
electronics

Article

Platform-Independent Malware Analysis Applicable
to Windows and Linux Environments

Chanwoong Hwang 1, Junho Hwang 1, Jin Kwak 2 and Taejin Lee 1,*
1 Department of Information Security, Hoseo University, Asan 31499, Korea;

20205251@vision.hoseo.edu (C.H.); 20185184@vision.hoseo.edu (J.H.)
2 Department of Cyber Security, Ajou University, Suwon 16499, Korea; security@ajou.ac.kr
* Correspondence: kinjecs@hoseo.edu

Received: 13 April 2020; Accepted: 6 May 2020; Published: 12 May 2020
����������
�������

Abstract: Most cyberattacks use malicious codes, and according to AV-TEST, more than 1 billion
malicious codes are expected to emerge in 2020. Although such malicious codes have been widely
seen around the PC environment, they have been on the rise recently, focusing on IoT devices
such as smartphones, refrigerators, irons, and various sensors. As is known, Linux/embedded
environments support various architectures, so it is difficult to identify the architecture in which
malware operates when analyzing malware. This paper proposes an AI-based malware analysis
technology that is not affected by the operating system or architecture platform. The proposed
technology works intuitively. It uses platform-independent binary data rather than features based on
the structured format of the executable files. We analyzed the strings from binary data to classify
malware. The experimental results achieved 94% accuracy on Windows and Linux datasets. Based
on this, we expect the proposed technology to work effectively on other platforms and improve
through continuous operation/verification.

Keywords: malware analysis; binary analysis; strings analysis; deep neural network;
feature importance

1. Introduction

1.1. Background

Recently, security threats from malware have been increasing every year. As new and unknown
malware appears, there is a limit to responding with signature-based antivirus. Previously distributed
malware was mostly for the purpose of stealing information or remote control of devices, but recently
ransomware that requires money after encrypting files in electronic devices has surged. Ransomware is
mostly distributed using phishing emails or access to malware-infected pages and file sharing methods
such as torrent. To counter such attacks, it is necessary to regularly patch (update) antivirus software
and applications. This type of security patching is vulnerable to zero-day attacks, i.e., before the patch
was applied, and may result in defenselessness. To respond to this, AI technology that can predict
and detect new and malware variants based on machine learning has been developed. This method
however often produces false positives and many studies have been conducted to reduce the number
of these errors [1–4].

With the advent of smart homes, embedded systems have been developed that use systems
mounted in various electronic products such as TVs, radios, and air purifiers. In addition,
the development of IoT devices that connect sensors to all objects to communicate and interact
with each other has provided convenience to users. IoT and embedded technology are services for
various interactions, not just development techniques, and various services are configured according

Electronics 2020, 9, 793; doi:10.3390/electronics9050793 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0003-3078-3459
http://dx.doi.org/10.3390/electronics9050793
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/5/793?type=check_update&version=3

Electronics 2020, 9, 793 2 of 18

to the provider and user location. There are various analysis environments that support many services
available. Table 1 shows the analysis environment used for IoT/embedded environments. However,
malware is appearing on various platforms due to the increase of IoT/ embedded systems as well as
existing PCs. This is a malicious operation that leaks device information or account information and
controls the device remotely. In order to respond to these various malware platforms in real time,
there are limitations in existing security methods, and there is a disadvantage in that security policies
must be implemented for each platform. This is why we started research that can analyze malware
independently on various platforms.

Table 1. Examples of analysis environments that support IoT/embedded devices.

Name Tizen Brillo Fuchsia LiteOS YunOS

Developer
Linux Foundation,
Tizen Association,

Samsung, Intel
Google Google Huawei Alibaba

OS family Unix-like Android Android Linux based Android

Platform ARM and x86
ARM, Intel x86,
and MIPS-based

hardware

ARM(32/64 bit)
and PC(64 bit)

ARM (M0/3/4/7,
A7/17/53, ARM9/11),

x86, and RISC-V
-

The latest research shows that on average people own three Internet-connected smart devices
such as smartphones and tablets [5]. Various IoT devices, such as smart devices, constitute an endpoint.
Most cyberattacks use malware to control the endpoint. Based on this, cyberattacks lead to the flow of
internal network scans, main server access and other large-scale security incidents. Most of the existing
endpoints used to be PC environments, but as IoT devices have become widely used, there are a large
number of IoT endpoint devices. Many of these IoT endpoints can increase the number of targets to
attack and, in conjunction with the current weak IoT device security environment, can lead to serious
security incidents. As the information accessible by IoT devices extends beyond personal information to
very sensitive information such as financial services and autonomous driving information, the security
threats are becoming more serious. Security experts, on the other hand, need to establish malware
analysis and security policies for multiple IoT devices. Manual analysis of malicious codes on these
various architectures is difficult. Therefore, there is a need for a method that can statically analyze
malware in various architectures and automatically run as code.

The problems with existing malware analysis technologies can be summarized as follows: First,
a lack of complex Linux-based malware analysis. According to Eclipse’s Key Trends for IoT Developers
2018 [6], Linux accounts for 71.8% of the operating systems used for IoT devices, gateways, and cloud
back-end devices, and the application of Linux to industrial devices is also expanding. However,
pattern-based and AI-based malware analysis techniques are mostly limited to Windows malware,
and there is no Linux-based anti-malware technology which use is expected to increase significantly in
the IoT/embedded environment. In addition, the development of malicious code response technology
that can operate in various architecture environments is complicated because it is mainly based
on network logs. Second, an endpoint environment that is not affected by the platform should be
considered. The proposed model can classify malware that penetrates endpoints based on AI-based
malware analysis technology that is not affected by the platform. The existing AI-based malware
analysis technology consisted mainly of analysis and research on Windows, Android, etc., and the
analysis technology of many architectural/operating system combinations in Linux or IoT environments
was not fully studied. Thus, the platform-independent malware analysis proposed in this paper is
a malware analysis technology that can be commonly applied to any binary data regardless of the
architecture or type of operating system. It is applied to a 5G/IoT environment and its performance and
results have been verified using open data sets and self-collected data sets. The system is an effective
and sustainable model that can apply separate security policies, such as expert analysis, to complement
each other’s inherent technology shortcomings.

Electronics 2020, 9, 793 3 of 18

1.2. Challenges with Linux/Embedded/IoT Environments

Statistics show that Microsoft’s Windows operating system has a 83% of the PC market [7],
so malware writers have also targeted the Windows operating system. Malware-related research is also
mainly conducted only in the Windows operating system environment, so there is a lack of research on
Linux malware. Cozzi et al. [8] is the main study that revealed the current status of Linux malware
analysis research. The research revealed the major challenges that can arise from Linux malware
research and major operational processes of samples of more than 10,000 datasets built on its own.
The main challenges that can arise from Linux malware research can be represented as:

1. Diversity of computer architectures: Linux is known to support more than
10 different architectures.

2. Diversity of loaders and libraries: If you do not have the appropriate loader and library for your
analysis environment, you can prevent the sample from starting execution.

3. Diversity of operation systems: Linux can have many interoperability issues, dependency
problems, etc.

4. The challenge of static links: Static linking makes the resulting binary code more portable, but it
is difficult for analysts to analyze the files.

5. The challenge of the analysis environment: Linux malware analysis is difficult to perform in
environments such as architecture, libraries, and operating systems that are perfectly matched.

6. Lack of previous studies: It is not clear how to design and implement an analysis pipeline
specifically tailored for Linux malware and there is no comprehensive analysis.

First, it is related to various target environments. Linux systems are known to support
dozens of architectures, which requires analysts to prepare different sandboxes and port different
architecture-specific analysis components to support each one. In addition, a copy of the requested
loader to use the ELF file format might not exist in the analysis environment, preventing the sample
from starting execution. With the recent increase in the number of IoT devices, considerations such as
devices, considerations such as device type, vendor, and software dependencies become more complex,
making it difficult to deal with malware targeting these systems. Second, there is a lack of existing
research. It is not clear how to design and implement an analytics pipeline specifically designed for
Linux malware, and existing studies build and use a representative dataset using honeypots that focus
solely on botnets.

Recently, as the industrial market is growing around the Internet of Things (IoT), the number of
various embedded devices is overflowing. In addition, the need for security technology and research to
IoT malware is emerging. The embedded Linux malware environment is not very different from Linux,
but there are some distinctive features. According to Costin et al. [9], there are five major challenges
that can be summarized as follows:

1. Difficulty to build a representative dataset: In complex environments with various devices,
vendors, architectures, and commands, it is difficult to construct scale datasets.

2. Difficulty extracting data by identifying firmware: One challenge often encountered in firmware
analysis and reverse engineering is the difficulty of reliably extracting metadata from a
firmware image.

3. Unpacking and custom formats: While this task would be easy to address for traditional software
components, where standardized formats for the distribution of machine code, resources and
groups of files exist, embedded software distribution lacks standards.

4. Scalability and computational limits: One of the major advantages of performing extensive
analysis is the ability to correlate information across devices. Thus, analysis speed is crucial to
computing speed.

Electronics 2020, 9, 793 4 of 18

5. Direct results check: Confirming the results of the static analysis on firmware devices is a tedious
task requiring manual intervention from an expert. Scaling this effort to thousands of firmware
images is even harder.

Typically, collecting refined datasets is difficult because the environment is complex due to a
variety of devices, vendors, and architectures in existing Linux systems. Lack of standardization
also makes it difficult to analyze data due to vendor-specific data formats. In addition, due to the
complexity of the environment, human intervention, such as manual analysis by analysis experts,
is very much required. Thus, for Linux-based malware security, many problems arise due to complex
environments and a lack of basic research and requires a natural automated analysis system.

