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Abstract: In an effort to improve the energy efficiency of existing buildings, it is necessary to first
evaluate the energy performance of those buildings. Since it is difficult to obtain detailed information
on existing buildings, the challenge is how to conduct reliable energy performance assessments with
this limited information. As a result, many countries have adopted evaluation systems based on
measured energy consumption data for existing buildings. This study aims to analyze the building
energy consumption and characteristics using Korea’s national building database and provide an
energy performance benchmark for continuous management of the energy performance of existing
buildings. We analyzed the relationship between the basic statistical characteristics of the information
collected from the national integrated energy database and energy consumption. The total floor area
was found to be closely related to energy consumption, and various regression analysis methods
were applied and compared to develop a benchmark to explain the trends of energy consumption
according to the increase in total floor area. Finally, the developed benchmarks were used to evaluate
energy consumption and examine the feasibility of the benchmarks.

Keywords: building energy benchmarking; energy performance benchmark; existing building;
office building

1. Introduction

Building energy benchmarking is a mechanism to evaluate and compare the energy performance
of a building, relative to other similar buildings or a reference building in order to give stakeholders
information and motivate energy retrofits [1–3]. The energy benchmark can be defined as a
representative value of the energy performance of a peer group with similar properties to a given
building. It is used as a comparison criterion for evaluating whether the building performs well in
terms of energy consumption. Comparing energy consumption with a benchmark can help determine
whether a given building consumes more or less energy compared to its physical performance. An ideal
building energy benchmarking condition is the availability of a database which consists of the physical
and energy performance of peer groups with numerous existing buildings. However, collecting
and managing an array of data for many buildings could prove to be problematic. Actually, it is
an issue facing many countries that are performing benchmarking [3–5]. Thus, to develop a usable
benchmark, it is important to check the state of the collected data [3,6–9]. In addition, the benchmarking
information must be communicated to stakeholders in an appropriate way [10]. For example, energy
consumers may be more interested in using electricity or gas than greenhouse gas (GHG) emissions.
Meanwhile, policymakers may be more interested in national GHG mitigation. In addition, energy
performance must be fairly evaluated. A building that operates 12 hours a day should not be penalized
for consuming more energy than another building that operates only 8 hours a day. Therefore, the fair
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energy performance evaluation that considers the business constraints or operational requirements of
each of these buildings is required. With advanced information technologies, many countries have
provided database (DB), tools, and evaluation frameworks to assess energy performance as well as to
compare buildings to standards or their peer group based on the real energy data collection. The U.S.
Energy Star [11,12] is one of the leading energy benchmarking schemes, and many states and cities
including Minnesota [13], Seattle [14], and New York City [15] have adopted mandatory or voluntary
energy benchmarking policies based on it. The Building Performance Database (BPD) [16] also
provides data sets and statistical information that collect characteristic information related to energy
consumption in commercial and residential buildings) in the U.S. The U.K. [17] and Ireland [18] are also
developed CO2 emission benchmarking systems to disclose the energy performance of public buildings.

As a way to improve energy efficiency of buildings, the Korean government compiled a nationwide
integrated energy consumption DB with information on about 6.9 million buildings and energy records
and has operated an energy benchmarking system based on this DB [19,20]. The energy data consists
of the addresses and the monthly usage data of electricity, gas, and district heating, while building
records comprise the addresses and building energy features such as floor area and building height,
among others. The integrated database is based on monthly energy billing data of real buildings, so it
is meaningful in that it is demand-side data, not supply-side data. In other words, since the database
represents the energy consumption in buildings and household units, it is useful for comparing or
evaluating the energy consumption of buildings to encourage voluntary energy saving by the public
or to make decisions on property trading or renting. The current energy performance benchmarking
system utilizes the annual primary energy consumption of electricity and heat energy as a benchmark.
Primary energy or GHG emissions are appropriate to compare national consumption of natural
resources such as petroleum and coal, or to check the implementation status on GHG reduction targets.
However, since stakeholders, such as building owners and facility managers in individual buildings,
are less aware of the concept of primary energy, there is a need to provide them information on final
energy that is more intuitive to understand in relation to energy costs.

The purpose of this study is to prepare a benchmark for energy consumers that can identify the
energy consumption level of buildings using only the available information using Korea’s national
building database. First, we examined the purpose of energy performance benchmarking, the types of
target audiences, and how to develop these benchmarks. Depending on whether the energy consumer
who consumes energy directly or the government who must manage energy at the national level, it may
have different purposes such as reducing the amount of electricity and gas consumed in buildings or
reducing the source energy consumed in a country. Therefore, two types of target audience were set for
using the benchmarking, and the purpose and requirements of using each type of benchmarking were
analyzed. The benchmark development methods were classified based on the type and volume of
information that could be collected, as well as the purpose and requirements of benchmarking. Next,
various benchmark development methods were investigated for suitable benchmark development.
Then, data on energy consumption and the basic building characteristics of office buildings were
collected and analyzed from the DB system in Korea. Descriptive statistics of energy consumption
and building features were performed, and the number of buildings in the collected dataset and the
characteristics describing each building were verified to identify those that can provide the required
information for energy consumers. Based on the requirements for energy consumers and the analyzed
results of the nationwide database, the benchmark was developed, and energy performance was
evaluated. Various regression analysis methods were applied and compared to develop appropriate
benchmarks for the type and level of information that can be collected. We found energy influence
factors that can be considered to evaluate the energy performance of office buildings. Finally, the
performance of nationwide office buildings was evaluated using the developed benchmarks, and the
results discussed.
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2. Overview of Energy Benchmarking

