
electronics

Article

DSFTL: An Efficient FTL for Flash Memory Based
Storage Systems

Suk-Joo Chae 1, Ronnie Mativenga 1 , Joon-Young Paik 2 , Muhammad Attique 3 and
Tae-Sun Chung 1,*

1 Computer Engineering, Ajou University, Suwon 16499, Korea; topchae@ajou.ac.kr (S.-J.C.);
ronniematie@ajou.ac.kr (R.M.)

2 Computer Science and Technology, Tiangong University, Tianjin 300387, China; pjy2018@tiangong.edu.cn
3 Department of Software, Sejong University, Seoul 05006, Korea; attique@sejong.ac.kr
* Correspondence: tschung@ajou.ac.kr; Tel.: +82-31-219-1828

Received: 6 December 2019; Accepted: 10 January 2020; Published: 12 January 2020
����������
�������

Abstract: Flash memory is widely used in solid state drives (SSD), smartphones and so on because of
their non-volatility, low power consumption, rapid access speed, and resistance to shocks. Due to the
hardware features of flash memory that differ from hard disk drives (HDD), a software called FTL
(Flash Translation Layer) was presented. The function of FTL is to make flash memory device appear
as a block device to its host. However, due to the erase before write features of flash memory, flash
blocks need to be constantly availed through the garbage collection (GC) of invalid pages, which
incurs high-priced overhead. In the previous hybrid mapping schemes, there are three problems
that cause GC overhead. First, operation of partial merge causes more page copies than operation of
switch merge. However, many authors just concentrate on reducing operation of full merge. Second,
the availability between a data block and a log block makes the space availability of the log block
lower, and it also generates a very high-priced operation of full merge. Third, the space availability
of the data block is low because the data block, which has many free pages, is merged. Therefore,
we propose a new FTL named DSFTL (Dynamic Setting for FTL). In this FTL, we use many SW
(sequential write) log blocks to increase operation of switch merge and to decrease operation of
partial merge. In addition, DSFTL dynamically handles the data blocks and log blocks to reduce the
operations of erase and the high-priced operation of full merge. Additionally, our scheme prevents
the data block with many free pages from being merged to increase the space availability of the data
block. Our extensive experimental results prove that our proposed approach (DSFTL) reduces the
count of erase and increases the operation of switch merge. As a result, DSFTL decreases the garbage
collection overhead.

Keywords: flash memory; flash translation layer; file system

1. Introduction

Flash memory is widely used in solid state drives (SSD) and smartphones because of their
non-volatility, low power consumption, rapid access speed, and resistance to shocks. These days, the
store for solid state drives, which use NAND flash memory, is increasing fast and even making inroads
into the hard drive store [1]. Flash-based storage devices are regarded as a new storage medium that
can substitute disks and achieve higher performance for database servers [2]. However, operation
of overwrite cannot be executed directly and the unit of operations is different in flash memory. An
operation of erase is conducted at the unit of a block, which consists of multiple pages and can match
up to 1.5ms. On the contrary, a page is the unit, which is where operations of read and write are
conducted, can match up to about 80 µs and 200 µs continuously [3]. However, NAND flash memory

Electronics 2020, 9, 145; doi:10.3390/electronics9010145 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-5093-4616
https://orcid.org/0000-0002-2957-4177
https://orcid.org/0000-0002-7237-180X
http://dx.doi.org/10.3390/electronics9010145
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/1/145?type=check_update&version=3

Electronics 2020, 9, 145 2 of 19

has a feature of hardware that a page is erased before being written in the equal location, and this is
called operation of erase-before-write (out-of-place-update) [4]. Since the memory portion for erasing
is different in size from the size for reading or writing [5], a medium software layer, which is called a
flash translation layer (FTL) [6], was presented.

There are two categories of mapping schemes depending on the mapping unit, which is namely
the page mapping algorithm [7] and the block mapping algorithm [5]. The page mapping algorithm
handles the mapping entries at the page, which is the unit of the operations of read and write. A 16 GB
flash memory needs approximately 32 MB of SRAM space to save a page mapping table [8]. Thus,
page mapping needs a large mapping table to be saved in the SRAM/DRAM. On the contrary, the block
mapping algorithm handles the mapping entries at the block, which is the unit of the operation of
erase. The size of the mapping table is decreased by a factor of the block size/page size (128 KB/2 KB =

64). However, as the block-mapping allows updates just at the block, the garbage collection overhead
increases as not all the pages in a block will be invalid/dirty. To relieve cons of these page and block
mapping, the hybrid mapping algorithm [9] was presented. It uses the block mapping technique to
obtain the corresponding physical blocks and the page mapping technique to find available empty
sectors within the physical block. Therefore, now, the hybrid mapping scheme is the most popular.

Many FTLs [9–15], which used hybrid mapping schemes, were presented with blocks that are
separated by two categories that include data blocks and log blocks. Data blocks save real data and are
mapped using block mapping. Log blocks are designed to save the updated data and are mapped
using page mapping. When the file system communicates to flash memory, the data are first written
to the data block. If data already exists in that particular data block, the incoming new data are then
written to a log block. Although hybrid mapping schemes are designed to decrease the number of
operations of copy and erase that are needed, they still suffer from the garbage collection overhead,
which is an issue of concern.

Firstly, the hybrid mapping scheme invokes a garbage collector whenever there are no free log
blocks. Garbage collection needs merging the log blocks with the data blocks. In this case, as operation
of partial merge should copy pages in comparison with an operation of switch merge, it is fairly
beneficial to execute operation of switch merge instead of operation of partial merge. Compared to
operation of switch merge, operation of partial merge should copy valid pages in the data block to
the log block. Secondly, if one log block is connected with one data block, the space availability of
the log block is low. If one log block is connected with all data blocks, a high-priced operation of full
merge will be incurred. While the data block represents the ordinary storage space, the log block is
used for storing updated data. It is necessary to adjust availability between a log block and a data
block dynamically. Finally, even if there are many free pages in the data block, this data block is erased
due to the inefficient data block availability of such systems. Realistically, a data block with many free
pages should not be merged, and data blocks with the least free pages should be the ones selected as
the merge victims. Although many FTLs have addressed these issues, no scheme satisfies all three of
the factors mentioned earlier.

In this paper, we propose a new FTL scheme that provides a dynamic setting for flash translation
layer (DSFTL scheme) in NAND flash memory. Our proposed DSFTL scheme aims to decrease the
garbage collection overhead by increasing operation of switch merge and reducing the number of
operation of erase. To increase the frequency of operation of switch merge and decrease the frequency
of operation of partial merge, we use many sequential writes (SW) log blocks. In addition, our proposed
scheme increases the space availability of the log block and decreases the high-priced operation of full
merge by dynamically coordinating the availability of the log block with the data block. Moreover,
even if there is a data block connected with the victim log block, DSFTL ensures that the data block
with many free pages is not merged. Thus, the space availability of the data block to be merged with
the log block is increased. By using our all algorithms, DSFTL avoids many operations of merge. In
other words, we can solve the problem of hybrid mapping, which consequently decreases the overall
garbage collection overhead.

Electronics 2020, 9, 145 3 of 19

Unlike BAST [9] and FAST [10], DSFTL controls availability between a data block and a log block
dynamically. Therefore, our scheme avoids many operations of merge and high-priced operation of
full merge. Compared to Superblock [11], we do not combine the data blocks to alleviate multiple
Out-of-Band area reads and writes. In DSFTL, each log block can be connected to all the data blocks to
increase the space availability of the log block compared to KAST [12]. In contrast to DA-FTL [13],
we copy small valid pages in a victim block to another log block. Thus, DSFTL decreases availability
between a data block and a log block. Unlike LAST [14], DSFTL reduces operation of full merge since
we detect the hot pages to avoid unnecessary operations of merge. Compared to MAST [15], we find a
victim SW log block, whose data are less written to avoid an operation of partial merge.

The contributions of the paper are as follows:

1. By our experiments, we check that the operation of switch merge is occurred more often than
operation of partial merge by using many SW log blocks.

2. We show by our experiment that the space availability of the log block is high, and the high-priced
operation of full merge is less incurred as the connection of the data block and the log block is
managed dynamically.

3. Based on our experimental results, the space availability of the data block is high, since the data
block, which has many free pages, avoids operations of merge.

4. As a result, by using DSFTL, we can decrease the garbage collection overhead in hybrid mapping.

2. Related Work

Many FTLs [9–15], which are based on hybrid mapping log-buffer approaches have been proposed.
The Block Associative Sector Translation (BAST) [9] schemes uses two blocks: a data block and a

log block. The data blocks are needed to sequential writes, and the log blocks are needed to random
overwrites. In this approach, as the log block is connected just one data block, it has a problem that is
called log block thrashing and block availability [10]. To overcome this issue, our proposed DSFTL
scheme connects one data block with just a log block when the data are written on a log block for the
first time.