With the development of IoT, new security problems are emerging. The main challenge for
IoT security are a consequence of the heterogeneity and the large scale of objects. Zhang et al. [10]
described the ongoing challenges of security and research opportunities. The main challenges related
to IoT-related malware can be summarized as follows:

1. Linux-based IoT malware: The first IoT malware discovered was Linux-based malware.
2. Limited resources: Unlike in x86-architectured PCs, the computing power of IoT devices is

relatively small.
3. System vulnerability easily exposed: Most of the IoT is occupied by the mobile operating system

Android, and unlike iOS, Android is open-sourced.
4. Lack of previous studies: To our best knowledge, at present there is little research work dedicated

to countermeasures against IoT-targeted malware.

As aforementioned, the threat of IoT-targeted malware is serious due to the limited resources of
IoT devices. Moreover, conventional security mechanisms against malware can be infeasible while
shifted directly from the common x86 architecture platforms to the IoT platform. There are also security
issues for Android, which accounts for the largest portion of IoT devices. Unlike iOS, Android is
open-sourced. Therefore, it is easy to detect the vulnerability of the system. Once malware compromises
front end devices, the IoT network is exposed to threats. The main concern is sensitive data leakage.
The current permission protection only provides course-grain management, namely all-or-nothing
choice, to restrict the type of connected devices and disable the runtime control. The malware threats
and countermeasures in IoT will become critical and should addressed. Therefore, without a generic
abstraction of the IoT malware, current solutions can be ad-hoc and even inapplicable.

1.3. Contribution

1.3.1. Malware Analysis Support in Various Linux/IoT Environments

Linux/IoT supports various environments and services, so it is difficult to understand the
architecture or operating system used. Table 2 shows the various platforms that support IoT.
In addition, with the increase in IoT devices, various endpoint environments are being constructed.
There are also security issues. Most IoTs use the Linux operating system called Ubuntu Core [11].
However, the IoT configuration has so far faced an incompleteness that is difficult to analyze due to
the lack of a standard architecture definition worldwide. As a result, there are difficulties in analyzing
Linux, and security becomes more difficult when utilizing the vulnerable IoT to take control of internal
systems [12]. The reason Linux malware analysis is difficult is that files are not in the same structural
format as Windows. The executable file on Linux follows the Executable and Linkable Format (ELF)
file format, but each executable has a different file format. Table 3 shows the results of extracting the
file-structured formats Portable Executable (PE) and ELF using 20,000 datapoints each in Windows
and Linux environments.

Electronics 2020, 9, 793 5 of 18

Table 2. Various platforms supporting IoT.

Service Platform Product

Operation System Linux, Android, Apple, Windows etc.
Hardware Platform Arduino, Raspberry Pi, MOBIUS etc.

Connection Platform Modacom, Cisco, KT, LG U+, SK etc.
Data Platform NAVER, DAUM, Google etc.

Table 3. Number of parsed data based on ELF and PE file formats in Linux and Windows.

Linux (ELF) Windows (PE)

Total Count Analysis Count Ratio Total Count Analysis Count Ratio

Malware 10,000 7904 79.04% 14,300 14,298 99.98%
Benign 10,000 2520 25.2% 5700 5699 99.98%

The interpretation of Table 3 is as follows. In most Windows environments, the file structure format
is judged to be the same, and in Linux environments, the ELF file structural format is followed, but it is
different. Therefore, it is difficult to analyze malware statically in Linux environments. To contribute
to the solving of these problems, the method proposed in this paper is to extract a binary format
and analyze malware. We propose an approach to analyze malware on endpoints even if the file
has a different structural format without being affected by the operating system. Later, through the
proposed technology, new and variant malware can be detected through K-nearest neighbor (KNN),
a distance-based similarity comparison algorithm with existing data.

1.3.2. Automatic Linux/IoT Malware Analysis Technology with One Code

There is a lack of previous research on Linux/IoT systems compared to Windows systems,
and dozens of architectures are supported. To support dozens of architectures, it was necessary
to create malware analysis codes for each architecture. It is expensive and complicated from an
operational point of view because it requires a lot of code to be managed. IoT analysis is the same.
As the number of IoT devices increases, considerations such as dependency with software become
more complicated because each device has a different type. Therefore, this paper proposes an approach
to solve the considerations of Windows and Linux/IoT environment at the same time. The proposed
technology operates automatically using a single code for complex malware analysis in a Windows,
Linux environment, or an IoT environment supporting various architectures. In the future, it can be
used as a base technology for automatic analysis considering the operating environment of Linux/IoT
malware. It is possible to analyze Windows, Linux, or IoT with a single code of complex analysis
technology supporting various architectures.

2. Related Work

2.1. PE Format-Aware Analysis

Pattern-based and AI-based malware analysis techniques have been actively studied to cope
with malware that penetrates into endpoints. In particular, in the field of static analysis of malware,
studies were mainly conducted to analyze and classify PE files executable for major architectures in
commercial environments such as Windows. Markel et al. [13] compared the experimental results
using naïve Bayes, decision tree, and logistic regression, which are machine learning techniques using
Windows Portable Executable 32-bit (PE32) file format. The experimental data used 22,500 training
samples and was tested on 2500 test samples. Table 4 show the experimental results of naïve Bayes,
decision tree, and logistic regression according to malprev, which is the percent of records in the
sample that correspond to malicious files. The results shows a 0.97 F-score when using the decision
tree technique.

Electronics 2020, 9, 793 6 of 18

Table 4. Experimental results according to naïve Bayes, decision tree, logistic regression using PE
file format.

Malprev (Train, Test) Naïve Bayes Decision Tree (CART) Logistic Regression

(0.5, 0.5) 0.5127 0.9792 0.9456
(0.1, 0.1) 0.4640 0.9270 0.7941
(0.5, 0.1) 0.4804 0.9750 0.7905

(0.01, 0.01) 0.4250 0.7581 0.3023
(0.5, 0.01) 0.3342 0.5247 0.2873

(0.001, 0.001) 0.0493 0.4157 0.03124
(0.5, 0.001) 0.0697 0.1193 0.04857

There is also a window API analysis study called by the PE file [14–16]. Shankarapani et al. [17]
proposed an effort to detect malware based on Windows API calls. Figure 1a shows the overall
operation. The API calling sequence is extracted using a PE parser and malware classified by
measuring similarity with known malware sequences or a signature DB. The TF-IDF technique was
used to remove commonly appearing API sequences. After that, the executable files were classified
using SVM. Figure 1b shows the ROC curve obtained from the malware detection using SVM.

Electronics 2020, 9, x FOR PEER REVIEW 6 of 19

Table 4. Experimental results according to naïve Bayes, decision tree, logistic regression using PE file
format.

Malprev (Train,
Test)

Naïve
Bayes

Decision Tree
(CART)

Logistic
Regression

(0.5, 0.5) 0.5127 0.9792 0.9456
(0.1, 0.1) 0.4640 0.9270 0.7941
(0.5, 0.1) 0.4804 0.9750 0.7905

(0.01, 0.01) 0.4250 0.7581 0.3023
(0.5, 0.01) 0.3342 0.5247 0.2873

(0.001, 0.001) 0.0493 0.4157 0.03124
(0.5, 0.001) 0.0697 0.1193 0.04857

There is also a window API analysis study called by the PE file [14–16]. Shankarapani et al. [17]
proposed an effort to detect malware based on Windows API calls. Figure 1a shows the overall
operation. The API calling sequence is extracted using a PE parser and malware classified by
measuring similarity with known malware sequences or a signature DB. The TF-IDF technique was
used to remove commonly appearing API sequences. After that, the executable files were classified
using SVM. Figure 1b shows the ROC curve obtained from the malware detection using SVM.

(a)

(b)

(a) (b)

Figure 1. It shows the results of malicious code detection based on Windows API calls: (a) Operating
process; (b) ROC curve obtained from malware detection using SVM.

Islam et al. [18] suggested that the extraction of printable string information from static features
and malware samples and classification into a single test is better than the result obtained by using
single features individually. Features merge extracted static features using both function length

Figure 1. It shows the results of malicious code detection based on Windows API calls: (a) Operating
process; (b) ROC curve obtained from malware detection using SVM.

Islam et al. [18] suggested that the extraction of printable string information from static features
and malware samples and classification into a single test is better than the result obtained by using
single features individually. Features merge extracted static features using both function length
Frequency (FLF) and printable string information (PSI) methods. FLF uses the function name frequency
of the extracted string. In addition, PSI is used to create a list of all strings that occur in the database.
The experimental data used feature information from over 1,500 samples, including unpacked trojans
and viruses from the CA Zoo along with clean files from several different Windows environments.
In addition, they used five well-known classification algorithms: naïve Bayes, SVM, random forest,
decision table, and IB1. It includes a tree-based classifier, the nearest neighbor algorithm, and a
statistical learning algorithm, each tested with the booster algorithm Adaboost. Table 5 show the
experimental results. As a result, a classification accuracy of 98.86% or more was achieved.

Electronics 2020, 9, 793 7 of 18

Table 5. Performance comparison when using the basic classifier and boosting technology: (a) Results
of analysis through the basic classifier; (b) Analysis result using AdaBoost.

