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Abstract
Our cells operate based on two distinct genomes that are enclosed in the nucleus and mitochondria. The mitochondrial 
genome presumably originates from endosymbiotic bacteria. With time, a large portion of the original genes in the bacterial 
genome is considered to have been lost or transferred to the nuclear genome, leaving a reduced 16.5 Kb circular mitochon-
drial DNA (mtDNA). Traditionally only 37 genes, including 13 proteins, were thought to be encoded within mtDNA, its 
genetic repertoire is expanding with the identification of mitochondrial-derived peptides (MDPs). The biology of aging has 
been largely unveiled to be regulated by genes that are encoded in the nuclear genome, whereas the mitochondrial genome 
remained more cryptic. However, recent studies position mitochondria and mtDNA as an important counterpart to the nuclear 
genome, whereby the two organelles constantly regulate each other. Thus, the genomic network that regulates lifespan and/
or healthspan is likely constituted by two unique, yet co-evolved, genomes. Here, we will discuss aspects of mitochondrial 
biology, especially mitochondrial communication that may add substantial momentum to aging research by accounting for 
both mitonuclear genomes to more comprehensively and inclusively map the genetic and molecular networks that govern 
aging and age-related diseases.

Introduction

Mitochondria are frequently labeled “the powerhouse” of the 
cell, reflecting their role as the primary bioenergetic source, 
yet their biological functions are remarkably extensive. They 
are increasingly being appreciated for their role in sensing 
environmental cues and coordinating/communicating adap-
tive responses to other cellular compartments, including the 
nucleus. A wide range of cellular functions are now known 
to be regulated by mitochondria, including multiple age-
related processes, such as metabolism, unfolded protein 
response, autophagy, and inflammation (Chandel 2015; Hill 
et al. 2018; Melber and Haynes 2018; Quirós et al. 2016; 
Sun et al. 2016).

Mitochondria are cogently thought to originate from 
endosymbiotic bacteria that emerged as early as 1.5 billion 

years ago (Martijn et al. 2018; Quirós et al. 2016; Spang 
et  al. 2015; Sunnucks et  al. 2017). Mitochondria have 
retained many of their inherited prokaryotic properties, 
including a circular genome (mitochondrial DNA; mtDNA) 
with a unique genetic code, formylation of mitochondrial 
proteins, and binary fission and fusion. The modern mtDNA 
is estimated to be considerably reduced from the primeval 
bacterial genome, resulting from loss and lateral transfer to 
the nuclear genome. The survival advantage of maintaining 
two genomes is unclear, but the co-evolution of mitochon-
drial and nuclear (mitonuclear) genomes likely required, and 
likely still requires, continuous adaptation to each other to 
establish a unified singular genetic system.

During the past century, remarkable progress has been 
made in unveiling the mechanisms of aging. Genetic and 
molecular pathways that regulate healthspan and lifespan 
have been identified in various model organisms, provid-
ing a rich knowledge base (Longo et al. 2015; Lopez-Otin 
et al. 2013, 2016; Singh et al. 2019). However, the focus on 
longevity pathways has been nuclear-centric and all known 
longevity genes are nuclear-encoded. In this review, we will 
discuss key aspects of the mitochondrial genome and mito-
nuclear communication, which may add additional momen-
tum to aging research by accounting for both genomes to 
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more comprehensively and inclusively map the genetic and 
molecular networks that govern lifespan and/or healthspan.

Mitochondria: origin and genome

Mitochondria presumably originate from endosymbiotic 
alpha-proteobacteria (Sagan 1967) and continue to possess 
multiple prokaryotic remnants including their own unique 
circular genome and genetic code. While the specific evolu-
tionary origin of mitochondria remains debatable, the inte-
gration of two free-living organisms likely required dynamic 
communication and coordination (Lane 2017; Youle 2019). 
The mitochondrial DNA (mtDNA) and the nuclear DNA 
conceivably have been evolving for over 1.5 billion years. 
It is estimated that a considerable amount of the original 
bacterial genome has been lost or transferred to the nuclear 
genome (Bock 2017). Notably, mitochondria-to-nucleus 
gene transfer still occurs in modern eukaryotic cells (Ju 
et al. 2015).

The mitochondrial genome has been traditionally 
described to encode for 37 genes; 13 proteins (mRNAs), 2 
ribosomal RNAs (rRNAs), and 22 transfer RNAs (tRNAs). 
All 13 proteins are components of the mitochondrial res-
piratory chain (MRC). For example, of the five complexes 
involved in oxidative phosphorylation (OXPHOS), com-
plex I is composed of 45 polypeptides, of which seven are 
encoded in the mtDNA (Wallace 2010). Only complex II 
is entirely assembled from nuclear-encoded subunits. The 
stoichiometry of the MRC subunits is critical for OXPHOS 
(Milenkovic et al. 2017) and the mitochondrial and cytosolic 
translation of the MRC components are tightly coordinated 
(Couvillion et al. 2016). Mitochondrial-encoded rRNAs and 
tRNAs are exclusive to mitochondrial translation; nuclear-
encoded tRNAs are imported into mitochondria in a spe-
cies-specific manner (Rubio et al. 2008; Salinas-Giegé et al. 
2015; Schneider 2011).

The regulation of the mitochondrial genome also reflects 
its prokaryotic ancestry. While nuclear DNA undergoes 
replication during cell division, mtDNA replication occurs 
independently of cell cycle. The majority of the compo-
nents for mtDNA replication are imported nuclear-encoded 
proteins, including the catalytic subunit of mtDNA poly-
merase (POLGA), and the replicative mitochondrial heli-
case (TWINKLE) (Cermakian et al. 1996; Tyynismaa et al. 
2004). Both the heavy and light strands of mtDNA contain 
genes, which are transcribed from three promoters; two are 
on the heavy chain (H1 and H2) and one is on the light chain 
(L) (Mercer et al. 2011; Shokolenko and Alexeyev 2017). A 
single subunit RNA polymerase transcribes mitochondrial 
genes, while translation requires mitochondrial-specific 
ribosomes using a distinct genetic code (Faye and Sor 1977; 
Kelly and Lehman 1986; Masters et al. 1987; Ringel et al. 

2011). The H2 and L promoters transcribe almost the entire 
mitochondrial genome as a single polycistronic transcript. 
Genes in mtDNA lack introns and levels of unprocessed 
transcripts are low, indicating highly active co-transcrip-
tional processing (Gustafsson et al. 2016). Notably, mito-
chondrial genes are typically flanked by tRNAs, which are 
then cut to produce individual transcripts (Anderson et al. 
1981; Falkenberg et al. 2007; Mercer et al. 2011; Ojala et al. 
1981). Interestingly, the mitochondrial transcription machin-
ery is considered to have originated from the endosymbiotic 
alpha-proteobacteria that eventually became replaced with 
bacteriophage-derived factors (Gustafsson et al. 2016; Shutt 
and Gray 2006).