2.1. Purpose and Requirements of Benchmarking

Setting the target audience is an important development procedure given that it is a fundamental
factor to establish appropriate energy benchmarks and performance assessment methods [10]. The target
audience can be classified into two broad categories, depending on whether they have a direct interest in
the actionable strategies to improve building efficiency or they want to establish a national standard and
manage numerous buildings. Table 1 shows the purpose and requirements of the energy benchmarking
taking into consideration each target audience.

Table 1. Purpose and requirements of energy benchmarking according to target audience.

Feature
Target Audience

Energy Consumers Policymakers

Definition
Those who have a direct interest in the actionable
strategies to improve building efficiency and to

manage energy costs.

Those who want to establish a national
standard and regulate numerous buildings.

Examples Building owners
Operators/Managers, etc.

Local government
National government, etc.

Want to Reduce energy costs
Improve energy efficiency of their buildings

Reduce the amount of raw fuel needed to
operate buildings

Identify the energy consumption status for
reduction and management of GHG

Interested in
Demand-side (Site) energy:

- Final energy (e.g., electricity, gas)
- End-use energy (e.g., heating, cooling)

Supply-side energy:
- Source energy

- Primary energy

Uses to

- Identify own building level among similar buildings
- Identify energy type to improve

- Establish strategies of investment priorities among
building energy improvement opportunities.

- Encourage or require benchmarking to public
- Performance information disclosure

- Strengthen the regulation or extend support to
poorly performing buildings

- Provide incentives to low-energy use buildings

The reason for considering the target audience is that the requirements to be taken into account
for developing energy benchmarking are different. Since the information which should be provided is
different based on the target audiences, it is necessary to appropriately establish the type of energy
performance to be compared and evaluated. Similarly, energy consumers aim to reduce energy costs
and improve energy efficiency of their building through benchmarking. Thus, the comparison target
should be selected to determine whether the current energy consumption level of a given building is
good or bad, when compared to other similar buildings. Also, the change of measured performance
over time can be compared by selecting an individual building as a comparison target. On the contrary,
the main objective of policymakers is not detailed management of individual buildings, but to consider
the comparison and ongoing management of energy performance for numerous buildings to analyze
the realization of national GHG reduction targets. Therefore, policymakers want to identify the poorly
performing group of buildings among large-scale buildings or analyze the performance tendency.
Therefore, to make it easier to manage at the national level, buildings are grouped on the basis of
building type and region.

2.2. Benchmark Development Methods

The benchmark is derived from a comprehensive consideration of the purpose of benchmarking
and the characteristics of the building. Benchmark types are classified as absolute and relative reference
points. The absolute reference point is a good criterion to emphasize the final goal, and the relative
reference point is suitable for benchmarking since it can effectively compare measured performance
market-wide [21]. A benchmark can be derived using statistical techniques, data mining, simulation,
etc. In this study, we analyzed the method for developing the benchmark of relative reference points.
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2.2.1. Statistical Techniques

Regression Analysis

Regression analysis is widely used to develop energy benchmarks for explaining the relationship
between the various dependent variables and energy consumption. For example, in the U.S. Energy Star
benchmarking system [11,21], the predicted energy use intensity (EUI) is calculated by a simple linear
regression model which can explain relationship between building operational characteristics and
primary energy consumption. Lee et al [22] derived multiple regression for predicting end-use energy
consumption such as heating and cooling energy use, etc., based on the survey of 71 residential buildings
in Korea. Next, Hong et al. [23] analyzed and reviewed various benchmark development methods
and gave examples of analyzing relationships through complex top-down methods such as regression
analysis. Chung [24] described the benchmarking process for energy efficiency through multiple
regression analysis, in which the relationship between EUI and explanatory elements was developed.

To create benchmarks through regression analysis, building operating characteristics such as
climate, occupancy density, etc., and energy consumption data of many buildings are required.
Later, by analyzing the relationship between operating characteristics and energy consumption, key
characteristics that affect energy consumption are found and regression equations to predict energy
consumption are derived. Function can be expressed in a variety of ways, including linear, polynomial,
and exponential. Specifically, the energy performance benchmark values for each building are derived
differently. For example, if gross area is a key variable affecting energy consumption, the larger the
area, the greater the expected energy consumption. That is to say, knowing the values of key variables
allows to instantly normalize benchmarks for an objective comparison of energy performance. This
has the advantage of allowing flexible benchmark normalization even if the variable value changes.
However, if there are not many kinds of variables to be used as independent variables, it is difficult to
prepare a model with high explanatory power. Also, if there is no information on the values of key
variables, the predicted energy consumption cannot be calculated even with the regression equation.
All regression methods require regular expert evaluation and updates to validate the developed model.