(a)

Base Classifier

NB SVM IB1 DT RF
W.Avg 94.31 97.77 97.69 98.15 96.69

Cleanfiles 81.51 92.4 85.64 91.04 94.4

(b)

Meta Classifier-AdaBoost

NB SVM IB1 DT RF
W.Avg 96.51 98.16 98.2 98.86 97.73

Cleanfiles 95.2 92.81 92.74 96.13 95.8

2.2. Linux Format Aware Analysis

As such, most endpoints have many PCs in the Windows environment, and many Windows-
based malware studies have continued. Recently, in the field of static analysis of malicious code,
research has been conducted to analyze and classify executable and linkable format (ELF) files in
Linux [19–21] as well as Windows. Bai et al. [22] proposed a new malware detection method through
mining system calls in the symbol table of Linux executables. The experiment collected 756 positive
ELF executables and 763 malware data, and developed an ELF parser, feature extraction, classifier
training and malware detector. This study employed four classification algorithms (J48, random forest,
AdboostM1 (J48) and IBk) to train the classifier. The experimental results are presented in Table 6.
The ROC curves for these methods are shown in Figure 2.

Table 6. Experimental results for four classification algorithms.

Classification Algorithms TPR (%) FPR (%) Accuracy (%) AUC

J48 99.7 4.5 97.7 0.987
Random Forest 99.4 3.1 98.2 0.985
AdboostM1(J48) 99.2 2.2 98.5 0.993

IBK 99.7 2.5 98.6 0.993

Electronics 2020, 9, x FOR PEER REVIEW 7 of 18

Table 5. Cont.
(b)

Meta Classifier-AdaBoost
 NB SVM IB1 DT RF

W.Avg 96.51 98.16 98.2 98.86 97.73
Cleanfiles 95.2 92.81 92.74 96.13 95.8

2.2. Linux Format Aware Analysis

As such, most endpoints have many PCs in the Windows environment, and many Windows-
based malware studies have continued. Recently, in the field of static analysis of malicious code,
research has been conducted to analyze and classify executable and linkable format (ELF) files in
Linux [19–21] as well as Windows. Bai et al. [22] proposed a new malware detection method through
mining system calls in the symbol table of Linux executables. The experiment collected 756 positive
ELF executables and 763 malware data, and developed an ELF parser, feature extraction, classifier
training and malware detector. This study employed four classification algorithms (J48, random
forest, AdboostM1 (J48) and IBk) to train the classifier. The experimental results are presented in
Table 6. The ROC curves for these methods are shown in Figure 2.

Table 6. Experimental results for four classification algorithms.

Classification
Algorithms

TPR
(%)

FPR
(%)

Accuracy
(%) AUC

J48 99.7 4.5 97.7 0.987
Random Forest 99.4 3.1 98.2 0.985
AdboostM1(J48) 99.2 2.2 98.5 0.993

IBK 99.7 2.5 98.6 0.993

Figure 2. ROC curves for four classification algorithms.

Jeon et al. [23] extracted the structural information based on the same file format as the ELF file
without using binary raw data and calculate the information gain to reduce the number of structural
data features of the ELF file. The experiment was conducted by selecting the top 38% 147 feature sets.
Table 7 shows some of the top 147 features, about 38% through information gain.

However, an analysis methodology based on structural features of a file is inherently vulnerable
to obfuscation techniques such as packing. In addition, there is a disadvantage that the analysis
system cannot be classified if the file format of the analysis and the file format of the malicious code
does not match. This can be a very critical issue when looking at current security research trends. For
example, in order to cope with spear phishing attacks that distribute malicious code by disguising
official documents, the document file format should be further researched by a malware analysis
expert. Document file formats vary widely, including pdf, doc, and xlsx, and it is practically difficult
for a malware analysis expert to analyze all these document formats. In addition, considering the

Figure 2. ROC curves for four classification algorithms.

Jeon et al. [23] extracted the structural information based on the same file format as the ELF file
without using binary raw data and calculate the information gain to reduce the number of structural
data features of the ELF file. The experiment was conducted by selecting the top 38% 147 feature sets.
Table 7 shows some of the top 147 features, about 38% through information gain.

Electronics 2020, 9, 793 8 of 18

However, an analysis methodology based on structural features of a file is inherently vulnerable
to obfuscation techniques such as packing. In addition, there is a disadvantage that the analysis
system cannot be classified if the file format of the analysis and the file format of the malicious code
does not match. This can be a very critical issue when looking at current security research trends.
For example, in order to cope with spear phishing attacks that distribute malicious code by disguising
official documents, the document file format should be further researched by a malware analysis expert.
Document file formats vary widely, including pdf, doc, and xlsx, and it is practically difficult for a
malware analysis expert to analyze all these document formats. In addition, considering the nature
of the Linux operation system in various architectures, the technology based on ELF file formats is
insufficient to current endpoint security issues.

Table 7. Selected ELF features after calculating information gain.

Feature Selection Sources Selected Features by Calculating Information Gain (Top 38%)

ELF header
Identification, MachineType, ProgramHeaderOffset, SectionHeaderOffset, Flags,
HeaderSize, SizeProgramHeader, EntriesProgram, SizeSectionHeader EntriesSection,
StringTableIndex

Section headers
.text_type .text_size .text_alignment .bss_type .bss_size
.bss_alignment .comment_size .comment_entsize
.dynamic_table_index_link .dynamic_alignment etc.

Program headers -

Symbols section
STB_LOCAL STT_OBJECT_STB_GLOBAL STT_OBJECT_STB_WEAK
STT_NOTYPE_STB_WEAK STT_FUNC_STB_GLOBAL STT_NOTYPE_STB_GLOBAL
etc.

Dynamic section & dynamic
symbol section

dynamic_s_c s_STT_FUNC_STB_LOCAL
s_STT_OBJECT_STB_GLOBAL DYNRELAENT DYNFINI
DYNFINI_ARRAY
DYNNULL etc.

Relocation sections R_386_GLOB_DAT R_386_JUMP_SLOT etc.

Global offset table GOT_SIZE

Hash table HASH_SIZE

2.3. Binary Format Aware Analysis

On the other hand, due to these problems, studies using binary data are being conducted [24–27].
However, binary data is more difficult to analyze than structural methodology because it is difficult for
humans to interpret it intuitively. Jain’s [28] and Kwon’s [29] studies are typical of research conducted
on this problem. Jain has proposed a methodology for classifying malware based on algorithms such as
naïve Bayes, instance-based learner, and extracting features into N-grams of binary units. In particular,
this methodology is very heavy from the system point of view because substrings are divided by bytes.
In order to reduce the exponentially increasing feature space, the method of reducing feature space
with classwise document frequency is adopted. Kwon sees the drawback of the N-gram methodology
in using the existing full binary data in this research trend. Therefore, in connection with the structural
features of the file formats of the previous studies, as a methodology of applying N-gram only to data
in a specific area, the analysis speed of the system is greatly improved, as shown in Table 8.

Most malicious codes are produced by packing or encryption to prevent reverse engineering
analysis. Accordingly, a methodology for detecting malware through machine learning by extracting all
character strings in a PE file and applying policies for each feature has been studied [30–32]. Figures 3
and 4 show the results of character string distribution analysis in normal files and malware [33]. In the
case of normal files, the count is mostly concentrated below 200, whereas in the case of malicious
files, it is concentrated above 200. In addition, there is a study that analyzes malware through binary
images. Su’s research [34] proposes a new lightweight approach to detecting DDos malware in IoT
environments. The main course of action is to convert to binary images to extract one-channel gray scale
images to classify malware and use lightweight neural networks to classify families. Some examples

Electronics 2020, 9, 793 9 of 18

of malware and benign-ware images are shown in Figures 5 and 6. By comparison, the structural
difference between malware and goodware images can be identified. The experimental results show
that the proposed system shows 94% accuracy for the classification of goodware and DdoS malware
and 81.8% accuracy for the major malware classification. However, there are still many problems that
need to be corrected for these research trends. To solve these problems in this paper we propose a
platform-independent malware analysis technology.

Table 8. Kwon’s Section N-gram and KNN-Ngram experiments.

Category Filename
Ngram .text Section Ngram

Similarity Execution Time Similarity Execution Time

Trojan
Malware

Boxed
Family

Boxed.a 0.882 19.89 0.824 6.04
Boxed.b 0.824 11.81 0.941 5.73
Boxed.i 0.706 45.56 0.706 13.22

Boxed.m 0.706 46.69 0.824 15.41
Boxed.u 0.882 45.03 1 29.82

Delf Family
Delf.af 0.471 12.43 0.353 9.33
Delf.b 0.293 2.44 0.118 2.08
Delf.c 0.353 1667 0.294 1280

Benign

notepad.exe 0.353 558.26 0.294 7.49
ipconfig 0.471 3.37 0.294 2.70
calc.exe 0.412 2116.95 0.294 688.66

iexplorer.exe 0.176 3349.36 0.412 2018

Electronics 2020, 9, x FOR PEER REVIEW 9 of 18

Delf.c 0.353 1667 0.294 1280

Benign

notepad.exe 0.353 558.26 0.294 7.49

ipconfig 0.471 3.37 0.294 2.70

calc.exe 0.412 2116.95 0.294 688.66

iexplorer.exe 0.176 3349.36 0.412 2018

Most malicious codes are produced by packing or encryption to prevent reverse engineering
analysis. Accordingly, a methodology for detecting malware through machine learning by extracting
all character strings in a PE file and applying policies for each feature has been studied [30–32].
Figures 3 and 4 show the results of character string distribution analysis in normal files and malware
[33]. In the case of normal files, the count is mostly concentrated below 200, whereas in the case of
malicious files, it is concentrated above 200. In addition, there is a study that analyzes malware
through binary images. Su's research [34] proposes a new lightweight approach to detecting DDos
malware in IoT environments. The main course of action is to convert to binary images to extract one-
channel gray scale images to classify malware and use lightweight neural networks to classify
families. Some examples of malware and benign-ware images are shown in Figures 5 and 6. By
comparison, the structural difference between malware and goodware images can be identified. The
experimental results show that the proposed system shows 94% accuracy for the classification of
goodware and DDoS malware and 81.8% accuracy for the major malware classification. However,
there are still many problems that need to be corrected for these research trends. To solve these
problems in this paper we propose a platform-independent malware analysis technology.