The mitochondrial genome is grouped and packaged in a 
nucleoid, which consists of DNA-binding proteins. Nucle-
oid architecture plays an important role in maintenance and 
transcription (Gilkerson et al. 2013; Kanki et al. 2004; Mer-
cer et al. 2011), in which the mitochondrial transcription 
factor A (TFAM) is considered a key structural component 
(Kaufman et al. 2007). The overexpression and reduction 
of TFAM both affect mtDNA compaction level and inter-
fere with mitochondrial function (Ekstrand et al. 2004). 
Additionally, TFAM deficiency has been shown to enhance 
nuclear DNA repair under chronic genotoxic stress by induc-
ing a protective signaling response (Wu et al. 2019).

Mitochondrial‑derived peptides

The human genome project annotated genes that encode for 
proteins generally > 100 amino acids (International Human 
Genome Sequencing 2004), leaving shorter peptides largely 
unknown. More recently, peptides that are encoded as short 
open reading frames [ORFs; a.k.a small ORFs (smORFs)] 
have been increasingly identified in the nuclear and mito-
chondrial genomes (Ingolia et al. 2014; Saghatelian and 
Couso 2015). Such polycistronic genes (i.e., genes-within-
genes) have been traditionally thought to exist in prokary-
otes to allow genomic compaction (Williams et al. 2005). 
Additionally, recent technological innovations in computa-
tional biology, sequencing, and proteomics have revealed a 
much larger portion of the genome that is transcribed and 
translated than was originally understood (Andrews and 
Rothnagel 2014; Rothnagel and Menschaert 2018; Ruiz-
Orera and Albà 2019; Saghatelian and Couso 2015). In fact, 
accumulating evidence indicates that transcripts that har-
bor sORFs have been erroneously annotated as non-coding 
(Bazzini et al. 2014; Deng et al. 2018; Galindo et al. 2007; 
Ji et al. 2015; Kondo et al. 2007, 2010; Magny et al. 2013; 
Makarewich and Olson 2017; Nicholas et al. 2014; Yeas-
min et al. 2018). It is estimated that thousands of nuclear-
encoded sORFs that yield bioactive peptides exist, enriching 
our proteome considerably (Raj et al. 2016). Several sORFs 
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have been functionally described with diverse biological 
roles, including development (Chanut-Delalande et al. 2014; 
Kondo et al. 2010), DNA repair (Slavoff et al. 2014), muscle 
function (Bi et al. 2017), and immunity (Jackson et al. 2018).

Mitochondria have been known to code for 13 mRNAs, 
which are all components of the oxidative phosphorylation 
complexes, 22 tRNAs, and 2 rRNAs. However, recent stud-
ies have shown that mtDNA also encodes for previously 
unknown sORFs that yield biologically active peptides, 
collectively referred to as mitochondrial-derived peptides 
(MDPs) (Cobb et al. 2016; Hashimoto et al. 2001a, b; Lee 
et al. 2013, 2015). Currently, there are eight distinct MDPs 
that have been published (Hill et al. 2018): humanin (Guo 
et al. 2003; Hashimoto et al. 2001b; Ikonen et al. 2003), 
SHLP1-6 (Small Humanin-Like Peptide 1–6) (Cobb et al. 
2016), and MOTS-c (Mitochondrial Open reading frame of 
the Twelve S rRNA type-c) (Lee et al. 2015).

The first MDP to have been detected at the protein level 
with functional description is humanin, which is a 24-amino 
acid peptide encoded within the 16S rDNA of mitochondria 
(Hashimoto et al. 2001a, b). Humanin has cytoprotective 
roles, including (1) enhancing resistance against Alzheimer’s 
disease (AD)-related toxins (e.g., β-amyloid)(Hashimoto 
et al. 2001b), (2) anti-apoptotic effects by directly inhibit-
ing BAX (Guo et al. 2003) and by downregulating p38 MAP 
kinase (Wang et al. 2005), and (3) by binding to insulin-like 
growth factor-binding protein-3 (IGFBP-3) and improving 
cell survival (Ikonen et al. 2003). Notably, humanin can be 
negatively regulated by IGF-1 and is positively correlated 
with longevity in mice and humans (Lee et al. 2014).

Humanin also plays a protective role in several pathologi-
cal conditions. Humanin has been shown to be cardioprotec-
tive against myocardial ischemia–reperfusion (MI-R) injury 
by AMPK-endothelial nitric oxide synthase-mediated sign-
aling and regulation of apoptotic factors (Muzumdar et al. 
2010), reducing oxidative stress and promoting mitochon-
drial structural integrity (Klein et al. 2013), and reducing 
mitochondrial ROS levels and oxidative stress by targeting 
complex I (Thummasorn et al. 2016, 2018). Reduced age-
related myocardial fibrosis was observed in 18-month old 
female mice that were treated with a humanin analog (HNG; 
4 mg/kg, 2x/week, intraperitoneal injections) for 14 months 
(Qin et al. 2018b). Further, humanin protected human aor-
tic endothelial cells against oxidized LDL‐induced oxida-
tive stress (Bachar et al. 2010), and preserved endothelial 
function in hypercholesterolemic ApoE-deficient mice (Oh 
et al. 2011). Notably, in humans, circulating humanin levels 
were negatively correlated with coronary endothelial func-
tion (Widmer et al. 2013), whereas higher levels of humanin 
were detected in unstable carotid plaques (Zacharias et al. 
2012). Humanin and its derivative (S14G-humanin; HNG) 
(Hashimoto et al. 2001a, b) also showed beneficial effects 
in neurodegenerative disease models, such as protection 

against scopolamine-induced learning and memory impair-
ment in mice (Mamiya and Ukai 2001), β-amyloid-induced 
hippocampal long-term potentiation in rats (Guo et al. 2010) 
and mice (Zhang et al. 2009), and β-amyloid-induced mem-
ory impairment in mice (Tajima et al. 2005).