Fully Associative Sector Translation (FAST) [10] permits log blocks to be connected in all data
blocks. In FAST, a single sequential log block is dedicated for sequential updates, while other log blocks
are used to perform random writes. However, due to high block availability, FAST incurs high-priced
operation of full merge, which degrades its performance. Moreover, it does not have special techniques
to handle the temporal locality in random streams. On the contrary, DSFTL connects one data block
with just one log block when data has already been written onto a log block. To reduce operation of
merge, DSFTL assigns many SW log blocks.

Superblock FTL [11] combines a set of logical blocks into a superblock. To use the existence of
block level spatial locality in workloads, superblocks are mapped at bigger unit, while pages inside the
superblock are mapped freely at a smaller unit to any location in many physical blocks. However, this
causes a lot of Out-of-Band area reads and writes to service the requests. We proposed not to combine
the data blocks in DSFTL to alleviate this. Furthermore, while Superblock FTL does not consider
promoting space availability of a data block, DSFTL can promote this by copying data from a victim
block to another log block.

K-Associative Sector Translation (KAST) [12] configures the maximum log block availability to
control the worst case blocking time by a user. By distributing write requests among log blocks to
reduce the log block availability, KAST shows better average performance than other FTLs. However,
as the number of data blocks connected with the log block is limited, space availability of the log block
in a multi-processing system can be reduced. In addition, it is difficult to accurately predict the write
operation pattern. While each log block is connected just by the k number of data blocks at maximum
in KAST, each log block can be connected to all the data blocks in our proposed DSFTL. To decrease

Electronics 2020, 9, 145 4 of 19

availability, a log block is connected by just a single data block whenever the data have already been
written to the log block.

The Dynamic Associative Flash Translation Layer (DA-FTL) [13] dynamically handles the
availability of the data blocks and the log blocks in the system. To reduce the number of blocks to be
merged, DA-FTL picks out a data block, which has many free pages as a merge victim by copying data
to another log block. However, since the data are copied to another log block, the availability between
the data block and the log block gradually increases, which results in large merge costs. On the other
hand, high-priced operations of full merge are avoided in DSFTL, since small valid pages in a victim
block are copied to another log block.

Locality-Aware Sector Translation (LAST) [14] is optimized for access features of normal purpose
computing systems. LAST also uses many SW log blocks to reduce operations of full merge and to
increase operations of switch merge and partial merge, which is similar to DSFTL. When there is no SW
log block where all the pages are valid date in LAST, they use a least recently used (LRU) replacement
policy. We do not use an LRU replacement policy, which is unlike LAST. Instead, DSFTL finds a victim
SW log block, for which the data are less written. In addition, this victim log block is applied to an
operation of partial merge.

Multi-Level Associated Sector Translation (MAST) [15] divides the log block depending on the
features of the data, and it dynamically detects the hot pages to avoid unnecessary operations of merge
in FTL. We used this architecture for RW log blocks. On the other hand, for SW log blocks, they follow
the fundamental rules of FAST [10]. In the case of DSFTL, for SW log blocks, if there is no SW log block,
for which all the pages have a valid date, DSFTL finds a victim SW log block, for which data are less
written. In addition, this victim log block is applied to operation of partial merge for an increase of
operation of switch merge and a decrease of operation of partial merge.

On the other hand, there are many FTL algorithms based on PCM-based memory systems [16–19].
hFTL [16] is a page mapping algorithm for PCM-based memory systems. This scheme handles

a page mapping table in the PCM. In addition, it saves the user data in flash memory. However, it
needs a high portion of the PCM for its page mapping table. In addition, it has a problem of frequent
revision in its page mapping table since it must add or update address mapping entries whenever
the file system uses a write request. To solve this problem, we propose adopting either one of the
following two mapping mechanisms: page mapping or block mapping.

PAB [17] is a block mapping algorithm while hFTL is a page mapping algorithm. Thus, compared
to hFTL, this scheme needs a small mapping table. In this scheme, a single log block is connected with
just a data block. However, this causes the generation of many unnecessary operations of erase on
flash memory because of its low space availability. On the contrary, a single log block is connected
to all the data blocks whenever data are written to a log block for the first time in DSFTL. Therefore,
DSFTL increases the space availability of blocks in the system.

WAB-FTL [18] is a block mapping algorithm. A single log block is connected with all the data
blocks. Thus, it incurs severe response delay and generates costly operations of merge. To overcome
this, a single log block is connected with just one data block in our proposed DSFTL scheme.

Load-FTL [19] revises a log block policy to redirect the updates to the log blocks shared with the
least data blocks. When there are no free pages in log block, it selects a victim log block and identifies
the hot data in the log block by comparing the update counts of the hot data to a predetermined
updated threshold. On the contrary, DSFTL does not select a victim log block since it always maintains
two log blocks at any given time to decrease operations of full merge through the promotion of faster
operations of switch merge that permits prolonged flash lifespan.

Electronics 2020, 9, 145 5 of 19

3. Background

3.1. NAND Flash Memory

Flash memory is popular as an attractive long-term storage medium for SSD and smartphones. It
is because it has characteristics of non-volatility, low power consumption, rapid access speed, and
resistance to shocks. In addition, as there is no mechanical delay, there is no performance penalty of a
random access pattern. Thus, it provides great performance. Moreover, flash memory does not need
a fluctuating seek time. Thus, it is good to provide a predictable I/O performance to the real-time
systems unlike hard disks.

There are two categories of flash memory: NOR flash memory and NAND flash memory. The
use of NOR devices is widespread in the industry. These devices provide an easy memory interface,
and they are appropriate of code execution, which makes them ideal for devices that do not need
data storage. On the contrary, NOR flash memory provides great performance of the operation of
read. However, it has many write and erase times, which disqualifies it from being used as a data
storage device. However, these days, as devices become increasingly sophisticated, they are expected
to offer more features, richer programs, and save more information locally. Doing this needs larger
capacities both for code and for data storage, and it has considerably faster erase/write times. NAND
flash memory provides all of this as well as cheaper prices for capacities, which range from 8 MB to
512 MB [20]. Therefore, now, NAND flash memories are more popular.

NAND flash memory can be classified into single-level cell (SLC) and multi-level cell (MLC) flash
memory [21], and flash memory is limited in the number of times it can be erased before a failure incurs.
For example, SLC (single-level cell) flash memory has an endurance life of 100,000 erase cycles before
the wear starts to deteriorate the integrity of the storage. Moreover, SLC flash memory can be erased
around 100 times more often than MLC flash memory. SLC flash memory can have a considerably
greater endurance life than an MLC flash memory, but SLC flash memory is more high-priced than
MLC flash memory [22].

NAND flash memory is composed of a number of blocks. The block is the fundamental unit of
operations of erase. In addition, the block consists of multiple pages. The page is the fundamental unit
of operations of read and write. Each page is composed of a main data area and a spare area. The
real data are written in the main data area and the spare area is usually used to save management
information such as the error correction code (ECC) to detect errors [23].

Three fundamental operations can be applied to both categories of flash memory, which include
operations of read, write, and erase. The operations of erase are significantly slower than the
reads/writes.

However, flash memory has a weak point in that overwrites on an already written block of
flash memory are impossible to perform unlike hard disks. To make these overwrites possible, an
operation of erase on the written block has to be conducted before overwrites, which deteriorates the
performance of a flash memory considerably. In addition, flash memory has features of hardware, and
a page has to be erased before some data can be written in the equal location. This feature is called
erase-before-write [4]. As the memory portion for erasing is different in size from that for reading or
writing [5], a medium software layer called an FTL [6] was presented.

3.2. FTL

FTL is located between a file system and a flash memory, and it provides many roles. The one of
the roles of FTL is the wear-leveling, which evenly distributes erase operations to the whole memory
blocks. Another role is to recover from a sudden power-off. That is, metadata such as mapping
information should be recovered in spite of a sudden power off. Moreover, the main role of FTL is to
change the logical addresses from the file system to the physical addresses in flash memory.

There are two categories of mapping schemes depending on the mapping unit: a page mapping
algorithm [7] and a block mapping algorithm [5]. In the page mapping algorithm, all logical pages are

Electronics 2020, 9, 145 6 of 19

mapped to a corresponding physical page. The page mapping scheme handles the mapping table as a
page that is a unit of operation of read/write. Thus, page mapping requires a large mapping table to be
saved in the SRAM.

Block mapping algorithms were presented, as the page mapping algorithm needs a lot of memory
space. In block mapping, a logical sector offset within a logical block is the same as a physical sector
offset within a physical block. Thus, the block mapping scheme needs a smaller amount of mapping
information than the page mapping scheme. However, if the file system needs write operations with
the same logical sector numbers, a lot of operations of copy and erase are needed, which degrades
the performance.