Types of regression are divided into simple linear, polynomial, segmented regression, etc. Linear
equations have the advantage of being simple to develop and easy to interpret, but they require
extra data preprocessing or transformation to analyze nonlinear relationships. On the other hand,
polynomials and exponential equations have the advantage of being more explanatory about nonlinear
relationships, but they are difficult to interpret. The segmented regression is a method to make up for
the shortcomings of linear and nonlinear models, and it is a method to create a linear equation for each
section by dividing the line into several points based on the point where the variable amount of change
varies. That is, segmented regression is a method in which independent variables are divided into
intervals and separate line segments are developed for each interval. A detailed analysis is required to
find the point of change in the relationship between variables.

Calculation of Central Tendency

Central tendency is a method to represent the tendency of data as a specific numerical value,
indicating its nature as a measure of the center of distribution. That is, it can be used as a reference
value for evaluating the energy performance of a building. The types of central tendency are mean,
median, and it generally uses mean as a central tendency for a group or sample. The DEC [17] is a UK
benchmarking system that compares CO2 emissions based on the actual energy use with benchmark
CO2 emissions. The benchmark CO2 emission, the electricity and heat energy usage for 29 building
properties proposed by CIBSE were developed using median based on standard operating hours and
heating degree days which is based on the balance point temperature of 15.5 ◦C. Mathew et al. [25]
explained trends of building energy performance through central tendency analysis of more than
750,000 building energy data in the United States. Mims et al. [26] suggested averages, medians, etc.,
of energy consumption for each state are calculated and provided.



Energies 2020, 13, 950 5 of 18

However, the mean is sometimes distorted due to the influence of extreme data values. Particularly,
since it is often the case that energy is used excessively in a certain building or household, it is necessary
to carefully examine the distribution of the data to apply the mean. In this case, the median is applied,
which is not affected by extreme values. The central tendency should also be calculated considering
conditions such as occupancy, climate, etc. for a fair comparison. However, unlike the regression
equation where the benchmark value is calculated according to the input values, central tendency
is a single value. Therefore, it is necessary to calculate the central tendency of energy consumption
normalized to standard conditions, or to classify peer groups with similar conditions and calculate
benchmarks for each group. If the central trend of energy usage normalized to standard conditions
is used as the benchmark, the energy consumption of the evaluation building is normalized for the
standard condition, or the benchmark is corrected in consonance with the condition of the evaluation
building. Contrarily, when using peer group benchmarks, the evaluation building is compared against
the benchmark of the group that most closely resembles its characteristics. Unlike the regression
model, central tendency is intuitive with a single value. In addition, statistical processing is simpler
than regression analysis. Unlike a regression equation that requires a lot of feature information,
statistical processing does not require any information, which is convenient for the user. However,
if the energy consumption is normalized to standard conditions, the energy trend due to that variable
remains unknown.

2.2.2. Development of Simulation Model

Simulation models are a method for benchmarking a reference or normative model that
standardizes the building’s geometry, operational characteristics, etc. EnergyPlus, the simulation
engine, is one of the many energy modeling tools used for this approach. ASHRAE [27] provides
53 standard U.S. buildings based on CBECS data and provides a way to analyze energy savings through
improving the performance of buildings. Bannister and Hinge [28] selected reference building that
could be the basis of simulation to analyze the performance of buildings. Simulation models have the
advantage of being able to account for the various characteristics influencing the changes in energy
use. In addition, simulation can input various energy conservation measures (ECMs) and compare the
results. However, a disadvantage for many users is that benchmarks based on simulation modeling
may not be well normalized against an actual building stock.

2.2.3. Data Mining

This method is used to offset the absence of data and to improve the accuracy and reliability of
calculating the estimated energy consumption. Unlike simulation models that use thermodynamic
equations to calculate the physical behavior of buildings and their interactions with the external
environment based on physical descriptions, this method derives an optimal model that describes
the output value by empirical training, based on only minimal input variables without physical
knowledge. Generally, genetic algorithms or artificial neural network techniques are widely used.
Park et al. [29] developed six types of benchmarks using various data mining techniques based on
1072 office building data to develop new benchmarks for Korean office buildings. Liu et al. [30] used
data mining technologies to derive nine energy consumption patterns and develop benchmark for
quantitative energy evaluation by pattern for dynamic energy performance evaluation.