Following the discovery of humanin, additional sORFs 
within the 16S rDNA have been identified and termed 
SHLPs (small humanin-like peptides). There are 6 SHLPs 
(SHLP1-6), which have unique and redundant biologi-
cal effects, including cellular proliferation, apoptosis, and 
mitochondrial metabolism (Cobb et al. 2016). For example, 
SHLP2 and SHLP3 have antiapoptotic effects and promote 
cellular survival, while SHLP6 induces apoptosis in both 
murine beta-cells and prostate cancer cells (Cobb et al. 
2016). Interestingly, humanin and SHLP2 have chaperone 
activities that can prevent the misfolding of islet amyloid 
polypeptide (IAPP), a pathogenic process in the develop-
ment of type 2 diabetes mellitus (T2DM) (Okada et al. 
2017). In addition, lower levels of circulating SHLP2 were 
associated with an increased risk for prostate cancer in 
white, but not in black, men (Xiao et al. 2017).

Mitochondria have 2 rRNA genes (12S and 16S rRNA). 
Whereas humanin and the 6 SHLPs are encoded within 
the 16S rRNA, another MDP was identified from the 12S 
rRNA. MOTS-c (Mitochondrial ORF within the Twelve S 
rRNA type-c) is a 16 amino acid peptide that is expressed 
in multiple tissues and in circulation, indicating dual roles 
as an intracellular and endocrine factor (Lee et al. 2015), a 
characteristic shared with humanin and SHLP1-6. Notably, 
MOTS-c expression is lost in cells with selective deple-
tion of mtDNA (using low-dose chronic ethidium bromide; 
HeLa-ρ0) or mtRNA (using actinonin) without affecting the 
nuclear counterparts (Lee et al. 2015). In fact, the discovery 
of MOTS-c was inspired by the discovery that over 75% of 
mRNAs induced upon interferon activation in human myelo-
blasts mapped back to mitochondrial 12S and 16S rDNA 
loci (the paper didn’t identify specific genes) (Tsuzuki et al. 
1983). Notably, NUMTs that are identical to the mtDNA-
encoded MOTS-c sequence are not found, although there 
are few similar sequences. This is consistent with the NCBI 
database, whereby only the mtDNA sequence for MOTS-c, 
and none of the NUMTs, have been recorded as mRNAs 
(Lee et al. 2015). Further, small mtRNAs (annotated as 
non-coding) exclusively map to mtDNA sequences, rather 
than NUMTs (Mercer et al. 2011; Pozzi and Dowling 2019). 
Whereas tissue-specific abundance of small mtRNA levels 
is strongly associated with mtDNA content, no association 
was observed with NUMT levels across six vertebrate spe-
cies (Pozzi and Dowling 2019). MOTS-c expression requires 
cytosolic ribosomes because translation using the mito-
chondrial genetic code would lead to tandem start and stop 
codons (Lee et al. 2015). Although the specific mechanisms 
of mitochondrial nucleotide export are unknown, VDAC 
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oligomers can form pores to secrete mtDNA fragments 
(Kim et al. 2019a), which have been increasingly appreci-
ated as an adaptive mitochondrial stress response (Ingelsson 
et al. 2018; Trumpff et al. 2019; Yousefi et al. 2008). Upon 
leaving the mitochondria, it is plausible that the transcript 
may be translated using mitochondria-associated cytoplas-
mic ribosomes (Williams et al. 2014), thereby conferring 
mitochondrial specificity. Even then, it is possible that some 
NUMTs could encode for peptides, or express regulatory 
RNA, which would add another layer to the understanding of 
the evolution of our genomes as the origin of such sequences 
would still be mitochondrial.

Emerging studies continuously unveil the functions of 
MOTS-c in a wide range of pathophysiological processes as 
summarized in (Table 1). MOTS-c regulates cellular meta-
bolic homeostasis by coordinating cellular glucose, fat, and 
protein metabolism. The key metabolic regulators AMPK 
and SIRT1 are required for several functions of MOTS-c, 
including metabolism (Kim et al. 2018a; Lee et al. 2015; 
Lu et al. 2019b; Ming et al. 2016; Yan et al. 2019). In mice, 
MOTS-c has been shown to (1) enhance insulin sensitiv-
ity, largely by targeting skeletal muscle glucose metabo-
lism (Lee et  al. 2015), (2) promote white fat browning 
and brown fat activation in ovariectomized mice and mice 
exposed to cold (Lu et al. 2019a, b), (3) reduce fat mass, 
plasma lipid, and adipocyte size, while enhancing the lipid 
catabolism in ovariectomized mice (Lu et al. 2019b), in part, 
by increasing mitochondrial β-oxidation (Lee et al. 2015), 
(4) alleviate ovariectomy-induced bone loss by inhibiting 
RANKL-induced osteoclast formation (Ming et al. 2016) 
and osteoclastogenesis through osteocyte OPG/RANKL 
secretion (Yan et al. 2019).

In humans, MOTS-c has been implicated in different met-
abolic syndromes and diseases, including diabetes, cardio-
vascular diseases, and chronic kidney disease (CKD). Cir-
culating MOTS-c levels were reported to be lower in obese 
male children and adolescents, especially in those who were 
insulin-resistant (Du et al. 2018). However, in adults, plasma 
MOTS-c levels were similar in both lean and obese subjects, 
but a positive correlation to insulin resistance was observed 
in lean subjects (Cataldo et al. 2018). These data suggest 
that MOTS-c levels change dynamically in a context-specific 
manner. Further, it is unclear if the levels of MOTS-c reflect 
a mechanistic contribution to the metabolic dysfunction, or a 
positive response to such metabolic perturbations. The role 
of MOTS-c in fat metabolism (Lee et al. 2015; Lu et al. 
2019a, b) and its implication in obesity (Lee et al. 2015) 
are crucial since it is known that obesity is a risk factor 
for cardiovascular diseases (Eckel and Krauss 1998; Hubert 
et al. 1983). Moreover, adult patients with type 2 diabetes 
(Ramanjaneya et al. 2019a) showed reduced serum MOTS-
c levels. Also, adult subjects with chronic kidney disease 
(CKD), in which diabetes and cardiovascular diseases are 

major risk factors, exhibited a decrease in MOTS-c levels in 
both serum and skeletal muscle (Liu et al. 2019).

Mitochondria dynamically communicate to other orga-
nelles, including the nucleus, to coordinate a myriad of 
vital cellular functions (Mottis et al. 2019; Quirós et al. 
2016). Mitonuclear communication is especially interest-
ing because it engages two organelles that hold independent 
genomes. However, traditionally, all known gene-encoded 
regulators of the mitonuclear genomes have been known to 
be nuclear-encoded. MOTS-c translocates to the nucleus 
in response to cellular stress in an AMPK-dependent man-
ner to directly regulate adaptive nuclear gene expression by 
interacting with DNA and transcription factors (Kim et al. 
2018a). MOTS-c provides evidence for cross-genomic regu-
lation and extends the possibilities underlying the preserva-
tion of an independent mitochondrial genome.