As both page and block mapping have cons, a hybrid mapping algorithm [9] was presented. In
this algorithm, all of the physical blocks were separated between the data blocks and the log blocks.
The data blocks are handled by the block mapping scheme while the log blocks use page mapping.
For example, first, if a block mapping algorithm is used to get the corresponding physical block, a
page mapping algorithm is used to locate an available vacant sector within the physical block. In
this algorithm, the page mapping table for a limited number of blocks is retained in addition to the
block mapping table. Thus, it satisfies the size limitations of mapping information and reduces the
erase-before-write problem drastically. Therefore, hybrid mapping is the most popular these days.

4. Motivation

In this section, we will describe the different categories of merges and why we need to reduce
operations of partial merge and increase operations of switch merge. Furthermore, we will explain the
availability between a data block and a log block. Finally, we will show why the space availability of
the data block should be high.

4.1. Operation of Merge

In the log based FTL scheme, the blocks are separated by two blocks: a data block and a log block.
While the data block is used for the ordinary storage space, the log block is used for storing updated
data. There are two cases where a new log block should be assigned. The first case is, if there is no log
block corresponding to a specific data block, a new log block is assigned. In BAST, as the log block is
assigned for just one data block, this problem incurs occasionally. The second case is when the log
block is full. As the log block does not have free pages, FTL should assign a new log block. When a
new log block is assigned, the valid data in the data block and the log data of the log block need to be
merged into a free block. This work is called operation of merge.

There are three categories of operations of merge: a switch merge, a partial merge, and a full
merge. Figure 1 shows these operations of merge. Figure 1c shows the operation of full merge. It
assigns a free block and then copies a valid page of the data block or the log block to a free block. After
it copies all valid pages, the free block becomes the data block, and the previous data block and the log
block are erased. As operation of full merge needs many operations of copy and erase, it is the most
high-priced operation of merge. The operation of full merge is needed when the pages are updated in
a random request. Thus, many hybrid mappings are designed to reduce operations of full merge.

As depicted in Figure 1a, FTL simply erases the data block with just the invalid pages and then
changes the log block into a data block. As the operation of switch merge needs just one operation of
erase, it is the cheapest operation of merge. It performs just an SW. As shown in Figure 1b, operation
of partial merge is similar to operation of switch merge. Compared to operation of switch merge,
operation of partial merge should copy valid pages in the data block to the log block. In other words, it
needs additional copy operations, and it is executed when the SW does not fill up a block. The copy of
the pages causes the garbage collection overhead. However, many authors just approach reducing
operation of full merge.

Electronics 2020, 9, 145 7 of 19

As we can see, operation of partial merge is more high-priced than operation of switch merge.
Therefore, we should ensure that FTL uses more operations of switch merge than operations of
partial merge.Electronics 2019, 8, x FOR PEER REVIEW 7 of 19

Figure 1. Three categories of operations of merge.

4.2. Availability between a Data Block and a Log Block

The log-buffer-based FTL schemes have a data block and a log block, and these two blocks can

be connected with each other. In many existing FTLs, the availability between the data block and

the log block is different. For example, in the case of BAST [9], the log block is assigned for just one

data block. On the contrary, FAST [10] allows log blocks to be connected to all the data blocks. In

the KAST [12] scheme, the number of data blocks that can be connected with one log block is

limited to less than k. However, each of these FTLs has problems related to availability.

The BAST [9] scheme has a block thrashing problem [10]. As depicted in Figure 2, we assumed

that there are four data blocks and two log blocks. Furthermore, the write pattern is the sequence of

P0, P4, P8, and P12. As the log block is assigned for just one data block, P0 is written in Log and P4

is written in Log Block 2. When the file system issues write P8, a new log block is assigned as P8 does

not have space to write. Thus, Log Block 1 is merged even though it has many free pages. This

problem is also related to the space availability of blocks, which will be discussed in the next

section.

FAST [10] allows log blocks to be shared by all the data blocks. Therefore, it effectively

improves the storage availability of the log blocks and delays the operation of merge considerably

longer. However, since the merge is possible for many data blocks connected with the log block, a

high-priced merge may occur. As shown in Figure 3, we assumed that there are four data blocks

and one log block. Furthermore, the write pattern is the sequence of P1, P5, P9, P13, and P2. When

the file system issues write P2, a high-priced merge is executed, since Log Block 1 is connected with

many data blocks. In this case, one log block and four data blocks should be merged.

In the KAST [12] scheme, to decrease the problems caused by the high availability in FAST

[10], the number of data blocks that can be connected with one log block is limited to less than k.

However, as the number of data blocks connected with the log block is limited, the space

availability of the log block can be reduced. Moreover, it is difficult to accurately predict the write

operation pattern.

Figure 1. Three categories of operations of merge.

4.2. Availability between a Data Block and a Log Block

The log-buffer-based FTL schemes have a data block and a log block, and these two blocks can be
connected with each other. In many existing FTLs, the availability between the data block and the log
block is different. For example, in the case of BAST [9], the log block is assigned for just one data block.
On the contrary, FAST [10] allows log blocks to be connected to all the data blocks. In the KAST [12]
scheme, the number of data blocks that can be connected with one log block is limited to less than k.
However, each of these FTLs has problems related to availability.

The BAST [9] scheme has a block thrashing problem [10]. As depicted in Figure 2, we assumed
that there are four data blocks and two log blocks. Furthermore, the write pattern is the sequence of
P0, P4, P8, and P12. As the log block is assigned for just one data block, P0 is written in Log and P4 is
written in Log Block 2. When the file system issues write P8, a new log block is assigned as P8 does not
have space to write. Thus, Log Block 1 is merged even though it has many free pages. This problem is
also related to the space availability of blocks, which will be discussed in the next section.

Electronics 2020, 9, 145 8 of 19

Electronics 2019, 8, x FOR PEER REVIEW 8 of 19

This causes various problems depending on the availability between the data block and the log

block. If the availability between the data block and the log block is low, there is the problem of

block thrashing. In the opposite case, a high-priced merge is likely to occur. Then, we should

consider the availability.

Figure 2. Problem of 1:1 availability.

Figure 3. Problem of M:N availability.

4.3. Space Availability of a Data Block

When a new log block is assigned, the valid data in the data block and the log data of the log

block should be merged into a free block. In this case, even though the blocks to be merged have

many free pages, they should be erased. As flash memory has erase/program cycles [24], the

lifetime of flash memory is shortened if the blocks to be erased have many free pages. There are

many cases where the space availability of a log block and a data block is lowered.

Figure 2 shows the low space availability of a log block. When the file system issues write P8,

Log Block 1 is merged even though it has many free pages. In this case, the space availability is 0.25,

and the log block just uses one page out of four pages. This is the problem in BAST [9] where the

log block is assigned for just one data block. In other words, if the availability between the log block

and the data block is increased, the space availability of the log block is increased.

Figure 2. Problem of 1:1 availability.

FAST [10] allows log blocks to be shared by all the data blocks. Therefore, it effectively improves
the storage availability of the log blocks and delays the operation of merge considerably longer.
However, since the merge is possible for many data blocks connected with the log block, a high-priced
merge may occur. As shown in Figure 3, we assumed that there are four data blocks and one log block.
Furthermore, the write pattern is the sequence of P1, P5, P9, P13, and P2. When the file system issues
write P2, a high-priced merge is executed, since Log Block 1 is connected with many data blocks. In this
case, one log block and four data blocks should be merged.

Electronics 2019, 8, x FOR PEER REVIEW 8 of 19

This causes various problems depending on the availability between the data block and the log

block. If the availability between the data block and the log block is low, there is the problem of

block thrashing. In the opposite case, a high-priced merge is likely to occur. Then, we should

consider the availability.

Figure 2. Problem of 1:1 availability.

Figure 3. Problem of M:N availability.

4.3. Space Availability of a Data Block

When a new log block is assigned, the valid data in the data block and the log data of the log

block should be merged into a free block. In this case, even though the blocks to be merged have

many free pages, they should be erased. As flash memory has erase/program cycles [24], the

lifetime of flash memory is shortened if the blocks to be erased have many free pages. There are

many cases where the space availability of a log block and a data block is lowered.

Figure 2 shows the low space availability of a log block. When the file system issues write P8,

Log Block 1 is merged even though it has many free pages. In this case, the space availability is 0.25,

and the log block just uses one page out of four pages. This is the problem in BAST [9] where the

log block is assigned for just one data block. In other words, if the availability between the log block

and the data block is increased, the space availability of the log block is increased.

Figure 3. Problem of M:N availability.