Unlike regression analysis, which explains the direct causal relationship between input and output
variables, various mediated or nonlinear effects are estimated based on the output value, assuming
a hidden layer that cannot be explained solely by input variables. The resulting model represents a
complex network of relationships between input variables, hidden layers, and output values. In other
words, if a nonlinear relationship or irregular pattern appears between variables, it is possible to
calculate more accurately than the regression equation. However, since it is impossible to explain the
relationship between input and output, unlike a regression equation which explains how an input
value affects an output value, it is difficult to adopt these models in public policy.
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2.3. Energy Performance Evaluation

If the energy consumption is compared as is, it is impossible to evaluate energy performance
fairly considering various conditions that may affect energy consumption besides the performance of
the building. In other words, in order to determine the level of energy consumption of a building in
the entire market, the same conditions must be made so that they can be compared with each other.
The Energy Star’s Energy Efficiency Ratio (EER) is a representative index that allows the comparison
of energy performance between the buildings to be compared. EER is 1 when the expected energy
consumption is the same as actual consumption, and less than 1 suggests that it uses less energy and
more than 1 means that it uses a lot of energy:

Energy Efficiency Ratio (EER) =
Actual Energy Consumption (MWh)

Benchmark (MWh)
(1)

However, by simply comparing the EER values of buildings, it is difficult to identify how much
or how little energy is consumed. Therefore, in order to enable objective comparison with buildings,
it is necessary to build a rating or scoring system to intuitively understand the evaluation results.
For example, the Energy Star describes these EER values in terms of 1–100 points, and the DEC are
designed to show the evaluation results with a seven-level grade from A to G [17].

3. Development of Benchmark

Korea’s current energy performance benchmarking system is still developing, and the operating
benchmarks are based on annual primary energy consumption of electrical and thermal energy.
Therefore, this study aims to develop a benchmark based on secondary energy consumption to provide
information to energy consumers. Initially, the national database was analyzed to determine the type
and amount of data constructed, and the relationship with energy consumption. Next, the benchmark
development method was applied, and the most appropriate benchmark was derived based on the
analysis results.

3.1. Data Description

In this study, we selected the office building stock with an area of more than 3000 m2, which are the
target buildings of the energy consumption disclosure system in Korea. To obtain measured data for
office buildings, a nationwide integrated energy consumption database, which includes information
on approximately 6.9 million buildings, was used. The information in the Korea database comprises
information on all buildings. Despite errors associated with missing or erroneous data, it is possible
to reflect the most accurate information. The national databased contains 7078 buildings registered
for office use. Of these, 4304 single-use office buildings were selected, excluding 2774 multi-use
buildings that do not consistently reflect the characteristics of office buildings. Building characteristics
and monthly energy consumption data for 2013 to 2015 were compiled. Subsequently, 589 office
buildings were excluded where at least one of the 36 months has no energy data or zero electrical
energy consumption, and finally 3715 offices were selected. Table 2 and Figure 1 show the overview
and distribution of the 3715 collected office buildings. Although total energy consumption and area
data existed for all the 3715 buildings, some data on building characteristics were missing. Total
energy consumption is calculated by adding electricity, gas and heat consumption for heating, cooling,
ventilating, lighting, domestic hot water, and equipment. Average total energy consumption per
building was about 1500 MWh in three years, and average final energy use intensity (EUI) was
149.6 kWh/m2. The average of EUI (149.6 kWh/m2) over the three years was lower than the average EUI
(160 kWh/m2) of office buildings assessed by the Energy Star program in 2018 [12] and the benchmark
EUI (215 kWh/m2) for office buildings in CIBSE Energy Benchmark TM46 [31]. It was also much
lower than the average EUI (245.7 kWh/m2) of 56,177 office buildings in the BPD [16]. Since the offices
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defined in the BPD includes building types with very high EUI, such as medical offices and banks,
their average EUI seemed to be much higher than other values.

Table 2. Basic statistical analysis of collected office building data in Korea.

Data Code N
Percentile

Mean Std. Skew-Ness
0% 25% 50% 75% 100%

Final
Energy

2013 [MWh] E13 3715 164 531 848 1558 58,204 1658 3246 9.11
2014 [MWh] E14 3715 134 494 790 1436 54,835 1548 2936 8.46
2015 [MWh] E15 3715 123 495 790 1426 55,298 1534 2927 8.64

2013 [kWh/m2] EUI13 3715 52.0 110.0 150.0 195.8 453.0 157.1 63.4 0.78
2014 [kWh/m2] EUI14 3715 37.5 103.3 140.0 180.4 376.2 146.4 57.6 0.69
2015 [kWh/m2] EUI15 3715 37.5 103.0 139.2 180.5 331.9 145.2 56.3 0.56

Building
features

Total floor area (TFA) [m2] X1 3715 3001 3975 5381 9521 212,615 9664 13,786 6.36
TFA above the ground [m2] X2 3715 1245 3010 4072 6650 139,896 6759 9171 6.68

Building age [years] X3 3668 3 15 22 26 81 21 10 0.47
Num. of floors above the ground X4 3710 1 5 7 10 60 8 5 2.16

