

Properties RPA Block International Criteria

Test Results Test Method Recommendation Institution

Flexural strength 5.2 MPa ASTM C67 1.0–3.8 MPa Portland Cement
Association (USA)

In situ permeability 2365.2 mm/h ASTM C1701
828.0 mm/h 2 New Jersey

Stormwater (USA)

360.0 mm/h 2
Seoul Metropolitan

Government
(Korea)

Sand-clogged
permeability 2.93 to 1.63 mm/s ASTM C1701 1 0.14 mm/s 3

Interlocking
Concrete Pavement

Institute (USA)

Durability
(freezing and

thawing)

2.0% mass loss 4

per 120 cycles on
average

ASTM C666 1% or less per 50
cycles ASTM C936

1 Sand-clogged permeability test was conducted according to ASTM C1701. 2,3 Minimum requirements for permeable
concrete and porous asphalt. 4 Average mass loss after 120 repeated freeze–thaw cycles.

3.1. Flexural Strength

Flexural strength is one of the most important criteria in the evaluation of structural properties of
pavements. All five samples had S values of >5.0 MPa, averaging 5.2 MPa, thus satisfying the flexural
strength criterion of 1.0–3.8 MPa for pervious concrete [28]. Furthermore, the flexural strength of the
RPA blocks compared well with that of ordinary concrete pavement (4.5 MPa), pervious concrete
blocks (1.7–3.8 MPa), and permeable pavement based on recycled glass (3.4 MPa), as summarized in
Figure 2 [33–35].
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3.2. In Situ Permeability and Sand-Clogged Permeability

The in situ permeability of RPA blocks averaged 0.657 mm s−1, satisfying minimum design criteria
(Table 1) for pervious blocks (Korea, 0.1 mm s−1; USA, 0.23 mm s−1) [29,30] and exceeding that of
previously produced permeable pavement materials (Figure 3) [36,37]. This level of ground infiltration
capability indicates that RPA blocks should be effective for urban stormwater control.

The nonclogged laboratory-based permeability (2.93 mm s−1) was higher than the in situ
permeability because of the absence of an underlying soil layer, although this decreased to 1.63 mm s−1

with sand clogging. The sand-clogged permeability satisfies the minimum infiltration rate of
0.14 mm s−1 recommended by the US Interlocking Concrete Pavement Institute [31]. The sand-clogged
permeability of the RPA blocks was also improved when compared to values reported in previous
studies (Figure 4) [1,38,39], with lower maintenance (e.g., cleaning or vacuuming) requirements and
cost as previously anticipated.Sustainability 2020, 12, x FOR PEER REVIEW 6 of 11 
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3.3. Durability

Figure 5 shows the average remaining mass of ten RPA block samples (square symbols) subjected
to freeze–thaw durability assessment. The RPA blocks sustained <1.5% mass reduction after 60
freeze–thaw cycles, with an average loss of only 2.0% over 120 cycles (Figure 5).Sustainability 2020, 12, x FOR PEER REVIEW 7 of 11 
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Figure 5. Durability (remaining mass through freeze–thaw cycles) of the RPA block and comparison
with other lightweight pavement materials.

As the remaining mass of RPA blocks follows a linear reduction path, the remaining mass after
50 cycles is extrapolated to be 99.1%, which satisfies the weathering criteria (less than 1.0% per
50 cycles) for paving units (Table 1) [32]. The durability of RPA blocks is therefore adequate and at
least comparable with those of lightweight aggregate and lightweight concrete involving recycled
plastic-waste aggregate (Figure 5) [40,41]. Previous freeze–thaw studies of conventional and permeable
pavers found that rubberized pervious concrete sustains a mass loss of 3.5% over 240 cycles, and plane
concrete and clay-soil blocks sustain mass losses of 34.0% over 300 cycles and 0.7% over 28 cycles,
respectively (Table 2) [42,43].

Table 2. Durability comparison between the RPA block and other engineered pavement materials.

Reference This Study Gesoğlu et al. [42] Aubert and
Gasc-Barbier [43]

Material RPA block Plane concrete Rubberized
pervious concrete Clayey soil block

Weathered mass
(%/cycles) 2.0%/120 cycles 34.0%/300 cycles 3.5%/240 cycles 0.7%/28 cycles
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3.4. Performance Summary and Economic Feasiblity of RPA Block

The RPA blocks satisfy international requirements for permeable pavement in terms of flexural
strength, in situ permeability, and durability (Table 1), and they have higher engineering performance
than other currently available permeable pavement materials. Their cost-effectiveness was estimated
by comparison with porous asphalt, pervious concrete, interlocking pavers/open-cell pavers,
and open-cell/grid-paving systems, assuming a unit area (1 m2) implementation (Figure 6).Sustainability 2020, 12, x FOR PEER REVIEW 8 of 11 
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In Figure 6, the estimated mean material cost per 1 m2 permeable pavement installation is plotted
with the reported upper and lower ranges. The RPA block material cost is calculated to be USD 3.19 m−2

by considering the material prices of PET chips, aggregates, and the fabrication process (energy for
heating and machinery operation) required to produce 25 RPA blocks (200 mm × 200 mm × 80 mm).
Compared to other permeable pavement materials, the RPA block seems to be economically feasible in
advance. In addition, permeable pavement sites constructed with RPA blocks are expected to require
lower maintenance costs due to the competitive sand-clogged permeability of RPA blocks (Table 1;
Figure 3), which exceeds that of other permeable pavement systems requiring 2 to 4 times as much in
situ maintenance to ensure sufficient ground infiltration [26].

Furthermore, RPA block production has the potential to reduce plastic waste by recycling PET
bottles. A single block contains 81.75 g of PET chips, and their application in urban pervious paving
would make a significant contribution to the reduction of global PET waste. For example, the paving
of half the area of New York City (392 km2) in RPA blocks would recycle 6.7% of the current global
annual PET production (13 Mt) [44]. The heating of recycled PET to temperatures above 270 ◦C is
reported to enhance its mechanical and thermal properties through crystallization [45,46], which would
have contributed to the high freeze–thaw durability achieved here (Figure 5). RPA blocks are thus
expected to have sufficient stability and durability even during hot seasons when pavement surface
temperatures may exceed 65 ◦C [47,48].
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4. Conclusions

RPA blocks made of recycled PET provide a new and environmentally friendly pervious paving
material. Their flexural strength and in situ permeability are comparable with or exceed that of the
most commonly used pervious-concrete paving, meeting requirements of both the USA and South
Korea, with lower maintenance costs (due to less clogging) and high endurance performance in all
weather conditions. Furthermore, the cost of RPA blocks is lower than that of other permeable paving
systems, with reduced maintenance requirements. RPA blocks thus have high potential for sustainable
use in pervious paving, with competitive engineering performance and economic feasibility.
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