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Abstract: In South Korea, where there are no resources such as natural gas or crude oil, research
on alternative fuels has been actively conducted since the 1990s. The research on synthetic oil is
subdivided into Coal to Liquid (CTL), Gas to Liquid (GTL), Biomass to Liquid (BTL), etc., and was
developed with the focus on catalysts, their preparation, reactor types, and operation technologies
according to the product to be obtained. In Fischer–Tropsch synthesis for synthetic oil from syngas,
stability, CO conversion rate, and product selectivity of catalysts depends on the design of their
components, such as their active material, promoter, and support. Most of the developed catalysts
were Fe- and Co-based catalysts and were developed in spherical and cylindrical shapes according to
the reactor type. Recently, hybrid catalysts in combination with cracking catalysts were developed to
control the distribution of the product. In this review, we survey recent studies related to the design
of catalysts for production of light hydrocarbons and middle distillates, including hybrid catalysts,
encapsulated core–shell catalysts, catalysts with active materials with well-organized sizes and shapes,
and catalysts with shape- and size-controlled supports. Finally, we introduce recent research and
development (R&D) trends in the production of light hydrocarbons and middle distillates and in the
catalytic processes being applied to the development of catalysts in Korea.

Keywords: syngas; Fischer–Tropsch; catalyst design; active metal size; acidic site control; hydrocarbons

1. Introduction

The production of hydrocarbons, alcohols, and dimethyl ether (DME), which are alternative
fuels, from syngas has been reported by numerous researchers; some of these methods are currently
being developed, and some are being conducted at commercial scale. As shown in Figure 1, the
conversion of syngas to alternative fuels can produce methanol, DME, or hydrogen; the syngas can be
obtained by methanation or Fischer–Tropsch (FT) reaction from methane-containing hydrocarbons.

Catalysts 2020, 10, 99; doi:10.3390/catal10010099 www.mdpi.com/journal/catalysts

http://www.mdpi.com/journal/catalysts
http://www.mdpi.com
https://orcid.org/0000-0002-5792-471X
https://orcid.org/0000-0002-3197-505X
https://orcid.org/0000-0001-8779-9326
http://dx.doi.org/10.3390/catal10010099
http://www.mdpi.com/journal/catalysts
https://www.mdpi.com/2073-4344/10/1/99?type=check_update&version=2


Catalysts 2020, 10, 99 2 of 32

Following the energy crisis of the 1970s, the Fischer–Tropsch synthesis (FTS) reaction attracted increased
because of the high cost of oil [1]. Since 1995, the FTS reaction has been attracting further attention, as
shown in Figure 2. This attention not only reflects oil prices but also the demand for energy security,
demassification of energy sources, and sulfur-free or NOx-free resources to protect the environment [2].
The FTS reaction is one of the reactions for growing carbon chains (–CH2–) to produce hydrocarbons
of various lengths (paraffins or olefins). Representative catalysts for this purpose mainly consist of
Fe and/or Co as the active material. Fe-based catalysts are relatively inexpensive and have a wide
range of operating temperatures, which is advantageousness for producing olefins, gasoline, or diesel
fuel. Although the Co-based catalysts have a narrow operating temperature range of 220–240 ◦C, their
paraffin wax productivity is superior to that of the Fe-based catalysts [3].
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These FTS catalysts can be used to synthesize light hydrocarbons (with five or fewer carbon
atoms), middle distillates (with 13 to 22 carbon atoms), and waxes (with 22 or more carbon atoms).
The produced wax can again be used to obtain gasoline or diesel fuel through the cracking process.
However, many wax products require additional processing. Thus, numerous studies have been
conducted to improve the yield of light hydrocarbons or middle distillates and especially to increase
the synthesis rate of C2–C12 by reducing the production ratio of C1, CO2, and C22+.

Nowadays, there are many kinds of research and works related to the FTS reaction due to the
desire for energy transformation related to the hydrogen energy source and for the production of
high valuable hydrocarbon worldwide. Additionally, many other researchers have reported review
papers concentrated on these perspectives. However, in Korea, where fossil fuel resources such as
natural gas and crude oil are not available, research on Coal to Liquid (CTL), Gas to Liquid (GTL),
and Biomass to Liquid (BTL) began in the early 1990s to obtain alternative fuels. The Korea Research
Institute of Chemical Technology (KRICT) reported a 10 Barrels Per Day (BPD) scaled GTL process that
consists of the slurry bobble column reactor (SBCR) using Co-based catalysts from their research and
development (R&D) project between 2006 and 2015. The Korea Institute of Energy Research (KIER)
reported a 15 BPD scaled CTL process that consists of the SBCR using Fe-based catalysts from their
R&D project between 2005 and 2011. However, recently, there have been different approaches due
to the difference in legal standards for domestic pipeline networks (natural gas) in South Korea and
Japan from those in the USA and Europe (e.g., the calorific value of natural gas is higher, and methane
composition is lower than those of the USA and Europe). However, the calorific value of the imported
liquefied natural gas (LNG) is decreasing year by year because the exporting countries are extracting
high calorific gases from LNG in order to sell it separately. Thus, the imported LNG should be adjusted
by adding high calorific gases such as liquefied petroleum gas (LPG). Besides, the synthetic natural gas
(SNG) (catalytic methanation process from synthetic gases) process was installed to replace natural gas
energy security in Gwangyang. However, more than the LNG, the SNG product, which consists of
over 95% of methane (~9300 kcal/Nm3), should be adjusted. Thus, the need of high calorific gases (e.g.,
C2–C4) or high calorific SNG increased. From these perspectives, we introduce the typical FTS catalyst
design approaches in South Korea against worldwide approaches.