Num. of basement floors X5 3710 0 1 2 3 10 2 2 1.25
Total num. of floors X6 3710 1 7 9 13 63 11 6 1.81
Building height [m] X7 3024 3 23 31 44 250 37 22 2.43
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The larger the difference between the median (50% percentile) and the mean, the larger the
skewness value, and the more asymmetric the distinction becomes, as shown in Figure 1. The total
energy consumption every three years showed very large positive skewness. Very high energy
consumption is not an outlier, but rather a reflection of information from buildings that actually show
very high energy consumption. In addition, area and building height appeared to have positive
skewness. The number of floors did not exceed two but appeared to be close to two. That is, the
variables relative to building size may be considered to have asymmetry. This can be seen as a result
of reflecting the information of large office buildings, not outliers or data errors. This asymmetric
distribution can be confirmed not only by the skewness but also by the difference between the mean
and the median. However, all EUI appeared as a normal distribution. This is because there is a very
high proportional correlation of 0.8 or more between the annual total energy consumption and total
floor area, as shown in Table 3. This is a different trend from residential buildings whose energy
consumption does not increase significantly since the number of residents is constant even though the
area is larger. In the case of workplaces, the area and energy consumption are proportional to each
other because the number of employees and work equipment increases in proportion to the size of
the company.
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Table 3. Result of correlation analysis between variables.

Code X1 X2 X3 X4 X5 X6 X7 E13 E14 E15 EUI13 EUI14 EUI15

X1 1

X2 0.94 ** 1

X3 −0.12 ** −0.09 ** 1

X4 0.53 ** 0.52 ** −0.13 ** 1

X5 0.51 ** 0.34 ** −0.19 ** 0.65 ** 1

X6 0.56 ** 0.51 ** −0.15 ** 0.98 ** 0.79 ** 1

X7 0.59 ** 0.59 ** −0.17 ** 0.94 ** 0.65 ** 0.93 ** 1

E13 0.82 ** 0.79 ** −0.05 ** 0.57 ** 0.50 ** 0.60 ** 0.61 ** 1

E14 0.83 ** 0.79 ** −0.08 ** 0.56 ** 0.50 ** 0.58 ** 0.60 ** 0.98 ** 1

E15 0.89 ** 0.80 ** −0.08 ** 0.55 ** 0.49 ** 0.57 ** 0.60 ** 0.97 ** 0.99 ** 1

EUI13 0.16 ** 0.16 ** 0.10 ** 0.29 ** 0.19 ** 0.28 ** 0.26 ** 0.64 ** 0.61 ** 0.59 ** 1

EUI14 0.17 ** 0.17 ** 0.05 ** 0.27 ** 0.18 ** 0.27 ** 0.26 ** 0.63 ** 0.65 ** 0.63 ** 0.95 ** 1

EUI15 0.17 ** 0.17 ** 0.04 * 0.26 ** 0.17 ** 0.25 ** 0.25 ** 0.60 ** 0.63 ** 0.65 ** 0.90 ** 0.95 ** 1

* means p-value ≤ 0.05; ** means p-value ≤ 0.01.

Table 3 shows the correlation between energy consumption and building characteristic variables.
The Spearman’s correlation was used for considering the asymmetry of some variables. There was
a high correlation close to 1 between the total energy consumption from 2013 to 2015. A similar
minimum, average, and maximum value of energy use and a close correlation of 1 indicate that energy
was used similarly over three years. EUI also appeared to be similar. Except for building age, all
building characteristic variables are related to building size and have a significant positive correlation
with each other as well as energy consumption. The same is true of the simple linear regression analysis
in Table 4. It shows the trends and determination coefficients for the columns on the X axis and the
rows on the Y axis. The directionality according to the sign in the correlation coefficient of Table 3 can
be seen from the figures in Table 4. In addition, the closer the linear density, the higher the coefficient
of determination. That is, it can be understood that the deviation with respect to the predicted value is
small, indicating high explanatory power.

An ideal database would be composed of many buildings and numerous features describing each
building. However, there were many samples in the collected data, but not various kinds of building
characteristic information. Most variables related to the building size, which suggests that errors
can occur due to mutual collinearity when used for regression analysis. Furthermore, although the
collected data of building characteristics affect energy performance, these features are difficult to regard
as factors that can be changed to improve the energy performance of a building. It suggests that it is
suitable for analyzing the simple trend of the large-scale data set, but difficult to use for complicated
simulation or detailed diagnosis. In other words, it is possible to simply compare energy consumption
levels using information from the national database, but it is difficult to explain the reason.
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Table 4. Graphs and determination coefficients of simple linear regression analysis between variables.