Several of these mitochondrial-derived peptides may play 
a role in aging. SHLP2, humanin and MOTS-c all are posi-
tively correlated with longevity, and their levels decline with 
age in certain tissues (Cobb et al. 2016; Kim et al. 2017; 
Lee et al. 2015; Muzumdar et al. 2009). In both mice and 
humans, humanin is regulated through the GH/IGF-1 axis, 
which is a major conserved longevity pathway (Lee et al. 
2014; Tatar et al. 2003). Humanin levels are lower in the 
short-lived GH-transgenic mice, yet higher in the long-
lived GH-deficient mice (Lee et al. 2014). Interestingly, a 
MOTS-c polymorphism found in a Japanese population is 
related to exceptional longevity (Fuku et al. 2015; Zempo 
et al. 2016). At the functional level, MOTS-c can reverse 
age-dependent insulin resistance in mice (Lee et al. 2015). 
The effect of MOTS-c on cellular metabolism is mediated, 
in part, by AMPK and SIRT1, which are key regulators of 
lifespan (Canto et al. 2009; Price et al. 2012).

mtDNA Diversity

Unlike the nuclear genome, which requires both paternal 
and maternal contributions, mtDNA is inherited solely 
from the maternal lineage. It is unclear what advantage a 
uniparental mtDNA transmission confers, but one possibil-
ity is to minimize the number of distinct genomes to maxi-
mize the efficiency of a multi-genomic system (Hill et al. 
2019). In fact, humans have developed complex, redundant 
mechanisms to ensure uniparental inheritance of mtDNA 
(DeLuca and O’Farrell 2012; Rojansky et  al. 2016). 
Paternal mitochondria from sperms that enter into the 
egg during fertilization are actively and selectively elimi-
nated via mitophagy through two E3 ligases, PARKIN, 
and MUL1 (Rojansky et al. 2016). PARKIN and MUL1 
serve redundant purposes, and mitophagy becomes insuf-
ficient to eliminate paternal mtDNA only in the absence 
of both (Rojansky et al. 2016). Even though oocytes have 
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Table 1   Effects of MOTS-c in various cellular processes

Effects of MOTS-c Models References

Metabolism Targets the methionine-folate cycle, increases AICAR 
levels, and activates AMPK

Regulates cellular glucose, mitochondrial, and fatty 
acid metabolism

In vitro Lee et al. (2015)

Targets skeletal muscles and regulates insulin sensi-
tivity

Prevents high-fat diet-induced obesity and insulin 
resistance

Mice Lee et al. (2015)

Reduces fat mass and improved OVX-induced lipid 
deposition in the liver

Reduces adipocyte size and suppresses adipose-
inflammatory response, enhances lipid catabolism, 
and activates the brown adipose, in OVX mice

Mice Lu et al. (2019b)

Circulating levels of MOTS-c is decreased in T2D Human Ramanjaneya et al. (2019a)
Lean and obese people have similar plasma MOTS-c 

concentrations, but MOTS-c levels are associated 
with insulin sensitivity in lean, but not in obese 
people

Human Cataldo et al. (2018)

Plasma MOTS-c decreases in obese male children and 
adolescents and decreases more significantly when 
they are already obese and insulin resistant

Plasma MOTS-c negatively correlates with body 
mass index, waist circumference, and fasting insulin 
in male obese children and adolescents

Human Du et al. (2018)

Low endogenous plasma MOTS-c is associated with 
impaired coronary endothelial function (human), 
and MOTS-c treatment improves endothelial func-
tion in rodents

Human Rodent Qin et al. (2018a)

MOTS-c treatment regulates plasma metabolites, 
reduces fat accumulation in muscle, improves insu-
lin sensitivity in diet-induced obese mice

Mice Kim et al. (2019b)

MOTS-c treatment improves metabolic status and 
dermal aging in D-gal-induced aging mice and 
alleviates lipid accumulation in liver

Mice Li et al. (2019)

Lipid enhances circulating MOTS-c while insulin 
attenuates the MOTS-c response in human

Human Ramanjaneya et al. (2019b)

Circulating and skeletal muscle MOTS-c levels are 
decreased in chronic kidney disease patients

Human Liu et al. (2019)

Bone biology MOTS-c treatment alleviates bone erosion by inhibit-
ing osteoclastogenesis through the regulation of 
osteocyte OPG/RANKL secretion in an ultra-
high molecular weight polyethylene (UHMWPE) 
particle-induced osteolysis mouse model

Mice Yan et al. (2019)

MOTS-c treatment alleviates bone loss and inhibits 
(RANKL) osteoclast differentiation

Mice Ming et al. (2016)
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at least a thousand-fold more mitochondria than a sperm 
cell (Rojansky et al. 2016) and heteroplasmy levels would 
be very low if paternal mtDNA were to contaminate the 
embryo, the results can still be non-trivial. However, 
challenging this notion, a recent study provides evidence 
of potential paternal transmission (Luo et al. 2018), but 

awaits further corroborating studies (Lutz-Bonengel and 
Parson 2019).

MtDNA has a considerable impact on the regulation of 
nuclear genes (Dunham-Snary et al. 2018; Fetterman and 
Ballinger 2019; Kopinski et al. 2019; Morava et al. 2019; 
Mossman et al. 2019; Mottis et al. 2019; Quirós et al. 2016). 

Table 1   (continued)

Effects of MOTS-c Models References

Gene variants K14Q-MOTS-c is specific for the Northeast Asian 
population who are known to have long lifespan

Human Fuku et al. (2015)

K14Q-MOTS-c is associated with type 2 diabetes 
with lower MVPA in men, but not in women

K14Q-MOTS-c affects glucose tolerance in male 
mice. These suggest that K14Q-MOTS-c by m.1382 
A > C polymorphism may influence prevalence of 
type 2 diabetes

Human Zempo et al. (2016)

Males, but not females, with K14Q-MOTS-c exhibit 
higher prevalence of T2D

K14Q-MOTS-c has reduced insulin sensitization 
effects compared to MOTS-c, and is less effective in 
reducing the body weight, fat mass, and glucose tol-
erance in CD-1 male mice exposed to high fat diet

Human
Mice

Zempo et al. (2019)

Senescence MOTS-c is increased in senescent primary human 
fibroblasts, and MOTS-c treatment increases mito-
chondrial respiration and selected components of 
the SASPs in doxorubicin-induced senescent cells 
partially via the JAK signaling pathway

Human Kim et al. (2018b)