This review is divided into five sections. The first section is the introduction. We introduce the
FTS mechanism and the typical catalyst design technologies, along with catalyst components such as
active materials, promoters, and support materials, in Section 2. In Section 3, we survey some recent
approaches to achieving greater selectivity of the desired products. Section 4 is a discussion of the
state-of-the-art catalyst technologies for the production of light hydrocarbons and middle distillates in
South Korea. Finally, the implications, the challenges, and the research areas to be addressed for the
commercialization of these catalytic technologies are discussed in the conclusion in Section 5.

2. FTS Catalysts Design

2.1. Mechanism of Fischer–Tropsch Synthesis

After a patent was granted to BASF (Global Company based on Germany) for a hydrocarbon
production process using a Co catalyst, Fischer and Tropsch reported a hydrocarbon synthesis process
capable of producing various organic compounds (e.g., ethane, propane, butane, octane, nonane, and
iso-nonane) using alkali–iron catalysts under conditions of 400–450 ◦C and 100–150 atm. In the early
stage, the product was named “Synthol” and was not found to contain hydrocarbons. However, further
studies revealed that the Fe–Co catalyst could be used to produce hydrocarbons; these reactions are
referred to as the FTS reaction.

For the general FTS, the reaction to produce alkanes (Equation (1)) and alkenes (Equation (2)) and
schematics of the chain growth processes during the FTS reaction are shown as follows:

Paraffins: nCO + (2n + 1) H2→ CnH2n+2 + nH2O (1)
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Olefins: nCO + 2nH2→ CnH2n + nH2O (2)

Figure 3 shows the mechanism in the FTS reaction [4,5]. The first carbide mechanism on the iron
catalyst involved the formation and the hydrogenation of metal carbides to give methylene groups on
the surface of the metal, and the second oxygenate (enol) mechanism proposes chain growth by the
non-dissociative chemisorption of CO. The third CO insertion mechanism involves the insertion of CO
into a metal–methyl or metal–methylene carbon bond, which is hydrogenated to produce an alcohol or
alkene. Finally, the fourth alkenyl mechanism suggests that polymer chain carriers are surface alkenyl
rather than alkyl species.
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However, the Anderson–Schulz–Flory (ASF) model represents the ideal product distributions as a
function of the chain-growth probability factor α [6]. The basic mathematical expression from the ASF
model is as follows:

ln
Wn

n
= n lnα+ 2 ln

(
1− α
√
α

)
(3)

α =
RP

RP + Rt
(4)

where α is the chain-growth probability factor, Rp and Rt are the rates of propagation and termination,
respectively, and Wn represents the mass fraction for the hydrocarbon with carbon number n. In the
ASF model, the maximum selectivity of the desired products depends only on the chain-growth
probability (α). However, some experiments have shown results that differ from those predicted by
the ASF model (Figure 4) [7]. Therefore, one of the most challenging objectives in the field of FTS
is the development of efficient catalysts that can control the distribution rather than providing the
ASF distribution. Numerous other improved models have been developed; however, no pure light
hydrocarbons or middle distillates have been obtained without purification steps.
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In general, syngas with certain H2/CO ratios (0.7–2.0) is known to generate hydrocarbons through
repetitive and continuous (1) reactant adsorption/dissociation; (2) chain initiation; (3) chain growth;
(4) chain termination; (5) product desorption; and (6) re-adsorption and further reaction steps at the
surface of the metal (active component: Fe, Co, Ru, Ni, etc.).

Fischer and Tropsch suggested a carbide mechanism that the carbides formed by syngas generates
a methylene group through the hydrogenation [8]. Especially in the case of the Fe-based catalysts, the
phase of the active materials under FTS conditions during the activation step is changed, as shown in
Figure 5; this change affects the catalytic activity. Fischer and Tropsch showed that the active phase
of the Fe-based catalyst for the FTS reaction was not the catalyst metal surfaces but the formation of
Fe-C (Fe carbide). Light olefins (C2= to C4=) are directly produced from syngas as ethylene, propylene,
butylene, etc. The maximum value of light hydrocarbons (C2–C4) containing olefins was 56.7%, the
content of methane was 29.2%, and the others were C5

+ [9].
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2.2. Active Materials

Active materials such as Co, Fe, Ru, and Pt can produce light hydrocarbons and middle distillates
from syngas. The catalysts for these purposes consist of the active material, a promoter, and a support
that enhances the mechanical strength of the catalyst and the size distribution of the active material.
To achieve high catalytic performance (conversion, selectivity, and stability), chemical–physical
properties (e.g., porosity, acidity, shape and size, composition, and density) and mechanical properties
(e.g., physical strength and attrition) should be considered [10].