Figure 3. String-based distribution analysis (benign).

Figure 4. String-based distribution analysis (malware).

Figure 3. String-based distribution analysis (benign).

Electronics 2020, 9, x FOR PEER REVIEW 9 of 18

Delf.c 0.353 1667 0.294 1280

Benign

notepad.exe 0.353 558.26 0.294 7.49

ipconfig 0.471 3.37 0.294 2.70

calc.exe 0.412 2116.95 0.294 688.66

iexplorer.exe 0.176 3349.36 0.412 2018

Most malicious codes are produced by packing or encryption to prevent reverse engineering
analysis. Accordingly, a methodology for detecting malware through machine learning by extracting
all character strings in a PE file and applying policies for each feature has been studied [30–32].
Figures 3 and 4 show the results of character string distribution analysis in normal files and malware
[33]. In the case of normal files, the count is mostly concentrated below 200, whereas in the case of
malicious files, it is concentrated above 200. In addition, there is a study that analyzes malware
through binary images. Su's research [34] proposes a new lightweight approach to detecting DDos
malware in IoT environments. The main course of action is to convert to binary images to extract one-
channel gray scale images to classify malware and use lightweight neural networks to classify
families. Some examples of malware and benign-ware images are shown in Figures 5 and 6. By
comparison, the structural difference between malware and goodware images can be identified. The
experimental results show that the proposed system shows 94% accuracy for the classification of
goodware and DDoS malware and 81.8% accuracy for the major malware classification. However,
there are still many problems that need to be corrected for these research trends. To solve these
problems in this paper we propose a platform-independent malware analysis technology.

Figure 3. String-based distribution analysis (benign).

Figure 4. String-based distribution analysis (malware). Figure 4. String-based distribution analysis (malware).

Electronics 2020, 9, 793 10 of 18

Electronics 2020, 9, x FOR PEER REVIEW 10 of 18

Figure 5. Image of goodware.

Figure 6. Linux malware image examples.

3. Proposed Model

3.1. System Overview

We propose a platform-independent malware analysis technology to detect malware that is
entering the endpoint. Platform-independent malware analysis technology is a malware analysis
technology that can be commonly applied to binary type data regardless of architecture/operating
system type. This technology analyzes strings from binary data and classifies malware based on the
results of the analysis. On the other hand, undetected malware, which inevitably occurs in AI-based
malware analysis technology, can be responded to by security policies such as manual analysis or
monitoring by experts. The overall system configuration is shown in Figure 7. Step 1 extracts strings
from unknown binary data and classifies the malware by expressing it as a vector. Step 2 can improve
the model by constructing a continuous security policy such as manual analysis or monitoring based
on the results from Step 1. Finally, it is allowed to enter the endpoint only when the binary to be
analyzed is determined to be benign.

Figure 7. Platform-independent malware analysis overall system.

3.2. Platform-Independent Malware Analysis

3.2.1. Binary-Based Strings Analysis

All computer files are in binary format. Binary files contain data encoded in binary format for
computer storage and processing purposes. Many binary file formats contain parts that can be
interpreted as strings. However, most of them are obfuscated or packed in order to make static

Figure 5. Image of goodware.

Electronics 2020, 9, x FOR PEER REVIEW 10 of 18

Figure 5. Image of goodware.

Figure 6. Linux malware image examples.

3. Proposed Model

3.1. System Overview

We propose a platform-independent malware analysis technology to detect malware that is
entering the endpoint. Platform-independent malware analysis technology is a malware analysis
technology that can be commonly applied to binary type data regardless of architecture/operating
system type. This technology analyzes strings from binary data and classifies malware based on the
results of the analysis. On the other hand, undetected malware, which inevitably occurs in AI-based
malware analysis technology, can be responded to by security policies such as manual analysis or
monitoring by experts. The overall system configuration is shown in Figure 7. Step 1 extracts strings
from unknown binary data and classifies the malware by expressing it as a vector. Step 2 can improve
the model by constructing a continuous security policy such as manual analysis or monitoring based
on the results from Step 1. Finally, it is allowed to enter the endpoint only when the binary to be
analyzed is determined to be benign.

Figure 7. Platform-independent malware analysis overall system.

3.2. Platform-Independent Malware Analysis

3.2.1. Binary-Based Strings Analysis

All computer files are in binary format. Binary files contain data encoded in binary format for
computer storage and processing purposes. Many binary file formats contain parts that can be
interpreted as strings. However, most of them are obfuscated or packed in order to make static

Figure 6. Linux malware image examples.

3. Proposed Model

3.1. System Overview

We propose a platform-independent malware analysis technology to detect malware that is
entering the endpoint. Platform-independent malware analysis technology is a malware analysis
technology that can be commonly applied to binary type data regardless of architecture/operating
system type. This technology analyzes strings from binary data and classifies malware based on the
results of the analysis. On the other hand, undetected malware, which inevitably occurs in AI-based
malware analysis technology, can be responded to by security policies such as manual analysis or
monitoring by experts. The overall system configuration is shown in Figure 7. Step 1 extracts strings
from unknown binary data and classifies the malware by expressing it as a vector. Step 2 can improve
the model by constructing a continuous security policy such as manual analysis or monitoring based
on the results from Step 1. Finally, it is allowed to enter the endpoint only when the binary to be
analyzed is determined to be benign.

Electronics 2020, 9, x FOR PEER REVIEW 10 of 18

Figure 5. Image of goodware.

Figure 6. Linux malware image examples.

3. Proposed Model

3.1. System Overview

We propose a platform-independent malware analysis technology to detect malware that is
entering the endpoint. Platform-independent malware analysis technology is a malware analysis
technology that can be commonly applied to binary type data regardless of architecture/operating
system type. This technology analyzes strings from binary data and classifies malware based on the
results of the analysis. On the other hand, undetected malware, which inevitably occurs in AI-based
malware analysis technology, can be responded to by security policies such as manual analysis or
monitoring by experts. The overall system configuration is shown in Figure 7. Step 1 extracts strings
from unknown binary data and classifies the malware by expressing it as a vector. Step 2 can improve
the model by constructing a continuous security policy such as manual analysis or monitoring based
on the results from Step 1. Finally, it is allowed to enter the endpoint only when the binary to be
analyzed is determined to be benign.

Figure 7. Platform-independent malware analysis overall system.

3.2. Platform-Independent Malware Analysis

3.2.1. Binary-Based Strings Analysis

All computer files are in binary format. Binary files contain data encoded in binary format for
computer storage and processing purposes. Many binary file formats contain parts that can be
interpreted as strings. However, most of them are obfuscated or packed in order to make static

Figure 7. Platform-independent malware analysis overall system.

3.2. Platform-Independent Malware Analysis

3.2.1. Binary-Based Strings Analysis

All computer files are in binary format. Binary files contain data encoded in binary format
for computer storage and processing purposes. Many binary file formats contain parts that can be
interpreted as strings. However, most of them are obfuscated or packed in order to make static

Electronics 2020, 9, 793 11 of 18

analysis difficult when manufacturing malware. Obfuscation and packing are tasks that make it
difficult to read code and file structured formats written in programming languages. Encryption or
compressing the executable file makes it difficult to analyze the source code. Malware anaylsts say that
it is difficult to analyze malware due to obfuscation and packing, and many studies on this topic have
been conducted [35–40]. Based on this, since malware has a binary format and includes a part that can
be interpreted, strings from binary format can be used to analyze the malware. However, compared
to benign files, the malware has a lot of noise such as special characters and unnecessary characters.
To be platfrom independent, we have to do static analysis and extract features from binary files, so we
are not free from obfuscation issues. Strings to be extracted from the binary files are typically DLL
and API names, library function names supported by programming languages, and PE or ELF file
formats. To reduce this effect, we analyzed by setting the length of strings to be extracted. As a result
of analysis, the extracted strings contained a lot of noise, and most of them did not exceed 5 in length.
Therefore, in this paper, only strings with a string length of 5 or more were extracted. Figure 8 show
strings sample extracted from binary data.

Electronics 2020, 9, x FOR PEER REVIEW 11 of 18

analysis difficult when manufacturing malware. Obfuscation and packing are tasks that make it
difficult to read code and file structured formats written in programming languages. Encryption or
compressing the executable file makes it difficult to analyze the source code. Malware anaylsts say
that it is difficult to analyze malware due to obfuscation and packing, and many studies on this topic
have been conducted [35–40]. Based on this, since malware has a binary format and includes a part
that can be interpreted, strings from binary format can be used to analyze the malware. However,
compared to benign files, the malware has a lot of noise such as special characters and unnecessary
characters. To be platfrom independent, we have to do static analysis and extract features from binary
files, so we are not free from obfuscation issues. Strings to be extracted from the binary files are
typically DLL and API names, library function names supported by programming languages, and PE
or ELF file formats. To reduce this effect, we analyzed by setting the length of strings to be extracted.
As a result of analysis, the extracted strings contained a lot of noise, and most of them did not exceed
5 in length. Therefore, in this paper, only strings with a string length of 5 or more were extracted.
Figure 8 show strings sample extracted from binary data.

(a) (b)

(c) (d)

Figure 8. String analysis example in binary data: (a) Windows benign file analysis; (b) Windows
malware file analysis; (c) Linux benign file analysis; (d) Linux malware file analysis.