In the KAST [12] scheme, to decrease the problems caused by the high availability in FAST [10],
the number of data blocks that can be connected with one log block is limited to less than k. However,
as the number of data blocks connected with the log block is limited, the space availability of the log
block can be reduced. Moreover, it is difficult to accurately predict the write operation pattern.

This causes various problems depending on the availability between the data block and the log
block. If the availability between the data block and the log block is low, there is the problem of block
thrashing. In the opposite case, a high-priced merge is likely to occur. Then, we should consider
the availability.

Electronics 2020, 9, 145 9 of 19

4.3. Space Availability of a Data Block

When a new log block is assigned, the valid data in the data block and the log data of the log
block should be merged into a free block. In this case, even though the blocks to be merged have many
free pages, they should be erased. As flash memory has erase/program cycles [24], the lifetime of flash
memory is shortened if the blocks to be erased have many free pages. There are many cases where the
space availability of a log block and a data block is lowered.

Figure 2 shows the low space availability of a log block. When the file system issues write P8, Log
Block 1 is merged even though it has many free pages. In this case, the space availability is 0.25, and the
log block just uses one page out of four pages. This is the problem in BAST [9] where the log block is
assigned for just one data block. In other words, if the availability between the log block and the data
block is increased, the space availability of the log block is increased.

The important point is how to increase the space availability of a data block. As depicted in
Figure 4, we assumed that there are four data blocks and one log block, and the write pattern is the
sequence of P0, P4, P8, P12, and P1. When the file system issues write P1, four data blocks and one log
block are merged. In this case, the space availability of Log Block 1 and Data Block 1 is 1. Furthermore,
the space availability of Data Block 2 is also high at 0.75. However, Data Block 3 and Data Block 4 have a
low space availability at 0.25. Many blocks are merged, and the space availability of the blocks is low.

Electronics 2019, 8, x FOR PEER REVIEW 9 of 19

The important point is how to increase the space availability of a data block. As depicted in

Figure 4, we assumed that there are four data blocks and one log block, and the write pattern is the

sequence of P0, P4, P8, P12, and P1. When the file system issues write P1, four data blocks and one

log block are merged. In this case, the space availability of Log Block 1 and Data Block 1 is 1.

Furthermore, the space availability of Data Block 2 is also high at 0.75. However, Data Block 3 and

Data Block 4 have a low space availability at 0.25. Many blocks are merged, and the space

availability of the blocks is low.

Figure 4. Low space availability of a data block.

We need to increase the space availability of the blocks to be merged. To be specific, it is

important to increase the space availability of the data block. If space availability of the data block is

increased, the count of erase is reduced. In addition, the lifetime of a flash memory is increased. To

increase the life time of a flash memory, we should solve this problem.

5. System Design

In this section, we described the design principles and the implementation of the proposed

system DSFTL. Our goal is to decrease the garbage collection overhead.

5.1. System Architecture

We add three algorithms to overcome the disadvantages of existing hybrid mapping. Firstly,

DSFTL reduces the occurrence of operation of partial merge, which is more high-priced than

operation of switch merge, and it causes operation of switch merge to occur occasionally. Secondly,

as our new scheme dynamically adjusts the availability of a data block and a log block, it increases

the space availability of the log block as well as avoids a high-priced operation of full merge.

Finally, space availability of the data block is high, as the data block that has many free pages

avoids operation of merge. As a result, DSFTL decreases the garbage collection overhead.

5.2. Increase of a Switch Merge and the Decrease of a Partial Merge

As noted in the Motivation section, there are three categories of operations of merge: a switch

merge, a partial merge, and a full merge. As operation of full merge needs many operations of copy

and erase, it is more high-priced than operations of switch merge and partial merge. Therefore, to

decrease the garbage collection overhead, operation of switch merge or partial merge are used more

occasionally than operation of full merge. To solve this problem, we use MAST [15] architecture,

which is the state-of-the-art in hybrid mapping. MAST mitigates asymmetric read and write

performance. In addition, it divides log block depending on the features of the data. It then

Figure 4. Low space availability of a data block.

We need to increase the space availability of the blocks to be merged. To be specific, it is important
to increase the space availability of the data block. If space availability of the data block is increased,
the count of erase is reduced. In addition, the lifetime of a flash memory is increased. To increase the
life time of a flash memory, we should solve this problem.

5. System Design

In this section, we described the design principles and the implementation of the proposed system
DSFTL. Our goal is to decrease the garbage collection overhead.

5.1. System Architecture

We add three algorithms to overcome the disadvantages of existing hybrid mapping. Firstly,
DSFTL reduces the occurrence of operation of partial merge, which is more high-priced than operation
of switch merge, and it causes operation of switch merge to occur occasionally. Secondly, as our new
scheme dynamically adjusts the availability of a data block and a log block, it increases the space
availability of the log block as well as avoids a high-priced operation of full merge. Finally, space

Electronics 2020, 9, 145 10 of 19

availability of the data block is high, as the data block that has many free pages avoids operation of
merge. As a result, DSFTL decreases the garbage collection overhead.

5.2. Increase of a Switch Merge and the Decrease of a Partial Merge

As noted in the Motivation section, there are three categories of operations of merge: a switch
merge, a partial merge, and a full merge. As operation of full merge needs many operations of copy
and erase, it is more high-priced than operations of switch merge and partial merge. Therefore, to
decrease the garbage collection overhead, operation of switch merge or partial merge are used more
occasionally than operation of full merge. To solve this problem, we use MAST [15] architecture, which
is the state-of-the-art in hybrid mapping. MAST mitigates asymmetric read and write performance.
In addition, it divides log block depending on the features of the data. It then dynamically finds hot
pages to avoid unnecessary operations of merge and handles hot and cold pages on attributed areas in
the log block. Therefore, we can handle RW log blocks and operations of full merge efficiently.

To handle SW log blocks, we use many SW log blocks to increase operation of switch merge
and to reduce operation of partial merge. MAST [15] and LAST [14] also use many SW log blocks.
However, in the case of MAST, they follow the fundamental rules of FAST [10]. Thus, there are still
many operations of partial merge in this scheme. In the case of LAST, when all the SW log blocks are
exhausted, LAST first searches the log block where all the pages are valid data, and it does operation
of switch merge. If there is no such log block, LAST selects the victim log block using the LRU (Least
Recently Used) replacement policy and then applies operation of partial merge [14]. On the other hand,
in the case of DSFTL, if there is no SW log block that has all the pages with valid dates, we do not
use the LRU replacement policy. Instead, DSFTL finds a victim SW log block where the data are less
written. Then, this victim log block is applied to operation of partial merge to increase operation of
switch merge.

Data, for which the page offset is zero, is written in the SW log block. Then, if the page offset is
continuous, the data are written in the SW log block. Otherwise, they are written in the RW log block.
Furthermore, an operation of switch merge is executed when the SW log block is full. However, if the
SW log block is not empty and the data with a page offset that is zero is written, an operation of partial
merge is executed. In other words, because of the data whose page offset is zero, the data written in
the SW log block loses the opportunity for operation of switch merge. Therefore, DSFTL increases
the probability of operation of switch merge by using many SW log blocks. The use of many SW log
blocks prevents data written in the SW log block from being erased even if the data whose page offset
is zero is written.

Algorithm 1 shows how to operate many SW log blocks in DSFTL. When data with page offset
zero is written in the SW log blocks, DSFTL can perform each operation according to three conditions.
Firstly, if the data are not written in all the SW log blocks, the data are written to any one SW log block.
As all the SW log blocks are empty, it does not matter which SW log block the data are written to. This
case is the same as FAST. Secondly, if the data are written to some SW log blocks, new data are written
to other SW log blocks. Furthermore, the data in the existing SW log blocks do not do operations of
partial merge. The existing SW log blocks have an increased probability of operation of switch merge.
On the contrary, in FAST, the data in the existing SW log block operations of partial merge when new
data are written. Finally, if the data are written in all SW log blocks, DSFTL finds the SW log block
where less data are written. Then, this SW log block does operations of partial merge. Next, new data
are written in this SW log block. Except for three cases, we do not need to handle anymore, as an
operation of switch merge occurs if the SW log block is full.

Electronics 2020, 9, 145 11 of 19

Algorithm 1: When data with page offset zero is written

Input: Data
begin
1 if all SW log blocks are not written
2 write data to any SW log block
3 else if some SW log blocks are written
4 do not erase data of these SW log blocks
5 write data to other SW log blocks
6 else /* all SW log blocks are written */
7 erase data of SW log block which data is less written
8 write data to this SW log block
9 end if

Figure 5 shows the difference between the FAST and DSFTL when new data are written in the SW
log block. While FAST has just one SW log block, DSFTL has many SW log blocks. In this example,
FAST has one SW log block and DSFTL has two SW log blocks. In addition, we assumed that the data
block is already filled with data, and the write pattern is the sequence of 0, 1, 2, 4, and 3. It is the equal
until data 2 is written. When data 4 is written, the SW log block conducts operation of partial merge.
Furthermore, data 4 is written in the SW log block. As data 3 does not have a sequential pattern, it is
written in an RW log block. If the order of data 4 and data 3 is changed, the operation of switch merge
may occur. Moreover, data 3 is not written in the RW log block. In the case of DSFTL, even though data
4 is written, the data already written in SW log block 1 does not conduct operation of partial merge.
Instead, data 4 is written to another SW log block 2. When data 3 is written in SW log block 1, the
operation of switch merge occurs.