Y X X1 X2 X3 X4 X5 X6 X7 E13 E14 E15 EUI13 EUI14 EUI15

X1 0.96 0.01 0.49 0.25 0.48 0.56 0.88 0.91 0.91 0.03 0.03 0.03

X2 0.002 0.49 0.18 0.15 0.54 0.86 0.89 0.89 0.03 0.03 0.03

X3 0.01 0.05 0.02 0.02 0.002 0.003 0.004 0.015 0.006 0.004

X4 0.44 0.96 0.92 0.45 0.46 0.45 0.07 0.07 0.06

X5 0.63 0.46 0.18 0.19 0.19 0.02 0.03 0.02

X6 0.90 0.42 0.44 0.43 0.17 0.06 0.06

X7 0.50 0.52 0.51 0.06 0.06 0.06

E13 0.98 0.96 0.11 0.10 0.09

E14 0.99 0.10 0.10 0.10

E15 0.09 0.10 0.10

EUI
13 0.88 0.78

EUI
14 0.90

EUI
15
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3.2. Development of Benchmark Using Regression Analysis

The national data do not include operational information such as operating hours and occupancy,
although energy consumption has been found to be closely related to variables related to building size.
In addition, most building size variables have a high R-squared value of about 0.4 to 0.9, which indicates
that energy consumption can be well explained by a small number of variable types. In addition,
regression has the advantage that the function calculation can calculate the benchmark considering
the characteristics of individual buildings rather than the representative values such as the mean
or median. Therefore, the benchmark was developed using a regression method that can flexibly
reflect the variability of variables when it has high explanatory power. To find the most suitable
type of regression analysis, a benchmark by type was developed and compared the analysis results.
The coefficient of determination of models were compared to identify the fit of model.

A regression analysis was conducted on energy consumption and building information variables
for each year and all three years from 2013 to 2015. Since we did not compare the energy consumption
of each year, normalization to standard climate condition was not performed. The coefficients of
the three-year equations for all types were found to be almost similar. Of the independent variables
X1–X7, all variables except building age (X3) were so highly interrelated that they cannot be used in
multilinear regression analysis. In addition, building age is a variable that reflects information on
factors related to energy performance of a building, such as U-value, so it may be difficult to make a
fair assessment. If building age is included as a variable in the regression equation, it means that the
poor energy performance of old deteriorated building can be allowed considering its age.

A simple regression analysis was performed to analyze the change in dependent variables due
to the change in one variable. Simultaneously, the total floor area (TFA) most relevant to energy
consumption was selected as an independent variable. The coefficient of determination between TFA
and total energy consumption is higher, in the quadratic equation than in the linear one, as shown in
Figure 2. In small buildings, the linear equations are above the quadratic equations and the opposite
trend is observed if the TFA is above a certain value. It indicates that if the office building increases
above a certain scale, energy consumption increases rapidly. If linear equation is used as a benchmark,
the larger the building, the lower the estimated energy consumption than if a quadratic polynomial
is used as a benchmark. This can be interpreted as consuming more energy when comparing the
actual energy against benchmarks. In other words, evaluating a large building with a linear equation
and a lower R-square value than a second-order polynomial suggests that it can be evaluated more
disadvantageously than smaller buildings.

To develop an appropriate benchmark, a model is usually chosen that best describes the relationship
between the variable and energy usage. It may be reasonable to choose the quadratic model as a
benchmark because it has a higher determination coefficient than linear equations. However, the
quadratic model using a single variable not only makes it difficult to interpret the increase in energy
consumption due to the increase in area, but also the utility of the equation is lower than that of
the linear model. Therefore, to develop a fair and reasonable energy performance assessment and
easy-to-understand benchmarks, we applied the segmented regression which makes two or more
models by separating linear equations, according to the section of the independent variable.

Segmented regression is useful when independent variables that are categorized into various
groups represent different relationships among variables by region. Two separated linear equations
divided by breakpoints are suitable for quantifying the rapid change in response y due to various
variables x. A breakpoint is the value at which a sudden change occurs. Segment regression is based
on the dependent variable y and the independent variable x. The segments in each interval are derived
by the least squares method. In other words, the sum of the squared (SSD) between the observed y and
the calculated Yr is minimized.
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Figure 2. Difference of coefficient of determination between second-order polynomial regression and
simple linear regression by year.

The dependent variable is represented by the following equation:

Yr = β1 · x + C1 for x < BP (breakpoint) (2)

Yr = β2 · x + C2 for x > BP (breakpoint) (3)

where Yr the predicted value of y for value of x; βi regression coefficients (the slope of the line segments)
and Ci regression constants (the intercept at the y-axis).

In this study, we used the SegReg program developed by the Institute for Land Reclamation and
Improvement (ILRI) to derive significant breakpoint and segmented equations [32]. The program finds
the most appropriate BP for classifying data into two groups for one group. In addition, the appropriate
model was derived among the seven types of regression equations such as single horizontal line and
two disconnected segments, etc.

Explanation coefficient (EC) means the total explanation by segmented linear regression with BP,
like the determination coefficient which means total explanation by single linear regression. Figure 3
shows the procedure and method of data classification using the SegReg program to derive segmented
regression. First, two groups having the highest EC of the entire data are divided. Subsequently, we
performed segmental regression analysis on each of the two groups that were classified to identify
whether there is a BP that may have a higher EC value. Check the number of groups, BP, and regression
equation for each group when no more classification is possible.