3.2.2. Count-Based Strings Vectorization Technology

Since the number and size of extracted strings are different for each file, it should be expressed
as a vector of fixed size. In order to classify the malware by applying DNN, a vector value of a fixed
size is required, therefore, this paper proposes a count-based strings vectorization technique that can
convert each string into a fixed-size vector. The advantage of this technique is that we can set the
number of features we want to create. In other words, if you set V, the vector size, you can create as
many features as V. If the V value is large, the amount of computation increases, which degrades
model performance. If the V value is small, model training does not work properly. When extracting
strings from Linux binary files, an average of 1,800 were exteacted. Therefore, in this paper,
experiments were conducted with various V values below 1,800. As a result of the experiment, when
the vector size was set to 1,000, the proposed model learned Linux/Windows binary files well. The
function used is shown in Figure 9.

Figure 8. String analysis example in binary data: (a) Windows benign file analysis; (b) Windows
malware file analysis; (c) Linux benign file analysis; (d) Linux malware file analysis.

3.2.2. Count-Based Strings Vectorization Technology

Since the number and size of extracted strings are different for each file, it should be expressed as a
vector of fixed size. In order to classify the malware by applying DNN, a vector value of a fixed size is
required, therefore, this paper proposes a count-based strings vectorization technique that can convert
each string into a fixed-size vector. The advantage of this technique is that we can set the number of
features we want to create. In other words, if you set V, the vector size, you can create as many features
as V. If the V value is large, the amount of computation increases, which degrades model performance.
If the V value is small, model training does not work properly. When extracting strings from Linux
binary files, an average of 1800 were exteacted. Therefore, in this paper, experiments were conducted
with various V values below 1800. As a result of the experiment, when the vector size was set to 1000,
the proposed model learned Linux/Windows binary files well. The function used is shown in Figure 9.

The extracted strings basically have a byte format. Hash algorithms are used to reflect the unique
characteristics of strings and to represent them as numbers. The string is expressed as a number and is
counted through a modular operation with the vector size you want to generate.

Electronics 2020, 9, 793 12 of 18
Electronics 2020, 9, x FOR PEER REVIEW 12 of 18

Figure 9. Strings vectorization pseudo-code.

The extracted strings basically have a byte format. Hash algorithms are used to reflect the unique
characteristics of strings and to represent them as numbers. The string is expressed as a number and
is counted through a modular operation with the vector size you want to generate.

3.2.3. Feature Importance Based Feature Selection

We have tried to increase the accuracy of the model by identifying related features in the dataset
and removing unrelated or less important features. Using the feature selection method reduces
overfitting and reduces the training time. We tried to use the wrapper method to select features, but
we found that the more datasets, the longer it took to select features. In this paper, features were
selected using feature importance. We calculated the importance using the extratreesclassifier. Since
the extratreesclassifier operates based on a tree, information gain obtained from nodes can be
obtained, so it is possible to compare which independent variables are important while comparing
the average of the information gains obtained by each independent variable. Table 9 shows the
number of selected features when the importance of the feature is greater than the set threshold using
the features used in the experiment. It is 94.13% when verified with 1,000 features, and 94% when
verified with 2,000 features. Therefore, in this paper, as a result of verification using each selected
feature, good results were obtained when using the first 1,000 features.

Table 9. Number of selected features using feature importance.

Threshold Features Count Features Count Features Count
Default 1,000 1,500 2,000

Feature_Importance > 0 730 877 955
Feature_Importance > 1 473 536 512
Feature_Importance > 2 340 328 321

3.2.4. Deep Neural Network

We classify malware using a deep neural network (DNN) [41,42]. The learning model consists
of two hidden layers, excluding the input layer and the output layer. The number of nodes in the
hidden layer is 10. To improve the model, we used the gradient-based optimization algorithm Adam.
This method is simple to implement, highly computationally efficient, has little memory
requirements, is not affected by the diagonal sizing of the gradient, and is suitable for large issues in
terms of data and parameter. Also, a function called ReLU was used instead of sigmoid to activate
the hidden layer. ReLU is a function that returns 0 if a value less than 0 is found, returns the value if
it is greater than 0. It is different from sigmoid, which returns 1 if it is greater than 0. Therefore, ReLU
was applied to the inner hidden layer, and the sigmoid function was used only for the last output
layer.

4. Experiments

4.1. Dataset

Proposed techniques verified the performance and results by using public datasets and self-
collected datasets. Platform-independent malware analysis was conducted on the major architectures

Figure 9. Strings vectorization pseudo-code.

3.2.3. Feature Importance Based Feature Selection

We have tried to increase the accuracy of the model by identifying related features in the dataset
and removing unrelated or less important features. Using the feature selection method reduces
overfitting and reduces the training time. We tried to use the wrapper method to select features,
but we found that the more datasets, the longer it took to select features. In this paper, features
were selected using feature importance. We calculated the importance using the extratreesclassifier.
Since the extratreesclassifier operates based on a tree, information gain obtained from nodes can be
obtained, so it is possible to compare which independent variables are important while comparing the
average of the information gains obtained by each independent variable. Table 9 shows the number
of selected features when the importance of the feature is greater than the set threshold using the
features used in the experiment. It is 94.13% when verified with 1000 features, and 94% when verified
with 2000 features. Therefore, in this paper, as a result of verification using each selected feature,
good results were obtained when using the first 1000 features.

Table 9. Number of selected features using feature importance.

Threshold Features Count Features Count Features Count

Default 1000 1500 2000
Feature_Importance > 0 730 877 955
Feature_Importance > 1 473 536 512
Feature_Importance > 2 340 328 321

3.2.4. Deep Neural Network

We classify malware using a deep neural network (DNN) [41,42]. The learning model consists
of two hidden layers, excluding the input layer and the output layer. The number of nodes in the
hidden layer is 10. To improve the model, we used the gradient-based optimization algorithm Adam.
This method is simple to implement, highly computationally efficient, has little memory requirements,
is not affected by the diagonal sizing of the gradient, and is suitable for large issues in terms of data
and parameter. Also, a function called ReLU was used instead of sigmoid to activate the hidden layer.
ReLU is a function that returns 0 if a value less than 0 is found, returns the value if it is greater than 0.
It is different from sigmoid, which returns 1 if it is greater than 0. Therefore, ReLU was applied to the
inner hidden layer, and the sigmoid function was used only for the last output layer.

4. Experiments

4.1. Dataset

Proposed techniques verified the performance and results by using public datasets and
self-collected datasets. Platform-independent malware analysis was conducted on the major
architectures of Windows and Linux binaries. The dataset used in the Windows binary experiments were
malicious files and benign files published by the KISA Data Challenge in 2019 [43], and consist of a total
of 40,000 data. The Windows binary learning dataset used 18,000 benign and 12,000 malware examples,

Electronics 2020, 9, 793 13 of 18

and the test data used 5000 malware and 5000 benign ones. On the other hand, the dataset used for the
Linux binary experiments consists of 10,000 malware from Virus-Share [44] and 10,000 system benign
files collected by the Linux architecture. The Linux binary learning dataset used 8000 malware and
8000 benign examples. The test data were tested using 2000 malware and 2000 benign samples.

4.2. Platform-Independent Malware Analysis Experiment Results

4.2.1. Windows Executable (PE) File Analysis

We analyzed binary strings in Windows datasets and set the vector size to 1000 to apply the
count-based strings vectorization technology. In addition, malware was classified using the DNN
algorithm. Figure 10 shows the distribution of two most important features in the malware strings and
benign strings by reducing the vector size from 1000 to 100 with principal component analysis (PCA)
for visualization. PCA is the most representative dimension reduction algorithm. PCA works by first
obtaining hyperplane closest to the data and then projecting the data onto the hyperplane. Figure 11
shows the top 10 features in feature importance. The results for binary classification using the DNN
model are shown in Table 10. Figure 12 shows the ROC curve to evaluate the performance of the model.

Electronics 2020, 9, x FOR PEER REVIEW 13 of 18

of Windows and Linux binaries. The dataset used in the Windows binary experiments were malicious
files and benign files published by the KISA Data Challenge in 2019 [43], and consist of a total of
40,000 data. The Windows binary learning dataset used 18,000 benign and 12,000 malware examples,
and the test data used 5,000 malware and 5,000 benign ones. On the other hand, the dataset used for
the Linux binary experiments consists of 10,000 malware from Virus-Share [44] and 10,000 system
benign files collected by the Linux architecture. The Linux binary learning dataset used 8,000
malware and 8,000 benign examples. The test data were tested using 2,000 malware and 2,000 benign
samples.

4.2. Platform-Independent Malware Analysis Experiment Results

4.2.1. Windows Executable (PE) File Analysis

We analyzed binary strings in Windows datasets and set the vector size to 1,000 to apply the
count-based strings vectorization technology. In addition, malware was classified using the DNN
algorithm. Figure 10 shows the distribution of two most important features in the malware strings
and benign strings by reducing the vector size from 1,000 to 100 with principal component analysis
(PCA) for visualization. PCA is the most representative dimension reduction algorithm. PCA works
by first obtaining hyperplane closest to the data and then projecting the data onto the hyperplane.
Figure 11 shows the top 10 features in feature importance. The results for binary classification using
the DNN model are shown in Table 10. Figure 12 shows the ROC curve to evaluate the performance
of the model.

Figure 10. Feature vector distribution of Windows binary.

Figure 11. Top 10 features of Windows binary.

Table 10. Classification Performance of Windows Binary.