Electronics 2019, 8, x FOR PEER REVIEW 11 of 19

example, FAST has one SW log block and DSFTL has two SW log blocks. In addition, we assumed

that the data block is already filled with data, and the write pattern is the sequence of 0, 1, 2, 4, and

3. It is the equal until data 2 is written. When data 4 is written, the SW log block conducts operation

of partial merge. Furthermore, data 4 is written in the SW log block. As data 3 does not have a

sequential pattern, it is written in an RW log block. If the order of data 4 and data 3 is changed, the

operation of switch merge may occur. Moreover, data 3 is not written in the RW log block. In the

case of DSFTL, even though data 4 is written, the data already written in SW log block 1 does not

conduct operation of partial merge. Instead, data 4 is written to another SW log block 2. When data 3

is written in SW log block 1, the operation of switch merge occurs.

Figure 5. When data are written in an SW log block.

In the case of DSFTL, more operations of switch merge or partial merges can be executed

instead of operation of full merge by using the MAST architecture. In addition, more operations of

switch merge can be executed instead of operation of partial merges by using many SW log blocks.

Unlike previous hybrid mapping schemes, the data for operation of switch merge does not conduct

operation of operations of partial merge in the proposed scheme. Moreover, DSFTL prevents all the

data from being written to the RW log blocks.

5.3. Adjust Availability Dynamically

There are two blocks in the log-buffer-based FTL scheme. A data block represents the ordinary

storage space, and a log block is used for updated data. As noted in the Motivation section, because

of the availability between the data block and the log block, there are many problems in FTL.

If the log block is assigned for just one data block, which occurs in BAST, a high-priced

operation of full merge is not executed, since there is just one data block connected with the log

block selected as the victim block. However, the space availability of the log block is likely to be

low. This is called the block thrashing problem. On the contrary, if the log block shares all the data

blocks, which occurs in FAST, the probability of operation of merge is reduced, since the space

availability of the log block is high. However, as the log block can be connected to all the data

Figure 5. When data are written in an SW log block.

Electronics 2020, 9, 145 12 of 19

In the case of DSFTL, more operations of switch merge or partial merges can be executed instead
of operation of full merge by using the MAST architecture. In addition, more operations of switch
merge can be executed instead of operation of partial merges by using many SW log blocks. Unlike
previous hybrid mapping schemes, the data for operation of switch merge does not conduct operation
of operations of partial merge in the proposed scheme. Moreover, DSFTL prevents all the data from
being written to the RW log blocks.

5.3. Adjust Availability Dynamically

There are two blocks in the log-buffer-based FTL scheme. A data block represents the ordinary
storage space, and a log block is used for updated data. As noted in the Motivation section, because of
the availability between the data block and the log block, there are many problems in FTL.

If the log block is assigned for just one data block, which occurs in BAST, a high-priced operation
of full merge is not executed, since there is just one data block connected with the log block selected as
the victim block. However, the space availability of the log block is likely to be low. This is called the
block thrashing problem. On the contrary, if the log block shares all the data blocks, which occurs in
FAST, the probability of operation of merge is reduced, since the space availability of the log block is
high. However, as the log block can be connected to all the data blocks, a high-priced operation of
full merge may occur. Therefore, we need to adjust the availability between the data block and the
log block.

To solve these problems, DSFTL mixes the features of the BAST and the FAST. When the data of
the data block are first written to the log block, the data are written to the log block with less written
data. The log block can be shared by all the data blocks, which is similar to that of FAST. As the space
availability of the log block is increased, there is a lower occurrence of operation of merge. Furthermore,
after being written to the log block first, the data of the data block are assigned to just one log block
where the data of the data block is already written. Thus, one data block is shared just with one log
block. This is similar to BAST. Because of this feature, a high-priced operation of full merge is not
executed in DSFTL.

As depicted in Algorithm 2, we can see how DSFTL dynamically adjusted the availability between
the data block and the log block. When the data in a data block are written to a log block, DSFTL
checks whether the data have already been written in the log block or not. If the data has not already
been written in the log block, the data are written to the log block for the first time. Therefore, DSFTL
finds a log block with less written data due to the increased space availability of the log blocks in this
case. Furthermore, the data are written in this log block. On the contrary, if the data are already written
in the log block, the data are written to the log block more than once. The data are written to the log
block, which has already been connected because of the reduction of the high-priced merge.

Algorithm 2: When data in a data block is written to a log block

Input: Data
begin
1 if data is not already written in a log block
2 find a log block which data is less written
3 write data to this log block
4 else /* data is already written in the log block */
5 write data to only this log block which have already been connected
6 end if

Figure 6 shows the difference between the previous schemes and DSFTL when the data in a
data block are written to a log block. We assumed that the data block is already filled with data.
Furthermore, the write pattern is the sequence of 0, 4, 8, 12, 16, 20, 13, and 17, and we assumed that
there are three log blocks. In BAST, data 0, data 4, and data 8 are written to different log blocks, as

Electronics 2020, 9, 145 13 of 19

one data block is connected to just one log block. When data 12, data 16, and data 20 are written, the
previous log blocks are merged with each data block, as there is no log block connected to the new
data blocks. Therefore, there are three operations of merge in this example in the case of BAST. In the
case of FAST, all the data are written to Log block 1 and Log block 2, since the data block is shared
by all the log blocks. In this example, a merge does not occur. Thus, it seems to be better than BAST.
However, because Log block 1 is connected to four data blocks (data blocks 1, 2, 3, and 4), a high-priced
operation of merge is executed when Log block 1 is selected by the victim block.Electronics 2019, 8, x FOR PEER REVIEW 13 of 19

Figure 6. When data in a data block is written to a log block.

There are two advantages in DSFTL. First, the space availability of log blocks is increased, as

the new data of a data block are written to a log block with less written data. Thus, the number of

operations of merge needed is reduced. Second, the availability between the data block and the log

block is reduced because the data block is connected to just one log block. Therefore, DSFTL can

avoid the high-priced operation of full merge. Consequently, by adjusting the availability between a

data block and log block, we can decrease the garbage collection overhead.

5.4. Increasing Space Availability of a Data Block

As noted in the Motivation section, a data block and a log block can be merged when a new log

block is assigned. Irrespective of the space availability of the data block and the log block, these are

merged and erased. Because a flash memory has a limited number of erase operation, the lifetime of

a flash memory is shortened if the blocks to be merged have many free pages. The space availability

of the log block can be increased by increasing the availability between the log block and the data

block. Furthermore, it is an important thing to solve this problem, since there is no way to increase

the space availability of the data block.

Algorithm 3 shows the merging of a log block. When a log block is merged, DSFTL operates

four things to increase the space availability of the data block. Firstly, if a log block is selected as a

victim block, DSFTL checks this log block. In this log block, our scheme finds a data block with less

written data. We think that the data block with less written data in the victim block is likely to have

low space availability. Secondly, DSFTL finds a log block whose availability with the data block is

the lowest. This log block will save the data of the data block that had less written data written in

the victim block. Thirdly, DSFTL copies the data in the victim block with the found log block. It is

possible to prevent the data block with low space availability from being merged. Finally, DSFTL

invalidates the data in the victim log block and considers the copied data valid. As a result, the life

time of flash memory is extended, as the data block with low space availability is not merged.

Algorithm 3: When a log block is merged

begin

1 if a log block is selected as a victim block

2 find the data block that data is less written in this log block

Figure 6. When data in a data block is written to a log block.

In the case of DSFTL, data 0, data 4, and data 8 are written to different log blocks because of the
increased space availability. Moreover, data 12, data 16, and data 20 are written to each log block. At
each stage, DSFTL finds a log block that has less written data since the data are written to the log block
for the first time. Thus, the data of different data blocks are distributed evenly. When data 13 and data
17 are written, the data from the data block is written to the log blocks more than once. In this case,
the data are written to the log block that has already been connected. Thus, data 13 is written to Log
block 1, and data 17 is written to Log block 2. Because DSFTL has this feature, it not just decreases the
number of operations of merge, but also decreases the number of high-priced operations of full merge.