Immunity MOTS-c improves the survival in mice with MRSA 
infection and enhances bactericidal function of 
macrophages

Mice Zhai et al. (2017)

MOTS-c has anti-inflammatory effects in mac-
rophages stimulated with MRSA

Mice Zhai et al. (2017)

MOTS-c treatment in ultra-high molecular weight 
polyethylene particle-induced osteolysis mouse 
model alleviates inflammation by restraining NF-κB 
and STAT1 pathway

Mice Yan et al. (2019)

There is a decrease in MDP-coding genes MT-
RNR1 (MOTS-c) expression in chronic fatigue syn-
drome (CFS), Q fever fatigue syndrome (QFS), and, 
to a lesser extent, in Q fever seropositive controls

Human Raijmakers et al. (2019)

Adaptive stress response MOTS-c translocates to the nucleus to regulate the 
adaptive nuclear genome expression in response to 
metabolic stress

In vitro Kim et al. (2018a)

MOTS-c alleviates mitochondrial dysfunction 
caused by PM2.5 nanoparticle exposure and higher 
methylation in MT-RNR1 of the mtDNA D-loop is 
associated with higher MOTS-c level suggesting 
that MOTS-c may be regulated partially by mtDNA 
methylation in humans

In vitro Breton et al. (2019)

MOTS-c treatment promotes cold adaptation, 
decreases lipid accumulation upon acute cold 
exposure, and increases the white fat browning and 
brown fat activation upon acute cold exposure in 
mice

Mice Lu et al. (2019a)

Signaling pathway MOTS-c functions that are dependent on AMPK 
activity

Misc Kim et al. (2018a; Lee et al. (2015); Lu et al. 
(2019b); Ming et al. (2016); Yan et al. 
(2019)
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MtDNA diversity is thought to influence the penetrance and 
phenotypic expression of pathogenic genetic variants, even 
within a given family (Morava et al. 2019). For example, a 
homozygous mutation (c.523delC) in the adenine nucleotide 
translocator 1 gene (SLC25A4, ANT1) can lead to cardio-
myopathy with variable pathological degrees depending on 
the mtDNA lineage (McManus et al. 2019). Mitochondrial 
genotype also influences metabolic and epigenomic pro-
cesses, thereby may underlie phenotypic variability of dis-
eases (Kopinski et al. 2019). Further, mice with artificially 
matched mitonuclear genomes can exhibit altered physiol-
ogy, including fertility, metabolism, and gene expression 
(Dobler et al. 2018). Based on these studies, compatibility 
between the mitochondrial and nuclear genomes is a key 
determining factor in organismal fitness.

On this line, mitochondrial replacement therapy (MRT) 
is a specific form of human gene editing where a mother 
with known pathological mtDNA can replace her mito-
chondria with that from another woman. Thus, the baby 
will have three biological parents that each contributed half 
of the nuclear genome or the entire mitochondrial genome, 
often referred to as a “three-parent baby”. Combining these 
genomes would introduce novel mitonuclear combinations 
that have not undergone natural selection and may increase 
the risk of developing diseases, especially with age (DeLuca 
and O’Farrell 2012; Dobler et al. 2018; Hill et al. 2019; 
Reinhardt et al. 2013). In flies, artificial disruption of mito-
nuclear epistasis, by generating mutations in the mitochon-
drial tRNAtyr and its nuclear-encoded mitochondrial tyros-
ine synthetase, resulted in decreased oxygen consumption, 
higher mtDNA copy number, higher hydrogen peroxide pro-
duction, and aggravated age-dependent mitochondrial dys-
function (Pichaud et al. 2019). Notably, humanin has pleio-
tropic effects on mtDNA copy number (Kariya et al. 2003; 
Sreekumar et al. 2016), suggesting a dynamic regulatory role 
in mitochondrial function and cellular health (Clay Montier 
et al. 2009; Fazzini et al. 2018). In mice, cross-pairing mito-
nuclear genomes derived from different strains [mitochon-
drial nuclear exchange (MNX)] shifts cellular metabolism, 
oxidative stress levels, resistance to cardiac damage, and 
atherogenic diet (Betancourt et al. 2014; Dunham-Snary and 
Ballinger 2015; Fetterman et al. 2013). Mitonuclear inter-
actions associated with components of the MRC can influ-
ence function and aging itself in a sex-dependent manner 
(Immonen et al. 2016). Mitonuclear genomic compatibility 
may clinically manifest at different stages of life and have a 
considerable impact on aging and age-related disease.

MtDNA exhibit a higher mutation rate than nuclear 
DNA, leading to significant population-level mtDNA pol-
ymorphisms (van Oven and Kayser 2009; Wallace 1999; 
Wallace and Chalkia 2013). In fact, the co-evolution of the 
mitonuclear genomes has been proposed to be driven by 
mtDNA mutations that select for compensatory changes in 

the nuclear genome (Havird and Sloan 2016). Populations 
that share similar mtDNA polymorphisms can be clustered 
into distinct haplogroups that are designated using all let-
ters of the alphabet (i.e., A through Z). The mtDNA haplo-
groups represent major branch points on the mitochondrial 
phylogenetic tree that have strong regional ties around the 
globe, thus supporting the concept of a ‘mitochondrial eve’ 
(Wallace 1999). Haplogroups present inherently different 
mitonuclear interactions (Zaidi and Makova 2019), which 
eventually affect the aging process (Wolff et al. 2016). For 
example, one haplogroup commonly found in Ashkenazi 
Jews can interact with a specific enrichment of an amino 
acid sequence in complex I, and result in altered susceptibil-
ity to type 2 diabetes mellitus (Gershoni et al. 2014). The 
effect of mitonuclear compatibility on lifespan is influenced 
by environmental cues in flies (Drummond et al. 2019). It is 
unclear if mitonuclear compatibility is invariable through-
out an organism’s life, or antagonistically pleiotropic during 
aging, making it a difficult moving target to understand.