Classification Performance Metrics Value
Accuracy 91.77%
Precision 89.93%
Recall 94.8%
F1-score 92.01%

Figure 10. Feature vector distribution of Windows binary.

Electronics 2020, 9, x FOR PEER REVIEW 13 of 18

of Windows and Linux binaries. The dataset used in the Windows binary experiments were malicious
files and benign files published by the KISA Data Challenge in 2019 [43], and consist of a total of
40,000 data. The Windows binary learning dataset used 18,000 benign and 12,000 malware examples,
and the test data used 5,000 malware and 5,000 benign ones. On the other hand, the dataset used for
the Linux binary experiments consists of 10,000 malware from Virus-Share [44] and 10,000 system
benign files collected by the Linux architecture. The Linux binary learning dataset used 8,000
malware and 8,000 benign examples. The test data were tested using 2,000 malware and 2,000 benign
samples.

4.2. Platform-Independent Malware Analysis Experiment Results

4.2.1. Windows Executable (PE) File Analysis

We analyzed binary strings in Windows datasets and set the vector size to 1,000 to apply the
count-based strings vectorization technology. In addition, malware was classified using the DNN
algorithm. Figure 10 shows the distribution of two most important features in the malware strings
and benign strings by reducing the vector size from 1,000 to 100 with principal component analysis
(PCA) for visualization. PCA is the most representative dimension reduction algorithm. PCA works
by first obtaining hyperplane closest to the data and then projecting the data onto the hyperplane.
Figure 11 shows the top 10 features in feature importance. The results for binary classification using
the DNN model are shown in Table 10. Figure 12 shows the ROC curve to evaluate the performance
of the model.

Figure 10. Feature vector distribution of Windows binary.

Figure 11. Top 10 features of Windows binary.

Table 10. Classification Performance of Windows Binary.

Classification Performance Metrics Value
Accuracy 91.77%
Precision 89.93%
Recall 94.8%
F1-score 92.01%

Figure 11. Top 10 features of Windows binary.

Table 10. Classification Performance of Windows Binary.

Classification Performance Metrics Value

Accuracy 91.77%
Precision 89.93%
Recall 94.8%
F1-score 92.01%

Electronics 2020, 9, 793 14 of 18
Electronics 2020, 9, x FOR PEER REVIEW 14 of 18

Figure 12. ROC curve of Windows binary.

4.2.2. Linux Executable (ELF) File Analysis

As with the Windows analysis, we analyzed binary strings in Linux datasets and set the vector
size to 1,000 to apply the count-based strings vectorization technology. In addition, malware was
classified using the DNN algorithm. Figure 13 shows the distribution of two most important features
in the malware strings and benign strings by reducing the vector size from 1,000 to 100 with PCA for
visualization. PCA is the most representative dimension reduction algorithm. PCA works by first
obtaining hyperplane closest to the data and then projecting the data onto the hyperplane. Figure 14
shows the top 10 features in feature importance. The results for binary classification using the DNN
model are shown in Table 11. Figure 15 shows the ROC curve to evaluate the performance of the
model.

Figure 13. Feature vector distribution of Linux binary.

Figure 14. Top 10 features of Linux binary.

Table 11. Classification Performance of Linux Binary.

Classification Performance Metrics Value
Accuracy 97.65%
Precision 97.46%
Recall 97.85%
F1-score 97.65%

Figure 12. ROC curve of Windows binary.

4.2.2. Linux Executable (ELF) File Analysis

As with the Windows analysis, we analyzed binary strings in Linux datasets and set the vector
size to 1000 to apply the count-based strings vectorization technology. In addition, malware was
classified using the DNN algorithm. Figure 13 shows the distribution of two most important features
in the malware strings and benign strings by reducing the vector size from 1000 to 100 with PCA for
visualization. PCA is the most representative dimension reduction algorithm. PCA works by first
obtaining hyperplane closest to the data and then projecting the data onto the hyperplane. Figure 14
shows the top 10 features in feature importance. The results for binary classification using the DNN
model are shown in Table 11. Figure 15 shows the ROC curve to evaluate the performance of the model.

Electronics 2020, 9, x FOR PEER REVIEW 14 of 18

Figure 12. ROC curve of Windows binary.

4.2.2. Linux Executable (ELF) File Analysis

As with the Windows analysis, we analyzed binary strings in Linux datasets and set the vector
size to 1,000 to apply the count-based strings vectorization technology. In addition, malware was
classified using the DNN algorithm. Figure 13 shows the distribution of two most important features
in the malware strings and benign strings by reducing the vector size from 1,000 to 100 with PCA for
visualization. PCA is the most representative dimension reduction algorithm. PCA works by first
obtaining hyperplane closest to the data and then projecting the data onto the hyperplane. Figure 14
shows the top 10 features in feature importance. The results for binary classification using the DNN
model are shown in Table 11. Figure 15 shows the ROC curve to evaluate the performance of the
model.

Figure 13. Feature vector distribution of Linux binary.

Figure 14. Top 10 features of Linux binary.

Table 11. Classification Performance of Linux Binary.

Classification Performance Metrics Value
Accuracy 97.65%
Precision 97.46%
Recall 97.85%
F1-score 97.65%

Figure 13. Feature vector distribution of Linux binary.

Electronics 2020, 9, x FOR PEER REVIEW 14 of 18

Figure 12. ROC curve of Windows binary.

4.2.2. Linux Executable (ELF) File Analysis

As with the Windows analysis, we analyzed binary strings in Linux datasets and set the vector
size to 1,000 to apply the count-based strings vectorization technology. In addition, malware was
classified using the DNN algorithm. Figure 13 shows the distribution of two most important features
in the malware strings and benign strings by reducing the vector size from 1,000 to 100 with PCA for
visualization. PCA is the most representative dimension reduction algorithm. PCA works by first
obtaining hyperplane closest to the data and then projecting the data onto the hyperplane. Figure 14
shows the top 10 features in feature importance. The results for binary classification using the DNN
model are shown in Table 11. Figure 15 shows the ROC curve to evaluate the performance of the
model.

Figure 13. Feature vector distribution of Linux binary.

Figure 14. Top 10 features of Linux binary.

Table 11. Classification Performance of Linux Binary.

Classification Performance Metrics Value
Accuracy 97.65%
Precision 97.46%
Recall 97.85%
F1-score 97.65%

Figure 14. Top 10 features of Linux binary.

Table 11. Classification Performance of Linux Binary.

Classification Performance Metrics Value

Accuracy 97.65%
Precision 97.46%
Recall 97.85%
F1-score 97.65%

Electronics 2020, 9, 793 15 of 18
Electronics 2020, 9, x FOR PEER REVIEW 15 of 18

Figure 15. ROC curve of Linux binary.

4.2.3. Windows and Linux Executable File Analysis

This section shows the results of platform-independent endpoint malware analysis mentioned
in Section 1.3. One code can analyze malware regardless of where the operating system is Windows
and Linux. The dataset is a combination of the Windows and Linux datasets mentioned in Section
4.1. Figure 16 shows the distribution of two most important features in the malware strings and
benign strings by reducing the vector size from 1,000 to 100 with PCA for visualization. Figure 17
shows the top 10 features in feature importance. The results for binary classification using the DNN
model are shown in Table 12. Figure 18 shows a confusion matrix of examples classified as malware
and benign on Windows and malware and benign on Linux.

Figure 16. Feature vector distribution of Windows and Linux binary.

Figure 17. Top 10 features of Windows and Linux Binary.

Table 12. Classification Performance of Windows and Linux binary.

Classification Performance Metrics Value
Accuracy 94.13%
Precision 94.89%
Recall 93.28%
F1-score 94.08%

Figure 15. ROC curve of Linux binary.

4.2.3. Windows and Linux Executable File Analysis

This section shows the results of platform-independent endpoint malware analysis mentioned
in Section 1.3. One code can analyze malware regardless of where the operating system is Windows
and Linux. The dataset is a combination of the Windows and Linux datasets mentioned in Section 4.1.
Figure 16 shows the distribution of two most important features in the malware strings and benign
strings by reducing the vector size from 1000 to 100 with PCA for visualization. Figure 17 shows the
top 10 features in feature importance. The results for binary classification using the DNN model are
shown in Table 12. Figure 18 shows a confusion matrix of examples classified as malware and benign
on Windows and malware and benign on Linux.

Electronics 2020, 9, x FOR PEER REVIEW 15 of 18

Figure 15. ROC curve of Linux binary.

4.2.3. Windows and Linux Executable File Analysis

This section shows the results of platform-independent endpoint malware analysis mentioned
in Section 1.3. One code can analyze malware regardless of where the operating system is Windows
and Linux. The dataset is a combination of the Windows and Linux datasets mentioned in Section
4.1. Figure 16 shows the distribution of two most important features in the malware strings and
benign strings by reducing the vector size from 1,000 to 100 with PCA for visualization. Figure 17
shows the top 10 features in feature importance. The results for binary classification using the DNN
model are shown in Table 12. Figure 18 shows a confusion matrix of examples classified as malware
and benign on Windows and malware and benign on Linux.

Figure 16. Feature vector distribution of Windows and Linux binary.

Figure 17. Top 10 features of Windows and Linux Binary.

Table 12. Classification Performance of Windows and Linux binary.

Classification Performance Metrics Value
Accuracy 94.13%
Precision 94.89%
Recall 93.28%
F1-score 94.08%

Figure 16. Feature vector distribution of Windows and Linux binary.

Electronics 2020, 9, x FOR PEER REVIEW 15 of 18

Figure 15. ROC curve of Linux binary.