There are two advantages in DSFTL. First, the space availability of log blocks is increased, as
the new data of a data block are written to a log block with less written data. Thus, the number of
operations of merge needed is reduced. Second, the availability between the data block and the log
block is reduced because the data block is connected to just one log block. Therefore, DSFTL can avoid
the high-priced operation of full merge. Consequently, by adjusting the availability between a data
block and log block, we can decrease the garbage collection overhead.

5.4. Increasing Space Availability of a Data Block

As noted in the Motivation section, a data block and a log block can be merged when a new log
block is assigned. Irrespective of the space availability of the data block and the log block, these are
merged and erased. Because a flash memory has a limited number of erase operation, the lifetime of a
flash memory is shortened if the blocks to be merged have many free pages. The space availability of
the log block can be increased by increasing the availability between the log block and the data block.

Electronics 2020, 9, 145 14 of 19

Furthermore, it is an important thing to solve this problem, since there is no way to increase the space
availability of the data block.

Algorithm 3 shows the merging of a log block. When a log block is merged, DSFTL operates four
things to increase the space availability of the data block. Firstly, if a log block is selected as a victim
block, DSFTL checks this log block. In this log block, our scheme finds a data block with less written
data. We think that the data block with less written data in the victim block is likely to have low space
availability. Secondly, DSFTL finds a log block whose availability with the data block is the lowest.
This log block will save the data of the data block that had less written data written in the victim block.
Thirdly, DSFTL copies the data in the victim block with the found log block. It is possible to prevent
the data block with low space availability from being merged. Finally, DSFTL invalidates the data in
the victim log block and considers the copied data valid. As a result, the life time of flash memory is
extended, as the data block with low space availability is not merged.

Algorithm 3: When a log block is merged

begin
1 if a log block is selected as a victim block
2 find the data block that data is less written in this log block
3 find the log block that availability is the lowest
4 copy data in the victim log block with the found log block
5 invalidate data in the victim log block
6 end if

Figure 7 shows how to increase the space availability of the data block in DSFTL. We assumed
that not all the data blocks are filled with data. For example, there is just data 0 in Data block 1. In
this case, the space availability is 0.25. We also assumed that the data are written according to the
availability of DSFTL. Log block 1 is connected with two data blocks that include Data block 1 and
Data block 4. When Log block 1 is selected as the victim block, DSFTL finds a data block with less
written data in Log block 1. In this case, while Data block 1 uses one page (data 0), Data block 4 uses
three pages (data 12, data 13, and data 14). Therefore, the data of Data block 1 written in the victim block
will be copied later. Furthermore, DSFTL finds a log block with the lowest availability with the data
block except for the victim block. While the availability of Log block 2 is two (Data block 2 and Data
block 5), that of Log block 3 is just one (Data block 3). As Log block 3 has the lowest availability, data 0
of the victim block is copied to Log block 3, and then data 0 in the victim block is considered invalid.

Electronics 2019, 8, x FOR PEER REVIEW 14 of 19

3 find the log block that availability is the lowest

4 copy data in the victim log block with the found log block

5 invalidate data in the victim log block

6 end if

Figure 7 shows how to increase the space availability of the data block in DSFTL. We assumed

that not all the data blocks are filled with data. For example, there is just data 0 in Data block 1. In

this case, the space availability is 0.25. We also assumed that the data are written according to the

availability of DSFTL. Log block 1 is connected with two data blocks that include Data block 1 and

Data block 4. When Log block 1 is selected as the victim block, DSFTL finds a data block with less

written data in Log block 1. In this case, while Data block 1 uses one page (data 0), Data block 4 uses

three pages (data 12, data 13, and data 14). Therefore, the data of Data block 1 written in the victim

block will be copied later. Furthermore, DSFTL finds a log block with the lowest availability with

the data block except for the victim block. While the availability of Log block 2 is two (Data block 2

and Data block 5), that of Log block 3 is just one (Data block 3). As Log block 3 has the lowest

availability, data 0 of the victim block is copied to Log block 3, and then data 0 in the victim block is

considered invalid.

Figure 7. When a log block is merged.

To prevent a data block with low space availability from being merged, DSFTL copies the data

of the data block with less data written in the victim block to another log block that has the lowest

availability between the data block and the log block. Thus, the data block with low space

availability is not merged. As a result, we can decrease the garbage collection overhead.

6. Evaluation

In this section, we evaluated performance of our proposed scheme by running experiments

with real world workload traces, which we instrumented on a 100 GB multi-channel SSD and

through mathematical models that we used to compare DSFTL with previous FTLs. We

implemented DSFTL in conjunction with many hybrid mapping schemes for simulated

experimental evaluation comparisons.

6.1. Experiment Setup

We implemented our DSFTL scheme onto a trace-driven EagleTree simulator [25] because it

can simulate multi-channel SSDs [26] and does not only simulate SSDs but also the OS and

applications that utilize it. EagleTree allows for various configurations of specific flash memory

chip categories from Single-Level Cell (SLC) to Multi-Level cell (MLC) [27] configurations while

supporting it for advanced commands. We configured a 100 GB multi-channel SSD to allow for

parallelism both internal and external to improve the I/O throughput and system availability. Table

1 shows our full 6-channel SSD configuration parameters from an 8 KB page size up to the number

Figure 7. When a log block is merged.

To prevent a data block with low space availability from being merged, DSFTL copies the data
of the data block with less data written in the victim block to another log block that has the lowest
availability between the data block and the log block. Thus, the data block with low space availability
is not merged. As a result, we can decrease the garbage collection overhead.

Electronics 2020, 9, 145 15 of 19

6. Evaluation

In this section, we evaluated performance of our proposed scheme by running experiments with
real world workload traces, which we instrumented on a 100 GB multi-channel SSD and through
mathematical models that we used to compare DSFTL with previous FTLs. We implemented DSFTL in
conjunction with many hybrid mapping schemes for simulated experimental evaluation comparisons.

6.1. Experiment Setup

We implemented our DSFTL scheme onto a trace-driven EagleTree simulator [25] because it can
simulate multi-channel SSDs [26] and does not only simulate SSDs but also the OS and applications
that utilize it. EagleTree allows for various configurations of specific flash memory chip categories
from Single-Level Cell (SLC) to Multi-Level cell (MLC) [27] configurations while supporting it for
advanced commands. We configured a 100 GB multi-channel SSD to allow for parallelism both internal
and external to improve the I/O throughput and system availability. Table 1 shows our full 6-channel
SSD configuration parameters from an 8 KB page size up to the number of chips/planes per channel.
Both approaches were implemented on the same SSD, which included many FTLs and DSFTLs.

Table 1. SSD configuration parameters.

Parameter Value (Fixed)-Varied

Page Size (KB) 8
Pages per Block 1024
Blocks per Plane 1024

Plane per Die 1
Die per Chip 2

Chip per Channel 1
Channel number 6

Erase time 1500 µs
Program time 800 µs

Buffer service time 1000 ns

6.2. Workloads

Our experiments were conducted out using realistic workloads that included Financial 1 (uniform
random write requests), Financial 2 (small random and large random write requests), MSNSF (uniform
small sequential and random write requests), and RADIUS (mixed small and large sequential write
requests) traces that were collected from various storage and image/video files, and they constituted
various request sizes and read/write compositions, which are described in Table 2. These multimedia
traces were retrieved from the UMASS Trace Repository [28] and the SNIA IOTTA Repository [29].
We used a set of traces that reflected the workloads listed in Table 2 in order to study the number of
counts of erase and the execution time. These workloads came from the real workloads released by the
International Network Storage Industry Association (SNIA) and Microsoft.

Table 2. Characteristic of workloads.

Traces Financial 1 Financial 2 MSNFS Radius

Read Ratio 0.41 0.23 0.85 0.09
Write Ratio 0.59 0.87 0.15 0.91

Ave Read size (KB) 2.5 18.6 14.8 7.1
Ave Write size (KB) 3.1 21.4 10.6 8.4

6.3. Experimental Results

In our experiments, we evaluated the counts of erase and the categories of operations of merge to
compare DSFTL performance with BAST [9], FAST [10], LAST [14], and MAST [15]. In the case of the

Electronics 2020, 9, 145 16 of 19

count of erase, we further tested the impact of the log blocks availability to both systems by increasing
the number of log blocks from 4 up to 256 for each configuration. Figure 8 shows the comparison with
Financial 1, Financial 2, MSNFS, and the Radius Traces. In this figure, DSFTL reduced count of erase,
as the number of log blocks were increased. This is because DSFTL can increase the space availability
of a log block and a data block. In addition, DSFTL can avoid a high-priced operation of full merge,
since we adjusted the availability between a data block and a log block dynamically.