NUMTs

The original genome of the endosymbiotic bacteria has been 
considered to be lost or transferred to the nuclear genome, 
leading to the current abridged mtDNA (Johnston and Wil-
liams 2016). Proto-mitochondrial DNA sequences that have 
laterally transferred to the nuclear genome are known as 
NUMTs (Nuclear Mitochondrial DNA segment) (Lopez 
et al. 1994; Timmis et al. 2004). Further, long and short 
stretches of the mitochondrial genome are found to be copied 
into the nuclear DNA, albeit the sequences being degenerate. 
While the full comprehension of the number of NUMTs in 
eukaryotes is unknown, current sequencing technology is 
sufficient to understand NUMT evolution and comparative 
analyses across species. Interestingly, one study used phy-
logenetic analysis of NUMTs to show that primates had a 
greater occurrence of NUMTs than non-primates, and that 
the clusterizations of these primate NUMTs were intermin-
gled, while non-primate NUMTs were separated by species 
(Calabrese et al. 2017). Given the relative mutation rates of 
mitochondrial vs nuclear DNA, NUMTs serve as a “molecu-
lar fossil”, and can be used to estimate the time of integration 
(Perna and Kocher 1996). While there are certain periods 
of rapid NUMT integration, insertion appears to have been 
continuous over time leading to the current human genome 
(Bensasson et al. 2003; Calabrese et al. 2017; Hazkani-Covo 
et al. 2010). Notably, mtDNA sequences are still continu-
ously being integrated into the nuclear genome (Ju et al. 
2015; Ricchetti et al. 2004; Srinivasainagendra et al. 2017).

The integration of NUMTs into the nuclear genome can 
lead to problems. While most NUMTs are benign poly-
morphisms, there are a small number of human diseases 
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associated with NUMTs. The majority of these cases involve 
the insertion of the NUMT into a nuclear-encoded gene that 
disrupts proper function (Ahmed et al. 2002; Goldin et al. 
2004; Turner et al. 2003). In each of these cases, the nuclear 
genome is compromised while the mtDNA is intact. Dis-
covering these diseases pose additional challenges. Since 
NUMTs are of mitochondrial origin, it is difficult to discern 
mtDNA from nuclear DNA in common methods. When 
identifying mutations, it becomes easy to confuse nuclear 
mutations for the much more volatile mitochondrial muta-
tions (Hazkani-Covo et al. 2010). Beside these insertion dis-
eases, there is growing evidence involving NUMTs in cancer 
(Singh et al. 2017). In one of the first reports on this issue, 
NUMTs that were nearly the size of the entire mitochondria 
genome were found in cancer cells (Ju et al. 2015). Another 
study found that colorectal tumor DNA had roughly four 
times the number of NUMTs compared to DNA taken from 
blood cells in the same individual (Srinivasainagendra et al. 
2017). Given the emerging role of NUMTs in human dis-
eases including cancer, combined with the increasing ease 
of sequencing, further findings on the role of NUMTs in 
disease and evolution are likely around the corner.

Understanding the effects of NUMTs in human pathology 
involves understanding the mechanisms of their integration 
into the nuclear genome. This process involves mtDNA exit-
ing the mitochondria, entering the nucleus, and recombina-
tion into the nuclear genome. While there is debate as to the 
frequency of NUMT integration, the frequency of mtDNA 
transfer to the nucleus is estimated to be 2 × 10–5 per cell per 
generation (Thorsness and Fox 1990). Furthermore, integra-
tion frequency may be that one cell in every 1000–10,000 
yeast cells may harbor a new mitochondrial insertion. 
NUMTs found in the human nuclear genome contain large 
fragments of non-coding regions of the mtDNA (Huang 
et al. 2005). This data indicates that it is not cDNA or tran-
scripts that integrate into the nuclear genome, but rather 
large unedited portions of mtDNA. NUMTs in humans are 
integrated into the genome through double-strand breaks 
(DSBs), combined via non-homologous end joining (NHEJ) 
(Ricchetti et al. 2004). Interestingly, unlike normal NHEJ 
events, repair involving NUMTs rarely causes deletions and 
these deletions are small when they do occur (Hazkani-Covo 
and Covo 2008). Therefore, there is a trade-off between 
larger deletions to repair DSBs or utilizing mtDNA in the 
repair process in the form of NUMTs. Deletions may be 
catastrophic for cells, and insertion of NUMTs, while impli-
cated in disease, may be preferential to the survival of the 
cell and organism. The number of NUMTs in the genome 
is small enough to indicate NUMTs are not utilized signifi-
cantly to stabilize genomic integrity, but no other type of 
DNA fragments have been found that heal DSBs in a similar 
manner (Hazkani-Covo et al. 2010). This offers an intriguing 
role of NUMTs in evolution beyond the ability to regulate 

OXPHOS components through concerted mitonuclear com-
munication. However, small mtRNA levels are not associ-
ated with NUMT abundance across six vertebrate species, 
but are rather strongly associated with mtDNA content in a 
tissue-specific manner within species (Pozzi and Dowling 
2019).

mtDNA mutations and aging

One of the major components of mitonuclear communica-
tion comes as a direct byproduct of OXPHOS activity. Elec-
trons can leak from the MRC and combine with surrounding 
oxygen molecules to create free radicals and reactive oxygen 
species (ROS) (Adam-Vizi 2005; Boveris and Chance 1973). 
These molecules can damage cell components such as pro-
tein, lipids, and DNA. Given the high production of ROS 
in the mitochondria, mtDNA was considered to be particu-
larly susceptible to this damage (Harman 1956). For nearly 
50 years, this idea led many to believe that free radicals were 
largely responsible for mtDNA damage and consequently, 
a major driver of the aging process. This became known 
as the mitochondrial free radical theory of aging (MFRTA) 
(Harman 1956, 2009). However, the effect of antioxidants 
on longevity has largely been inconclusive (Pomatto and 
Davies 2018). Only a handful of studies that inactivated 
various antioxidant systems in model organisms shortened 
lifespan. These include sod1 and sod2 in yeast (Longo et al. 
1996; Unlu and Koc 2007), various sod isoforms in worms 
(Doonan et al. 2008), sod1 and sod2 in flies (Martin et al. 
2009; Wicks et al. 2009), and sod1 in mice (Zhang et al. 
2017). Conversely, the overexpression of these same genes 
can increase lifespan in these species (Fabrizio et al. 2003; 
Melov et al. 2000; Zhang et al. 2016). MFRTA was fur-
ther reinforced by the fact that mitochondrial repair mecha-
nisms were inferior to their nuclear counterparts, making 
mtDNA more vulnerable to ROS-induced DNA mutations 
(Yakes and Van Houten 1997). ROS causes base modifica-
tions (hydroxylation) that are effectively fixed by base exci-
sion repair (BER) mechanisms. Unlike previously thought, 
mitochondria are proficient in BER and can effectively 
repair oxidative mtDNA lesions (Bohr et al. 2002). Further, 
mtDNA quality is controlled and maintained through numer-
ous mechanisms including mitochondrial fission and fusion 
(Chen et al. 2010; Prevost et al. 2018), mitophagy (Pick-
les et al. 2018), distance from MRCs (Cogliati et al. 2016, 
2013; Kopek et al. 2012), and physical shielding the mtDNA 
through clustering in nucleoids (Lee and Han 2017).