Tables 5–7 below show the results of linear, quadratic polynomials, and segmented regression
analysis (1–3) for four cases according to energy use years (A–D). Table 8 compares the analysis results
for each regression method (1–3) for case D. All cases were found to have high explanatory power in
the order of 2-order polynomials, segmented regression, and single linear equations. As a result of the
segmentation regression analysis, two disconnected segments were modeled.
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Table 5. Linear regression analysis result.

Case Data Break Point
(BPx)

Number of
Data

Regression
Coefficient (RC) Constant Determination

Coefficient (R2)

1 A 2013 None 3715 0.208 −435 0.877
1 B 2014 None 3715 0.203 −411 0.906
1 C 2015 None 3715 0.202 −420 0.906
1 D 2013~2015 None 11145 0.208 −435 0.893

Table 6. Quadratic regression analysis result.

Case Data BPx Number of Data
RC

Constant R2
x2 x

2 A 2013 None 3715 6 × 10−7 0.15 −5.92 0.905
2 B 2014 None 3715 5 × 10−7 0.15 −54.0 0.927
2 C 2015 None 3715 5 × 10−7 0.15 −36.9 0.930
2 D 2013~2015 None 11,145 5 × 10−7 0.15 −32.3 0.917

Table 7. Segmented regression analysis result.

Case Data BPx
Number of Data RC Constant Explain

Coefficient (EC)X < BPx X > BPx A1 A2 K1 K2

3 A 2013 17,674 3310 405 0.175 0.256 −105 −2520 0.894
3 B 2014 17,674 3310 405 0.165 0.231 −107 −2040 0.920
3 C 2015 17,674 3310 405 0.164 0.232 −106 −2180 0.922
3 D 2013–2015 17,674 9930 1215 0.168 0.240 −106 −2240 0.909

All cases were classified into two groups based on TFA 17,674 m2, and all of them showed higher
EC than the R-square of the linear regression model. All cases were found to have high explanatory
power in the order of 2-order polynomials, segmented regression, and single linear equations.

Table 8 shows the comparison results by type of regression analysis for case D. The reason for the
difference in the total description of the data according to the type of regression analysis method can
be seen from the comparison between the actual and estimated energy consumption. If the actual and
estimated energy usage match, the data will be located along the diagonal. On the diagonal, the red
and blue sections correspond to the energy consumption levels at both extremes. That is, the red line
corresponds to a small office and the blue line corresponds to a large office.
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Table 8. Comparison results by type of regression analysis for case D.

1. Linear Regression 2. Quadratic Regression 3. Segmented Regression

R2 0.893 0.917 0.909

Model

Estimated vs.
Actual

The ideal model is to distribute the data evenly across the diagonal. Looking at the blue circle line
in Table 9, there is a big difference between the actual and expected energy consumption. In the case of
the linear model, there was no data in the blue line region. In the quadratic polynomial model, the data
was placed close to the diagonal. Conversely, the data in the red section shows that the estimated value
is higher than the actual value. The segmented regression has been shown to partially compensate for
the problems of the linear model. The data in the red line were adjusted to be more evenly distributed
than the linear model based on the diagonal line. Also, since the data in the blue line region is located
at a shorter distance from the diagonal than the linear model, the distribution deviation was reduced.
Therefore, the segmented regression model has explanatory power close to the polynomial, which is
useful in terms of ease of interpretation and utilization of the benchmark.

Table 9. Look-up table based on EER calculation result.

Score Cumulative Percent
EER

Score Cumulative Percent
EER

>= < >= <

100 0% 0 0.317 89 11% 0.559 0.573
99 1% 0.317 0.368 88 12% 0.573 0.586
98 2% 0.368 0.403 87 13% 0.586 0.599
97 3% 0.403 0.431 86 14% 0.599 0.611
96 4% 0.431 0.455 85 15% 0.611 0.623
95 5% 0.455 0.476 84 16% 0.623 0.635
94 6% 0.476 0.495 83 17% 0.635 0.646
93 7% 0.495 0.513 82 18% 0.646 0.657
92 8% 0.513 0.529 81 19% 0.657 0.668
91 9% 0.529 0.544 80 20% 0.668 0.679
90 10% 0.544 0.559 40 60% 1.057 1.067

Thus, we chose the partitioned regression analysis method and developed a partitioned regression
model based on the combined energy consumption of three years. The following equation shows the
result of the benchmark model applying segmented regression analysis:

Yr = 0.168 · x− 106 for 3000 < x < 17, 674 (4)
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Yr = 0.240 · x− 2240 for x > 17, 674 (5)