Electronics 2019, 8, x FOR PEER REVIEW 16 of 19

with the BAST performance even as the number of blocks increased, and it just improved from 64

log blocks where we saw an improvement in its space availability. On the other hand, FAST, MAST,

and LAST showed better reduction in space availability, as it could append operation of write into

the end sector of a log block, which thereby resulted in lesser operations of write compared to the

BAST. On the contrary, DSFTL reduced the operations of write by adjusting the availability

between a data block and a log block, which consequently avoided a high-priced operation of full

merge. This in turn reduced the number of operations of erase.

Figure 8. The number of counts of erase with four traces.

With MSNFS traces, we realized that DSFTL still outperformed the other FTLs, and it showed

a very low count of erase. This is because the BAST performance remained identical regardless of

the varied block numbers, whereas, with other FTLs, the sectors in a victim block have more

chances to be invalidated, which resulted in the corresponding data blocks being less likely to be

merged. On the contrary, DSFTL reduced the number of counts of erase, since the number of log

blocks were increased. This is because the operations of erase and the operations of full merge

decreased the garbage collection overhead. DSFTL assigned a lot more log blocks, which thereby

increased the space availability of the data blocks more than its counterparts. In all traces, DSFTL

avoided over 1000 counts of erase compared to the MAST.

Even though previous hybrid mappings reached the same level of reduction in the counts of

erase between 16 and 32 number of log blocks due to BAST’s intelligent operation of switch merge,

which reduced the count of erase in the small random overwrites, we witnessed a continuation of

DSFTL outperforming other FTLs in radius traces. We further checked the efficiency of DSFTL

against large sequential writes by counting the number of operations of switch merge and

comparing them with those from other hybrid mappings. Consequently, we decreased the number

of counts of erase for all traces by increasing the space availability of a log block and a data block

while avoiding high-priced operations of full merge in order to improve the system performance

and the lifespan. To accomplish this, we adjusted the availability between a log block and a data

block while avoiding operations of merge, which were previously discussed.

Figure 9 shows the ratio merge operation between our proposed DSFTL, BAST, FAST, LAST,

and MAST FTLs with four traces. We realized that our DSFTL, which employed MAST architecture

Figure 8. The number of counts of erase with four traces.

The uniform random write requests of the Financial 1 and the Financial 2 traces proved to be
costly for the BAST, which is witnessed from Figure 8. The number of counts of erase in the BAST is
over 400,000 in the Financial 1 and the Financial 2 traces. On the other hand, DSFTL decreased the
number of counts of erase under 200,000 in two traces. This is because operation of write was placed
into a dedicated block that caused operations of merge and led to the non-improvement with the BAST
performance even as the number of blocks increased, and it just improved from 64 log blocks where
we saw an improvement in its space availability. On the other hand, FAST, MAST, and LAST showed
better reduction in space availability, as it could append operation of write into the end sector of a log
block, which thereby resulted in lesser operations of write compared to the BAST. On the contrary,
DSFTL reduced the operations of write by adjusting the availability between a data block and a log
block, which consequently avoided a high-priced operation of full merge. This in turn reduced the
number of operations of erase.

With MSNFS traces, we realized that DSFTL still outperformed the other FTLs, and it showed a
very low count of erase. This is because the BAST performance remained identical regardless of the
varied block numbers, whereas, with other FTLs, the sectors in a victim block have more chances to be
invalidated, which resulted in the corresponding data blocks being less likely to be merged. On the
contrary, DSFTL reduced the number of counts of erase, since the number of log blocks were increased.
This is because the operations of erase and the operations of full merge decreased the garbage collection
overhead. DSFTL assigned a lot more log blocks, which thereby increased the space availability of
the data blocks more than its counterparts. In all traces, DSFTL avoided over 1000 counts of erase
compared to the MAST.

Even though previous hybrid mappings reached the same level of reduction in the counts of erase
between 16 and 32 number of log blocks due to BAST’s intelligent operation of switch merge, which

Electronics 2020, 9, 145 17 of 19

reduced the count of erase in the small random overwrites, we witnessed a continuation of DSFTL
outperforming other FTLs in radius traces. We further checked the efficiency of DSFTL against large
sequential writes by counting the number of operations of switch merge and comparing them with
those from other hybrid mappings. Consequently, we decreased the number of counts of erase for all
traces by increasing the space availability of a log block and a data block while avoiding high-priced
operations of full merge in order to improve the system performance and the lifespan. To accomplish
this, we adjusted the availability between a log block and a data block while avoiding operations of
merge, which were previously discussed.

Figure 9 shows the ratio merge operation between our proposed DSFTL, BAST, FAST, LAST, and
MAST FTLs with four traces. We realized that our DSFTL, which employed MAST architecture for RW
log blocks and MAST FTL, had the lowest rate of operations of full merge. Furthermore, DSFTL also
realized an increase in operations of switch merge than the rest, as it used many SW log blocks.

Electronics 2019, 8, x FOR PEER REVIEW 17 of 19

for RW log blocks and MAST FTL, had the lowest rate of operations of full merge. Furthermore,

DSFTL also realized an increase in operations of switch merge than the rest, as it used many SW log

blocks.

Figure 9. The ratio of each operations of merge with four traces.

In the case of an operation of switch merge, when data with a page offset of zero is written in

an SW log block, DSFTL can perform each operation with many SW log blocks. Therefore, many

SW log blocks increase the probability of operation of switch merge to occur. On the other hand, in

other FTLs, data in an existing SW log block conducts operation of partial merge when new data are

written. As we can see in Figure 9, DSFTL incurred more operations of switch merge in all traces

cases, since it avoids operations of full merge and partial merge by using MAST architecture and

many SW log blocks in order to decrease the garbage collection overhead. DSFTL performs the

operations of switch merge more than 2% and operation of partial merge less than 2% compared to

MAST.

For BAST, all of the operations of merge are conducted by the operation of full merge because

of block thrashing, while, with FAST, which uses M:N availability between a log block and a data

block, the victim block incurred operations of switch merge and partial merge. Most of the

operations of merge are conducted by operations of switch merge and partial merge in the case of

LAST, even though it still experiences a lot of operations of full merge. In MAST, we witnessed a

decrease in the operations of full merge compared to the other FTLs. Compared to DSFTL, there are

many operations of partial merge in MAST because it uses the FAST architecture for SW log blocks.

For DSFTL, operations of switch merge are increased

7. Conclusions

In the hybrid FTL, there are many factors that increase the garbage collection overhead. Firstly,

in the case of operation of merge, an operation of full merge is more high-priced than operations of

switch merge and partial merge. In addition, since an operation of partial merge should copy pages

in comparison with an operation of switch merge, it is quite beneficial to execute an operation of

switch merge instead of an operation of partial merge. Secondly, availability between a data block

and a log block has a direct effect on the performance of a flash memory. Lastly, the space

availability of the data block can directly increase the garbage collection overhead. Therefore, we

proposed DSFTL approach that dynamically considers all the above-mentioned concerns for a

Figure 9. The ratio of each operations of merge with four traces.

In the case of an operation of switch merge, when data with a page offset of zero is written in
an SW log block, DSFTL can perform each operation with many SW log blocks. Therefore, many SW
log blocks increase the probability of operation of switch merge to occur. On the other hand, in other
FTLs, data in an existing SW log block conducts operation of partial merge when new data are written.
As we can see in Figure 9, DSFTL incurred more operations of switch merge in all traces cases, since
it avoids operations of full merge and partial merge by using MAST architecture and many SW log
blocks in order to decrease the garbage collection overhead. DSFTL performs the operations of switch
merge more than 2% and operation of partial merge less than 2% compared to MAST.

For BAST, all of the operations of merge are conducted by the operation of full merge because of
block thrashing, while, with FAST, which uses M:N availability between a log block and a data block,
the victim block incurred operations of switch merge and partial merge. Most of the operations of
merge are conducted by operations of switch merge and partial merge in the case of LAST, even though
it still experiences a lot of operations of full merge. In MAST, we witnessed a decrease in the operations
of full merge compared to the other FTLs. Compared to DSFTL, there are many operations of partial
merge in MAST because it uses the FAST architecture for SW log blocks. For DSFTL, operations of
switch merge are increased

Electronics 2020, 9, 145 18 of 19

7. Conclusions

In the hybrid FTL, there are many factors that increase the garbage collection overhead. Firstly,
in the case of operation of merge, an operation of full merge is more high-priced than operations of
switch merge and partial merge. In addition, since an operation of partial merge should copy pages in
comparison with an operation of switch merge, it is quite beneficial to execute an operation of switch
merge instead of an operation of partial merge. Secondly, availability between a data block and a log
block has a direct effect on the performance of a flash memory. Lastly, the space availability of the data
block can directly increase the garbage collection overhead. Therefore, we proposed DSFTL approach
that dynamically considers all the above-mentioned concerns for a system in this study. Our proposed
system induces more operations of switch merge than operations of full merge and partial merge. In
addition, by adjusting the availability between a log block and a data block, we can avoid high-priced
operations of full merge and the space availability of log block is increased. Moreover, DSFTL makes
the space availability of a data block increase by avoiding operation of merge. The experimental
results showed that our proposed scheme decreases the count of erase better than traditional block
mapping FTLs.