4.2.3. Windows and Linux Executable File Analysis

This section shows the results of platform-independent endpoint malware analysis mentioned
in Section 1.3. One code can analyze malware regardless of where the operating system is Windows
and Linux. The dataset is a combination of the Windows and Linux datasets mentioned in Section
4.1. Figure 16 shows the distribution of two most important features in the malware strings and
benign strings by reducing the vector size from 1,000 to 100 with PCA for visualization. Figure 17
shows the top 10 features in feature importance. The results for binary classification using the DNN
model are shown in Table 12. Figure 18 shows a confusion matrix of examples classified as malware
and benign on Windows and malware and benign on Linux.

Figure 16. Feature vector distribution of Windows and Linux binary.

Figure 17. Top 10 features of Windows and Linux Binary.

Table 12. Classification Performance of Windows and Linux binary.

Classification Performance Metrics Value
Accuracy 94.13%
Precision 94.89%
Recall 93.28%
F1-score 94.08%

Figure 17. Top 10 features of Windows and Linux Binary.

Table 12. Classification Performance of Windows and Linux binary.

Classification Performance Metrics Value

Accuracy 94.13%
Precision 94.89%
Recall 93.28%
F1-score 94.08%

Electronics 2020, 9, 793 16 of 18

Electronics 2020, 9, x FOR PEER REVIEW 16 of 18

Figure 18. Confusion matrix of Windows and Linux binary.

5. Conclusions

Various IoT devices are emerging due to the influence of smartphones and tablets as well as PCs,
and most of them are based on Linux/embedded environments. However, threats from IoT malware
are increasing recently, and malwares perform a wide range of attacks against users using various
platforms. Research into Linux-based malware analysis continues, but there is a lack of technology
to identify Linux malware variants used in IoT/embedded environments. In addition, since Linux
malware supports various architectures, it is difficult to identify the architecture in which the Linux
malware is used during malware analysis. If the architecture environment used in the malware is
identified, the automatic analysis technology for each architecture can operate. Therefore, in order to
counter malware threats, platform-independent security technologies such as operating systems and
architectures are required. The platform-independent malware analysis proposed in this paper is a
malware analysis technique that can be commonly applied to binary data regardless of the
architecture/operating system type. It is applicable to the 5G/IoT environment. The proposed
technique used public datasets and self-collected datasets to validate the performance and results. As
a result of evaluating the proposed technology with public and self-collected datasets, the accuracy
was 94% for Windows and Linux malware. The system is an effective and sustainable model that can
apply separate security policies, such as expert analysis, to complement each other's inherent
technology shortcomings. The system is an effective and sustainable model that can cover one of the
inherent weaknesses of technology by applying separate security policies, such as expert analysis,
and also works for malware on other platforms. In the future, we will continue to verify and improve
the proposed system in numerous malware environments to ensure the continuous operation and
practicality of platform-independent malware analysis systems. In addition, we will study
technologies that can identify the architecture when analyzing Linux malware. If the architecture
used by malware is identifiable, we expect that automated analysis technology will advance
significantly.

Author Contributions: Conceptualization, J.H., J.K. and T.L.; Data curation, C.H.; Formal analysis, J.K.; Funding
acquisition, J.K.; Investigation, J.H., J.K. and T.L.; Methodology, C.H.; Project administration, C.H.; Software,
C.H.; Supervision, T.L.; Validation, C.H.; Visualization, C.H.; Writing – original draft, J.H.; Writing – review &
editing, C.H..

Funding: This work was supported by the National Research Foundation of Korea(NRF) grant funded by the
Korea government(MSIT) (No. NRF-2017R1E1A1A01075110).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Boivin, A. Defense Against the Real Threat of AI-Based Malware; Utica College: Utica, NY, USA, 2018.
2. Zhang, L. Automated Feature Extraction and Artificial Intelligence (ai) Based Detection and Classification

of Malware. U.S. Patent Application No 16/051,138, 6 February 2020.
3. Tirumala, S.S.; Valluri, M.R.; Nanadigam, D. Evaluation of Feature and Signature based Training

Approaches for Malware Classification using Autoencoders. In Proceedings of the 2020 International
Conference on COMmunication Systems & NETworkS (COMSNETS), Bengaluru, India, 7–11 January 2020.

Figure 18. Confusion matrix of Windows and Linux binary.

5. Conclusions

Various IoT devices are emerging due to the influence of smartphones and tablets as well as
PCs, and most of them are based on Linux/embedded environments. However, threats from IoT
malware are increasing recently, and malwares perform a wide range of attacks against users using
various platforms. Research into Linux-based malware analysis continues, but there is a lack of
technology to identify Linux malware variants used in IoT/embedded environments. In addition,
since Linux malware supports various architectures, it is difficult to identify the architecture in which
the Linux malware is used during malware analysis. If the architecture environment used in the
malware is identified, the automatic analysis technology for each architecture can operate. Therefore,
in order to counter malware threats, platform-independent security technologies such as operating
systems and architectures are required. The platform-independent malware analysis proposed in
this paper is a malware analysis technique that can be commonly applied to binary data regardless
of the architecture/operating system type. It is applicable to the 5G/IoT environment. The proposed
technique used public datasets and self-collected datasets to validate the performance and results.
As a result of evaluating the proposed technology with public and self-collected datasets, the accuracy
was 94% for Windows and Linux malware. The system is an effective and sustainable model that
can apply separate security policies, such as expert analysis, to complement each other’s inherent
technology shortcomings. The system is an effective and sustainable model that can cover one of the
inherent weaknesses of technology by applying separate security policies, such as expert analysis,
and also works for malware on other platforms. In the future, we will continue to verify and improve
the proposed system in numerous malware environments to ensure the continuous operation and
practicality of platform-independent malware analysis systems. In addition, we will study technologies
that can identify the architecture when analyzing Linux malware. If the architecture used by malware
is identifiable, we expect that automated analysis technology will advance significantly.

Author Contributions: Conceptualization, J.H., J.K. and T.L.; Data curation, C.H.; Formal analysis, J.K.; Funding
acquisition, J.K.; Investigation, J.H., J.K. and T.L.; Methodology, C.H.; Project administration, C.H.; Software, C.H.;
Supervision, T.L.; Validation, C.H.; Visualization, C.H.; Writing—original draft, J.H.; Writing—review & editing,
C.H. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea(NRF) grant funded by the
Korea government(MSIT) (No. NRF-2017R1E1A1A01075110).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Boivin, A. Defense Against the Real Threat of AI-Based Malware; Utica College: Utica, NY, USA, 2018.
2. Zhang, L. Automated Feature Extraction and Artificial Intelligence (ai) Based Detection and Classification of

Malware. U.S. Patent Application No 16/051,138, 6 February 2020.
3. Tirumala, S.S.; Valluri, M.R.; Nanadigam, D. Evaluation of Feature and Signature based Training Approaches

for Malware Classification using Autoencoders. In Proceedings of the 2020 International Conference on
COMmunication Systems & NETworkS (COMSNETS), Bengaluru, India, 7–11 January 2020.

Electronics 2020, 9, 793 17 of 18

4. Kaloudi, N.; Li, J. The AI-Based Cyber Threat Landscape: A Survey. ACM Comput. Surveys (CSUR) 2020, 53,
1–34. [CrossRef]

5. Juniper. Trusted Mobility Index, Juniper. 2012. Available online: http://www.juniper.net/us/en/local/pdf/
additional-resources/7100155-en.pdf (accessed on 27 February 2013).

6. Eclipse, Key Trends from the IOT Developer Survey 2018. Available online: https://blog.benjamin-cabe.com/

2018/04/17/key-trends-iot-developer-survey-2018 (accessed on 3 April 2019).
7. Stats, StatCounter Global. Destop Operating System Market Share Worldwide. 2017. Available online:

http://gs.statcounter.com/os-market-share/desktop/worldwide (accessed on 24 May 2018).
8. Cozzi, E.; Graziano, M.; Fratantonio, Y.; Balzarotti, D. Understanding Linux Malware. In Proceedings of the

IEEE Symposium on Security and Privacy, San Francisco, CA, USA, 20–24 May 2018; pp. 161–175.
9. Costin, A.; Zaddach, J.; Francillon, A.; Balzarotti, D. A large-scale analysis of the security of embedded

firmwares. In Proceedings of the 23rd {USENIX} Security Symposium ({USENIX} Security 14), San Diego,
CA, USA, 20–22 August 2014; pp. 95–110.

10. Zhang, Z.K.; Cho, M.C.Y.; Wang, C.W.; Hsu, C.W.; Chen, C.K.; Shieh, S. IoT security: Ongoing challenges
and research opportunities. In Proceedings of the IEEE 7th International Conference on Service-Oriented
Computing and Applications, Matsue, Japan, 17–19 November 2014.

11. Fossmint. Available online: https://www.fossmint.com/operating-systems-for-the-internet-of-things/
(accessed on 5 April 2020).

12. Vyas, D.A.; Bhatt, D.; Jha, D. IoT: Trends, challenges and future scope. Int. J. Comput. Sci. Commun. 2016, 7,
186–197.

13. Markel, Z.; Bilzor, M. Building a machine learning classifier for malware detection. In Proceedings of the 2014
Second Workshop on Anti-malware Testing Research (WATeR), Canterbury, UK, 23 October 2014; pp. 1–4.

14. Bayer, U.; Moser, A.; Kruegel, C.; Kirda, E. Dynamic analysis of malicious code. J. Comput. Virol. 2006, 2,
67–77. [CrossRef]

15. Xu, J.Y.; Sung, A.H.; Chavez, P.; Mukkamala, S. Polymorphic malicious executable scanner by API sequence
analysis. In Proceedings of the Fourth International Conference on Hybrid Intelligent Systems (HIS’04),
Kitakyushu, Japan, 5–8 December 2004; pp. 378–383.