4. Energy Performance Evaluation and Benchmark Validation

4.1. Energy Performance Evaluation

In this study, we adopted a method that converts energy performance into a score of 1–100 points
with the help of the evaluation method used in the US Energy Star system. First, we drew a cumulative
distribution of the energy efficiency ratios of the 3715 buildings analyzed as shown in Figure 4.
Subsequently, we used the gamma distribution and minimized the sum of squared differences to
identify the best gamma curve from the data. Smooth curves are mathematically defined by certain
equations, so the curves can be used to calculate the EER at a given percentage. In other words,
a look-up table was made that can be converted to a score of 1–100 points at a given percentage.
Table 9 below shows a part of the score transformation look-up table derived based on the results of
3715 EER calculations.Energies 2020, 13, 950 14 of 18 
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4.2. Analysis of Energy Performance Evaluation Result and Validation of Benchmark

Table 10 shows the distribution of energy performance scores according to the EER of 3715 office
buildings. Figure 5 reveals the results of comparing the energy performance score converted through
the look-up table with the EUI. At 50% cumulative percentile, the EER score was 0.95, close to 1,
representing a certain level of energy consumption. EER values appearing close to 1 in the 50%
cumulative percentile indicate that buildings with typical energy usage levels are located at the middle
level across the market. Therefore, the distribution of EER has been judged to be appropriately derived,
and the benchmark can be considered to show the general tendency of using the office building.

Table 10. Energy performance evaluation result of office building.
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As a result of comparing the energy performance score with the EUI in Figure 5, the higher the
energy performance score, the lower the EUI. Concurrently, when the performance score was very low,
the EUI showed a wide distribution of about 300–450 kWh/m2, and when the score was very high,
the EUI converged to about 40 kWh/m2 value. The convergence of EUI by the energy performance
score increases as a result of both energy-saving behavior and energy-performance improvements.
Contrarily, the various distributional phenomena of EUI by the reduction of energy performance scores
can be attributed to various causes such as low physical performance or energy-consuming behavior.

The lower the energy performance score, the wider the difference of the EUI distribution. This
indicates that it is necessary to investigate and analyze additional variables that can explain the way
the building operates. However, the energy performance score and EUI evaluated by the model
developed in this study also show a significant correlation, which can help identify poor performance
buildings. The benchmark can be used to identify low-score buildings and to determine the need for
improved energy performance. The benchmark developed in this study can assess energy performance
levels and identify problematic buildings, but the cause is unknown. However, it is very important
to identify buildings that require further investigation, and this is likely to be possible through the
developed benchmarks.

5. Conclusions

In order to improve the physical performance of existing buildings, it is necessary to first evaluate
the current energy consumption level by considering the factors that affect energy consumption,
in addition to physical performance. However, existing buildings often lack the data required for
this analysis due to problems related to poor performance and data loss, among others. This study
analyzed the purpose and requirements of energy performance assessment and developed a method
for a reliable energy performance benchmark based on data available from national data.

The national data shows energy usage and building information for all buildings in Korea,
but the building information only includes data on size and year, and no physical performance
information. There was also no operational information. This study derived the factors influencing
energy consumption in the information that can be collected for office buildings and analyzed how
closely it is related to energy consumption. As a result, gross area had a causal relationship with energy
consumption of over 0.9. This is an indicator that the area of the building is closely related to the
increase in the number of workers or equipment, since the characteristics of the office buildings where
there is no significant change in the number of people in the building or the number of equipment.
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This suggests that although there is no data related to the operation of the building, there is adequate
data on the number of buildings close to the total population, and suggests that benchmarks can be
developed with data that can account for most of the energy use.

Based on this high explanatory power and a large number of data constructs, the benchmark
was developed by regression analysis. In this case, we applied linear regression analysis, quadratic
polynomial model, and segmented regression method to better elucidate the data. Finally, segment
regression was selected that can enunciate and easily explain changes in energy consumption due to
variable changes. Next, in order to fairly evaluate the building’s energy performance level in the entire
market, the EER was calculated by comparing the actual usage against the benchmark, and the energy
performance score was used to determine the intuitive current energy consumption level.

As a result of comparing the energy performance score with the EUI, the higher the energy
performance score, the lower the EUI. Concomitantly, when the performance score was very low,
the EUI showed a wide distribution of about 300–450 kWh/m2, and when the score was very high, the
EUI converged to a certain value. The convergence of EUI by the energy performance score increases
as the result of both energy-saving behavior and energy-performance improvements. On the contrary,
the various distributional phenomena of EUI by the reduction of energy performance scores are due to
various causes such as low physical performance or energy-consuming behavior. Therefore, in order to
appropriately analyze the cause, additional investigation is needed for buildings with low scores, and
the benchmark developed in this study can be used to find the buildings that need to be improved.

This study developed an energy performance benchmark for an office building in Korea. According
to the characteristics of the building, even if there is meager information, a reasonable benchmark can
be developed, and energy performance assessed. As buildings are used for a long time, it is imperative
to make continuous energy performance assessments and improvements. This essentially requires a
fair and reliable method of assessment. The results of this study can be used to identify buildings for
energy performance improvement and the management of existing buildings in the future, and further
studies will be conducted to derive the cause analysis and improvement directions of buildings with
low-energy performance scores.
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