However, there are some limitations in our algorithm. First, if workload includes many random
write requests, some operations of merge will be occurred in DSFTL since we use some SW log blocks
instead of RW log blocks. On the other hand, our scheme shows good performance in sequential write
requests. Second, compared to page mapping scheme, DSFTL cannot avoid operation of merge since
our scheme is a hybrid mapping scheme. However, DSFTL solved problems of a page mapping scheme.

In the future, we will try to solve these limitations. In addition, we plan to further study a system
that applies machine learning capabilities to decrease the garbage collection overhead.

Author Contributions: Investigation, S.-J.C.; Methodology, T.-S.C., J.-Y.P., and M.A.; Software, R.M. The authors
equally contributed in the work presented in the paper. All authors have read and agreed to the published version
of the manuscript.

Acknowledgments: This research was partially supported by the Basic Science Research Program through the
NRF, Korea funded by the Ministry of Education (2019R1F1A1058548) and the Ajou University research fund.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kinam, K. Symposium on VLSI-TSA Technology; IEEE: Piscataway, NJ, USA, 2008; pp. 5–9.
2. Gray, J.; Fitzgerald, B. Flash Disk Opportunity for Server-Applications. Available online: http://www.research.

microsoft.com/~{}gray (accessed on 10 January 2020).
3. Mativenga, R.; Paik, J.-Y.; Kim, Y.; Lee, J.; Chung, T.-S. RFTL: Improving performance of selective caching-based

page-level FTL through replication. Clust. Comput. J. 2019, 22, 25–41. [CrossRef]
4. Samsung Electronics. Nand Flash Memory & Smartmedia Data Book; Samsung Electronics: Suwon, Korea, 2007.
5. Amir, B. Flash File System Optimized for Page-mode Flash Technologies. U.S. Patent No. 5,937,425,

10 August 1999.
6. Chung, T.-S.; Park, D.-J.; Park, S.; Lee, D.-H.; Lee, S.-W.; Song, H.-J. A survey of flash translation layer. J. Syst.

Arch. 2009, 55, 332–343. [CrossRef]
7. Amir, B. Flash File System. U.S. Patent No. 5,404,485, 4 April 1995.
8. Gupta, A.; Kim, Y.; Urgaonkar, B. DFTL: A flash translation layer employing demand-based selective caching

of page-level address mappings. ACM 2009, 44, 229–240.
9. Kim, J.; Kim, J.M.; Noh, S.H.; Min, S.L.; Cho, Y. A space-efficient flash translation layer for CompactFlash

systems. IEEE Trans. Consum. Electron. 2002, 48, 366–375.
10. Lee, S.-W.; Park, D.J.; Chung, T.S.; Lee, D.H.; Park, S.; Song, H.J. A log buffer-based flash translation layer

using fully-associative sector translation. ACM Trans. Embed. Comput. Syst. 2007, 6, 18. [CrossRef]
11. Kang, J.; Jo, H.; Kim, J.-S.; Lee, J. A superblock-based flash translation layer for NAND flash memory.

In Proceedings of the 6th ACM & IEEE International Conference on Embedded Software, Seoul, Korea,
22–25 October 2006.

http://www.research.microsoft.com/~{}gray
http://www.research.microsoft.com/~{}gray
http://dx.doi.org/10.1007/s10586-018-2824-5
http://dx.doi.org/10.1016/j.sysarc.2009.03.005
http://dx.doi.org/10.1145/1275986.1275990

Electronics 2020, 9, 145 19 of 19

12. Cho, H.; Shin, D.; Eom, Y.I. KAST: K-associative sector translation for NAND flash memory in real-time
systems. In Proceedings of the 2009 Design, Automation & Test in Europe Conference & Exhibition, Nice,
France, 20–24 April 2009.

13. Forouhar, P.; Safaei, F. DA-FTL: Dynamic associative flash translation layer. In Proceedings of the 2017
19th International Symposium on Computer Architecture and Digital Systems (CADS), Kish Island, Iran,
21–22 December 2017.

14. Lee, S.; Shin, D.; Kim, Y.-J.; Kim, J. LAST: Locality-aware sector translation for NAND flash memory-based
storage systems. ACM SIGOPS Oper. Syst. Rev. 2008, 42, 36–42. [CrossRef]

15. Kim, J.; Kang, D.H.; Ha, B.; Cho, H.; Eom, Y.I. MAST: Multi-level associated sector translation for NAND
flash memory-based storage system. In Computer Science and Its Applications; Springer: Berlin/Heidelberg,
Germany, 2015; pp. 817–822.

16. Kim, J.K.; Lee, H.G.; Choi, S.; Bahng, K. A PRAM and NAND flash hybrid architecture for high-performance
embedded storage subsystems. In Proceedings of the 8th ACM International Conference on Embedded
Software, Atlanta, GA, USA, 19–24 October 2008.

17. Wei, Q.; Zeng, L.; Chen, J.; Chen, C. A popularity-aware buffer management to improve buffer hit ratio and
write sequentiality for solid-state drive. IEEE Trans. Magn. 2013, 49, 2786–2793. [CrossRef]

18. Liu, D.; Wang, T.; Wang, Y.; Qin, Z.; Shao, Z. A block-level flash memory management scheme for reducing
write activities in PCM-based embedded systems. In Proceedings of the Conference on Design, Automation
and Test in Europe, EDA Consortium, Dresden, Germany, 12–16 March 2012.

19. Kwon, S.J. Non-volatile translation layer for PCM + NAND in wearable devices. IEEE Trans. Consum.
Electron. 2017, 63, 483–489. [CrossRef]

20. Tal, A. Two Technologies Compared: NOR vs. NAND; M-Systems White Paper: Kfar Saba, Israel, 2003.
21. Sun, G.; Joo, Y.; Chen, Y.B.; Niu, D.; Xie, Y.; Chen, Y.R.; Li, H. A hybrid solid-state storage architecture for the

performance, energy consumption, and lifetime improvement. In Emerging Memory Technologies; Springer:
New York, NY, USA, 2014; pp. 51–77.

22. Moshayedi, M.; Seyed, J.S. SLC-MLC Combination Flash Storage Device. U.S. Patent No. 8,825,941,
2 September 2014.

23. Harari, E.; Robert, D. Norman, and Sanjay Mehrotra. Flash Eeprom System. U.S. Patent No. 5,602,987,
11 February 1997.

24. Robinson, K.B.; Elbert, D.K.; Levy, M.A. Block-Erasable Non-Volatile Semiconductor Memory Which Tracks
and Stores the Total Number of Write/Erase Cycles for Each Block. U.S. Patent No. 5,544,356, 6 August 1996.

25. Dayan, N.; Svendsen, M.K.; Bjorling, M.; Bonnet, P.; Bouganim, L. EagleTree: Exploring the design space
of SSD-based algorithms. In Proceedings of the VLDB Endowment, Riva del Garda, Italy, 26 August 2013;
pp. 1290–1293.

26. Park, S.-H.; Ha, S.-W.; Bang, K.; Chung, E.-Y. Design and analysis of flash translation layers for multi-channel
NAND flash-based storage devices. IEEE Trans. Consum. Electron. 2009, 55, 1392–1400. [CrossRef]

27. Chang, Y.-H.; Kuo, T.-W. A management strategy for the reliability and performance improvement of
MLC-based flash-memory storage systems. IEEE Trans. Comput. 2011, 60, 305–320. [CrossRef]

28. UMASS Trace Repository. Available online: http://traces.cs.umass.edu/ (accessed on 10 January 2020).
29. SNIA IOTTA Repository. Available online: http://iotta.snia.org/ (accessed on 10 January 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/1453775.1453783
http://dx.doi.org/10.1109/TMAG.2013.2249579
http://dx.doi.org/10.1109/TCE.2017.015034
http://dx.doi.org/10.1109/TCE.2009.5278005
http://dx.doi.org/10.1109/TC.2010.126
http://traces.cs.umass.edu/
http://iotta.snia.org/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Background
	NAND Flash Memory
	FTL

	Motivation
	Operation of Merge
	Availability between a Data Block and a Log Block
	Space Availability of a Data Block

	System Design
	System Architecture
	Increase of a Switch Merge and the Decrease of a Partial Merge
	Adjust Availability Dynamically
	Increasing Space Availability of a Data Block

	Evaluation
	Experiment Setup
	Workloads
	Experimental Results

	Conclusions
	References