16. Ye, Y.; Wang, D.; Li, T.; Ye, D.; Jiang, Q. An intelligent PE-malware detection system based on association
mining. J. Comput. Virol. 2018, 4, 323–334. [CrossRef]

17. Shankarapani, M.; Kancherla, K.; Ramammoorthy, S.; Movva, R.; Mukkamala, S. Kernel machines for
malware classification and similarity analysis. In Proceedings of the 2010 International Joint Conference on
Neural Networks (IJCNN), Barcelona, Spain, 18–23 July 2010; pp. 1–6.

18. Islam, R.; Tian, R.; Batten, L.; Versteeg, S. Classification of Malware Based on String and Function Feature
Selection. In Proceedings of the Second Cybercrime and Trustworthy Computing Workshop (CTC), Ballarat,
VIC, Australia, 19–20 July 2010; pp. 9–17.

19. Shahzad, F.; Farooq, M. Elf-miner: Using structural knowledge and data mining methods to detect new
(Linux) malicious executables. Knowle. Inf. Syst. 2012, 30, 589–612. [CrossRef]

20. Hernández, A. Elf Parsing Bugs by Example with Melkor Fuzzer; IOActive Inc.: Seattle, WA, USA, 2014.
21. Ermakov, M.K.; Vartanov, S.P. Dynamic analysis of ARM ELF shared libraries using static binary

instrumentation. Proc. Institute Syst. Program. RAS 2015, 27, 5–24. [CrossRef]
22. Bai, J.; Yang, Y.; Mu, S.; Ma, Y. Malware Detection Through Mining Symbol Table of Linux Executables.

Inf. Technol. J. 2013, 12, 380–384. [CrossRef]
23. Deok-Jo, J.; Dong-Gue, P. Real-time Linux Malware Detection Using Machine Learning. J. Korean Institute

Inf. Technol. 2019, 17, 111–122.
24. Emary, E.; Zawbaa, H.M.; Hassanien, A.E. Binary grey wolf optimization approaches for feature selection.

Neurocomputing 2016, 172, 371–381. [CrossRef]
25. Huang, Y.; Lin, Z. Binary multidimensional scaling for hashing. IEEE Trans. Image Process. 2017, 27, 406–418.

[CrossRef] [PubMed]
26. Kolosnjaji, B.; Demontis, A.; Biggio, B.; Maiorca, D.; Giacinto, G.; Eckert, C.; Roli, F. Adversarial malware

binaries: Evading deep learning for malware detection in executables. In Proceedings of the 2018 26th
European Signal Processing Conference (EUSIPCO), Rome, Italy, 3–7 September 2018; pp. 533–537.

27. Raff, E.; Zak, R.; Cox, R.; Sylvester, J.; Yacci, P.; Ward, R.; Nicholas, C. An investigation of byte n-gram features
for malware classification. J. Comput. Virol. Hacking Tech. 2018, 14, 1–20. [CrossRef]

http://dx.doi.org/10.1145/3372823
http://www.juniper.net/us/en/local/pdf/additional-resources/710015 5-en.pdf
http://www.juniper.net/us/en/local/pdf/additional-resources/710015 5-en.pdf
https://blog.benjamin-cabe.com/2018/04/17/key-trends-iot-developer-survey-2018
https://blog.benjamin-cabe.com/2018/04/17/key-trends-iot-developer-survey-2018
http://gs.statcounter.com/os-market-share/desktop/worldwide
https://www.fossmint.com/operating-systems-for-the-internet-of-things/
http://dx.doi.org/10.1007/s11416-006-0012-2
http://dx.doi.org/10.1007/s11416-008-0082-4
http://dx.doi.org/10.1007/s10115-011-0393-5
http://dx.doi.org/10.15514/ISPRAS-2015-27(1)-1
http://dx.doi.org/10.3923/itj.2013.380.384
http://dx.doi.org/10.1016/j.neucom.2015.06.083
http://dx.doi.org/10.1109/TIP.2017.2759250
http://www.ncbi.nlm.nih.gov/pubmed/28981415
http://dx.doi.org/10.1007/s11416-016-0283-1

Electronics 2020, 9, 793 18 of 18

28. Jain, S.; Meena, Y.K. Byte level n-gram analysis for malware detection. In Proceedings of the International
Conference on Information Processing, Bangalore, India, 5–7 August 2011; pp. 51–59.

29. Kwon, H.J.; Kim, S.W.; Im, E.G. An Malware classification system using multi n-gram. J. Secur. Eng. 2012, 9,
231–512.

30. Shrestha, P.; Maharjan, S.; de la Rosa, G.R.; Sprague, A.; Solorio, T.; Warner, G. Using String Information
for Malware Family Identification. In Ibero-American Conference on Artificial Intelligence; Springer: Cham,
Germany, 2014; pp. 686–697.

31. Yu, F.; Bultan, T.; Ibarra, O.H. Symbolic string verification: Combining string analysis and size analysis.
In International Conference on Tools and Algorithms for the Construction and Analysis of Systems; Springer:
Berlin/Heidelberg, Germany, 2009; pp. 322–336.

32. Yu, F.; Alkhalaf, M.; Bultan, T. Stranger: An automata-based string analysis tool for php. In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems; Springer: Berlin/Heidelberg,
Germany, 2010; pp. 154–157.

33. Sunbin, H.; Hogyeong, K.; Junho, H.; Taejin, L. A Study on Two-dimensional Array-based Technology to
Identify Obfuscated Malware. J. Inf. Sci. 2018, 45, 769–777.

34. Su, J.; Vasconcellos, D.V.; Prasad, S.; Sgandurra, D.; Feng, Y.; Sakurai, K. Lightweight Classification of IoT
Malware Based on Image Recognition. In Proceedings of the 2018 IEEE 42nd Annual Computer Software
and Applications Conference (COMPSAC), Tokyo, Japan, 23–27 July 2018; pp. 664–669.

35. Brunton, F.; Nissenbaum, H. Vernacular resistance to data collection and analysis: A political theory of
obfuscation. First Monday 2011, 16. [CrossRef]

36. Gaudesi, M.; Marcelli, A.; Sanchez, E.; Squillero, G.; Tonda, A. Malware obfuscation through evolutionary
packers. In Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and
Evolutionary Computation, New York, NY, USA, 11–15 July 2015; pp. 757–758. [CrossRef]

37. Schrittwieser, S.; Katzenbeisser, S.; Kinder, J.; Merzdovnik, G.; Weippl, E. Protecting software through
obfuscation: Can it keep pace with progress in code analysis? ACM Computing Surveys (CSUR) 2016, 49,
1–37. [CrossRef]

38. Hoffmann, J.; Rytilahti, T.; Maiorca, D.; Winandy, M.; Giacinto, G.; Holz, T. Evaluating analysis tools for
android apps: Status quo and robustness against obfuscation. In Proceedings of the Sixth ACM Conference
on Data and Application Security and Privacy, New York, NY, USA, 9–11 March 2016; pp. 139–141. [CrossRef]

39. Sharif, M.I.; Lanzi, A.; Giffin, J.T.; Lee, W. Impeding Malware Analysis Using Conditional Code Obfuscation.
In Proceedings of the 15th Annual Network and Distributed System Security Symposium, Atlanta, GA, USA,
8 February 2008.

40. Xian, G.-M.; Zeng, B.-Q. An intelligent fault diagnosis method based on wavelet packer analysis and hybrid
support vector machines. Expert Syst. Appl. 2009, 36, 12131–12136. [CrossRef]

41. KISA, Security R&D Dataset. Available online: https://www.kisis.or.kr/kisis/subIndex/283.do (accessed on
28 August 2019).

42. VirusShare, VirusShare_ELF_20190212. Available online: https://virusshare.com/ (accessed on
28 August 2019).

43. Tobiyama, S.; Yamaguchi, Y.; Shimada, H.; Ikuse, T.; Yagi, T. Malware detection with deep neural network
using process behavior. In Proceedings of the 2016 IEEE 40th Annual Computer Software and Applications
Conference (COMPSAC), Atlanta, GA, USA, 10–14 June 2016; pp. 577–582.

44. Xu, L.; Zhang, D.; Jayasena, N.; Cavazos, J. Hadm: Hybrid analysis for detection of malware. In Proceedings
of SAI Intelligent Systems Conference; Springer: Cham, Germany, 2016; pp. 702–724.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.5210/fm.v16i5.3493
http://dx.doi.org/10.1145/2739482.2764940
http://dx.doi.org/10.1145/2886012
http://dx.doi.org/10.1145/2857705.2857737
http://dx.doi.org/10.1016/j.eswa.2009.03.063
https://www.kisis.or.kr/kisis/subIndex/283.do
https://virusshare.com/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Challenges with Linux/Embedded/IoT Environments
	Contribution
	Malware Analysis Support in Various Linux/IoT Environments
	Automatic Linux/IoT Malware Analysis Technology with One Code

	Related Work
	PE Format-Aware Analysis
	Linux Format Aware Analysis
	Binary Format Aware Analysis

	Proposed Model
	System Overview
	Platform-Independent Malware Analysis
	Binary-Based Strings Analysis
	Count-Based Strings Vectorization Technology
	Feature Importance Based Feature Selection
	Deep Neural Network

	Experiments
	Dataset
	Platform-Independent Malware Analysis Experiment Results
	Windows Executable (PE) File Analysis
	Linux Executable (ELF) File Analysis
	Windows and Linux Executable File Analysis

	Conclusions
	References