Even with these levels of mtDNA protection, mtDNA 
mutation frequency increases with age in animal models and 
humans alike (Cortopassi and Arnheim 1990; Larsson 2010), 
although the role of mtDNA mutations remains unclear 
(Khrapko and Vijg 2009; Pohjoismaki et al. 2018; Theurey 
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and Pizzo 2018). However, recent reports have shown that 
mtDNA point mutations in aged tissues largely arise from 
replication infidelity (i.e., DNA polymerase errors), rather 
than ROS-induced damage (Ameur et al. 2011; Kennedy 
et al. 2013; Vermulst et al. 2007). To test if replicative infi-
delity causes aging, mice with mutant mitochondrial DNA 
polymerase γ that are deficient in proofreading during DNA 
replication, causing supraphysiological mutation loads 
(roughly 2500-fold in the homozygous polgmut/mut compared 
to 500-fold higher in the polg+/mut), were examined (Ver-
mulst et al. 2007). While the homozygous mice (polgmut/mut) 
showed signs of accelerated aging phenotypes and signifi-
cantly reduced lifespan, the heterozygous mice (polg+/mut) 
had a normal lifespan albeit exhibiting premature aging 
phenotypes (Trifunovic et al. 2004). One plausible explana-
tion for this discrepancy lies with increased mtDNA dele-
tions in the homozygous mice (polgmut/mut) (Vermulst et al. 
2007, 2008). These cumulative results suggest that the con-
nections between oxidative stress, mtDNA mutations, and 
aging are more complicated than originally appreciated and 
require further investigation to fully understand their rela-
tion (Pomatto and Davies 2018). It is evident, however, that 
the mtDNA mutations are linked to more than 300 diseases 
connected to aging, including Alzheimer’s Disease, and that 
proper communication between the mitochondria and the 
nucleus plays a key role (DeBalsi et al. 2017; Grazina et al. 
2006; Lane 2011; Onyango et al. 2006; Quirós et al. 2016; 
Swerdlow et al. 2017).

Mitonuclear gene regulation

Human cells are based on a bi-genomic system that compart-
mentalizes each genome in the nucleus and mitochondria. 
Historically, the nuclear genome was considered to encode 
for regulators of gene expression for both mitonuclear 
genomes, whereas mtDNA exclusively encoded for respira-
tory machinery subunits. However, we recently reported that 
the mitochondrial-encoded MOTS-c peptide can translocate 
to the nucleus and directly regulate adaptive nuclear gene 
expression in response to metabolic stress (Kim et al. 2018a; 
Mangalhara and Shadel 2018; Wong 2018; Yong and Tang 
2018). The stress-induced nuclear translocation of MOTS-c 
occurred rapidly (< 30 min) and dynamically and required 
the co-activation of AMPK. MOTS-c can bind DNA and 
interact with major stress-responsive transcription factors, 
including Nrf2 and ATF1. A broad range of genes were 
regulated by MOTS-c under glucose restricted conditions, 
especially including those related to interferon pathways. 
Ultimately, the overexpression MOTS-c increased its nuclear 
presence and significantly protected HEK293 cells from glu-
cose and serum starvation. This study suggests the existence 
of additional mitochondrial-encoded regulators of nuclear 

gene expression, where MDPs are prime candidates, espe-
cially considering that the mitonuclear genomes co-evolved 
for over 1.5 billion years as a unified and integrated genetic 
system.

Mitochondria can also communicate to the nucleus using 
metabolic intermediates, largely products of the Krebs cycle 
that serve as substrates for key regulators of nuclear gene 
expression. Acetyl-CoA is produced by pyruvate dehydro-
genase (PDH), a complex normally residing in the mito-
chondria (Menzies et al. 2016). PDH can also translocate 
to the nucleus and produce acetyl-CoA in situ. Acetyl-CoA 
levels are higher in the nucleus and cytosol under growth 
conditions, where it is used for histone acetylation and 
lipid synthesis. Conversely, under low-nutrient conditions, 
mitochondrial acetyl-CoA levels increase to drive ATP 
production (Shi and Tu 2015; Sutendra et al. 2014). Other 
metabolites serve similar functions in regulating genetic and 
epigenetic reprogramming, including oxaloacetate, fumarate, 
α-ketoglutarate, and malate (Benayoun et al. 2015). NAD+ 
is another mitochondrial metabolite involved in mitonuclear 
communication through its central role in ATP production 
(Karpac and Jasper 2013; Mouchiroud et al. 2013). Reduced 
NAD+ activity is related to lower levels of deacetylase sir-
tuin activity, which impacts communication between the 
nucleus and mitochondria (Imai and Guarente 2016). Addi-
tionally, NAD+ levels decline with age, and the resulting 
decrease in mitonuclear communication results in reduced 
longevity (Mouchiroud et al. 2013; Yoshino et al. 2011).

Mitochondrial ATP and ROS levels also act as signal-
ing molecules that relay metabolic cues to the nucleus. 
Reduced ATP synthesis can stimulate AMPK, which in 
turn activates PGC1α, which then serves to increase mito-
chondrial energy metabolism and biogenesis (Garcia-Roves 
et al. 2008; Quirós et al. 2016). Activation of the AMPK 
pathway also induces the mitochondrial quality control sys-
tem and mitophagy (Egan et al. 2011). ROS levels act as a 
surrogate gauge of mitochondrial respiration activity and 
efficiency (Murphy 2009). While ROS are often associated 
with macromolecule damage at higher concentrations, they 
are key signaling molecules under physiological levels (Sena 
and Chandel 2012). For instance, antioxidant supplementa-
tion can reduce organismal fitness and lifespan by inducing 
an adaptive stress response (Ristow and Schmeisser 2014, 
2011) and dampen skeletal muscle adaptation to exercise 
training (Merry and Ristow 2015). Also, a mild increase in 
ROS production delays the aging process in worms (Schulz 
et al. 2007) and mice (Ristow and Schmeisser 2011), in part, 
through the activation of array genes that regulate cellular 
homeostasis under stress (Shadel and Horvath 2015).

MtDNA variation can influence the expression and 
progression of nuclear DNA mutations (McManus et al. 
2019). In this study, researchers knocked out the adenine 
nucleotide translocator 1 (ANT1) in mice. They found that 
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ANT1−/− resulted in decreased OXPHOS complex I amount, 
as well as complex V assembly. Additionally, these knockout 
mice showed that mtDNA mutations enhance the deleterious 
impact of communication between the mitochondrial and 
nuclear genomes (McManus et al. 2019). The adverse effects 
include impaired complex I activity, increased ROS damage, 
altered mitochondrial morphology, changes to the mitochon-
drial permeability transition pore, increased mtDNA muta-
tion, and shortened lifespan. Overall, researchers discovered 
the crucial role that mtDNA variants play in autosomal dis-
eases (McManus et al. 2019).

Multiple studies have linked mtDNA heteroplasmy to 
nuclear epigenomic changes (Bellizzi et al. 2012; Dunham-
Snary et al. 2018; Kopinski et al. 2019; Lee et al. 2017), 
highlighting the importance of heteroplasmy in proper 
communication between the genomes. For instance, using 
cells of the same nuclear background, a mitochondrial 
genome with increasing levels of the pathogenic mutation 
(tRNALeu(UUR) 3243A > G) can be introduced to achieve a 
gradient of heteroplasmy ranging from 0 to 100% (Kopinski 
et al. 2019). Interestingly, different levels of heteroplasmy 
had various effects on nuclear gene expression. Under con-
ditions of high heteroplasmy, the amount of acetyl-CoA 
decreased, indicative of decreased acetylation of histone 
H4. Samples with 30–70% of the A3243G heteroplasmy had 
higher levels of αKG/succinate, which is linked to reduced 
histone 3 methylation (Kopinski et al. 2019). Additionally, 
between heteroplasmy levels of 60–70%, the ratio of NAD+/
NADH is elevated, indicating an increase in OXPHOS 
genes, possibly as a countermeasure to respond to declin-
ing mitochondrial function (Fetterman and Ballinger 2019; 
Kopinski et al. 2019). This finding directly links mtDNA 
polymorphism to nuclear gene expression.

The mitochondrial unfolded protein response (UPRmt) 
is an adaptive transcriptional response to mitochondrial 
stress that promotes cellular homeostasis. Initially, UPRmt 
was described in mammalian cells and referred to the selec-
tive induction of nuclear-encoded genes involved in stress 
response to mtDNA depletion (Martinus et al. 1996) or accu-
mulation of misfolded proteins in the mitochondrial matrix 
(Abbott and Turcotte 2014). More recently, G-Protein Path-
way Suppressor 2 (GPS2) has been shown to be involved in 
mitonuclear communication in mammals, regulating insulin 
signaling, lipid metabolism, and inflammation (Cardamone 
et al. 2012; Cederquist et al. 2017; Jakobsson et al. 2009). 
GPS2 translocates to the nucleus upon mitochondrial pertur-
bation and directly activates nuclear-encoded mitochondrial 
genes, including mitochondrial biogenesis, particularly in 
brown adipose tissue (Cardamone et al. 2018). In C. elegans, 
the activating transcription factor associated with stress 1 
(ATFS-1) is a key mediator of UPRmt (Amrita et al. 2015; 
Nargund et al. 2012). Under normal conditions, ATFS-1 
enters the mitochondria and is degraded through proteolysis. 

However, under stress conditions, ATFS-1 translocates to 
the nucleus where it upregulates a number of stress response 
genes, and also plays a role in chromatin remodeling to pro-
mote longevity (Nargund et al. 2012). Notably, ATF5, a 
mammalian homolog of ATFS-1, also induces mitochon-
drial proteostasis gene transcription (Fiorese et al. 2016; 
Tian et al. 2016). In addition, UPRmt can induce chroma-
tin remodeling by specific histone modifications; H3K9 
methylation by the histone methyltransferase MET-2 and 
the nuclear co-factor LIN-65 (Tian et al. 2016) and H3K27 
demethylation by histone demethylases (jmjd-1.2 and jmjd-
3.1) (Merkwirth et al. 2016).

UPRmt is currently used more inclusively and can refer 
to adaptive nuclear responses to various types of mitochon-
drial perturbations, including nutrient availability, iron–sul-
fur cluster assembly, immune response, and dysfunctional 
metabolism (Nargund et  al. 2015; Shpilka and Haynes 
2018; Tauffenberger et al. 2016; Zhu et al. 2014). Notably, 
whereas UPRmt recognizes the loss of mitochondrial pro-
teostasis, the release of bacterial-like mitochondrial compo-
nents, including formylated proteins and mtDNA, can act as 
damage-associated molecular patterns (DAMPs) and trigger 
an immune response (Grazioli and Pugin 2018; Wenceslau 
et al. 2014; Zhang et al. 2010). Notably, mtDNA levels in 
circulation increase with stress and age and are associated 
with higher levels of inflammatory markers (Pinti et al. 
2014; Trumpff et al. 2019). In skeletal muscle, which is met-
abolically highly active, silencing of miRNA-382 results in 
UPRmt activation through an imbalance in mitonuclear pro-
teins, induction of HSP60, and downregulation of mitochon-
drial ribosomal proteins (Dahlmans et al. 2019). Further, 
nicotinamide mononucleotide (NMN) treatment prevents 
mitonuclear protein imbalance in mouse muscles (Mills 
et al. 2016). UPRmt activation in worms, by genetic per-
turbation of mitochondrial ribosomal protein S5 (MRPS5) 
or pharmacological treatment (ethidium bromide, rapamy-
cin, and resveratrol), extended lifespan. (Houtkooper et al. 
2013). Further, mitochondrial stress increases the expression 
and mitochondrial localization of androgen receptor (AR), 
which then regulates nuclear-encoded mitochondrial riboso-
mal proteins and the mitochondrial translation machinery, 
indicating an adaptive mitonuclear cooperation (Bajpai et al. 
2019). Collectively, these findings, and many others, high-
light the tight-knit cellular system balancing nuclear and 
mitochondrial proteins coordinated through UPRmt.

Conclusion

Our genomic system is comprised of both mitochondrial and 
nuclear genes. Mounting evidence indicates that a highly 
integrated cross-organellar regulatory mechanism, and over-
all genomic compatibility, is key to adaptive gene expression 
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and cellular fitness. Mitochondria-to-nucleus communica-
tion is a dynamic and inclusive process that reflects many 
aspects of mitochondrial biology, perhaps to provide the 
nucleus with an accurate cellular context for adaptive gene 
expression. A variety of molecular mediators allow close 
communication between mitochondria and the nucleus, 
including mitochondrial-encoded factors that can directly 
regulate the nuclear genome, metabolic intermediates, ROS, 
UPRmt, and overall mitonuclear genomic compatibility. 
Given the uncertainty of mtDNA mutation accumulation in 
driving the natural aging process, it is plausible that mito-
chondrial communication may be a significant evolutionarily 
conserved force that influences lifespan and/or healthspan.
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