According to various literature reviews [11–14], the transition metals are a substantial component
of the active materials of FTS catalysts. However, Fe, Co, Ni, and Ru metals are acceptable catalysts
for the FTS because of the dissociative adsorption ability of CO (Figure 6). Abundant literature
indicates that the best active material for low-temperature FTS is Ru. Since Ru is relatively expensive
compared to Fe, Co, and Ni, many studies have been conducted to design catalysts by maximizing
dispersion in small amounts. Ni is a material with high hydrogenation activity, but its activity toward
the methanation reaction is excessively high. Thus, Co and Fe are the most suitable transition-metal
catalysts for the FTS reaction [15]. Fe is relatively inexpensive, exhibits a relatively wide operating
temperature range, and demonstrates good olefin selectivity [16]. Co is relatively inexpensive and
has a narrow operating temperature range from 220 to 240 ◦C; it is preferred for the production of
long-chain paraffin hydrocarbons.
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2.3. Promoters

In general, in the field of heterogeneous catalysis, a small number of promoters are known
to improve the catalytic activity and selectivity by enhancing physical and chemical properties of
catalysts. FTS catalytic performance can be improved by adding a small amount of promoter that
can substantially enhance the reducibility of Co and Fe. The literature contains numerous reports of
certain metal oxides, alkali metals, and transition metals improving the FTS activities of transition
metal catalysts. A promoter of Co-based catalysts could be Pd, Pt, Re, or Ru of 0.1–0.5% for selectivity
and activity and 1–3% rare-earth oxides, e.g., ZrO2, La2O3, or ThO2, for catalytic stability. However,
Fe-based catalysts are typically promoted with copper to improve reducibility and with an alkali
(preferably K) or Mn for selectivity and stability [17–42]. Feyzi et al. reported the effects of promoters
on the FTS catalytic performance using iron–manganese catalysts at the ratio of H2/CO = 2, gas hourly
space velocity (GHSV) = 1200 h−1, the pressure = 1 atm and reaction temperature = 250 ◦C condition.
The results are shown in Table 1. They concluded that 6 wt% of potassium (K) is the best promoter of
the 50%Fe–50%Mn based FTS catalyst to produce the C2–C4 olefins [17]. Besides, Ni is used as the
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promoter in order to increase CO conversion and methane selectivity [43,44]. A poor promoter can
also lead to light gas selectivity due to excessive hydrogenation. Sometimes, concerning long term use,
it may require regeneration because certain metals (e.g., Au) can be separated from the active materials
during oxidation–reduction cycles [28].

Table 1. Effect of different promoters on the catalytic performance of Fe–Mn catalyst [17].

Promoter (2 wt%) CO Conversion (%)
Product Selectivity (%)

CH4 C2–C4 C5–C9 C10+ CO2

Zn 34.1 22.3 46.0 14.4 6.5 10.8
Rb 28.7 24.5 32.8 21.1 9.4 12.2
Cs 38.4 21.1 41.7 15.4 11.7 10.1
K 43.8 16.4 51.7 14.4 9.2 8.3
Ce 32.5 25.1 37.2 18.1 8.2 11.4

Reaction conditions: H2/CO = 2, GHSV = 1200 h−1, P = 1 atm and 250 ◦C

2.4. Support Materials

For the improvement of the FTS reaction performance, support materials are a crucial factor
that can improve the physical properties such as mechanical strength, active component dispersion,
heat and mass transfer, and stability of the catalysts. Al2O3, SiO2, TiO2, and ZrO2 are generally used
as supports due to their high surface area and strong mechanical strength [45–62]. The selection of
support results in active material dispersion. Well-defined surface area and pore structure strongly
enhance dispersion and reducibility of the active materials, which can improve the long term stability
of the catalyst as well as the catalytic activity toward reactions such as CO conversion. [27,63–66].
However, in addition to the aforementioned physical properties, chemical properties such as chemical
interaction between active and support materials should also be considered because reducibility, metal
particle size, and shape are affected by the strong metal surface interaction (SMSI) [67–71]. The strong
metal support interaction affects the active metal shape and the size during H2 reduction on top of
the support. The nature of active metal on the surface of the support is affected by the supporter
material. The SMSI can affect the surface metal reducibility by the oxygen sharing phenomenon from
the support materials. It can migrate the nature on top of the supported metal nanoparticles, inhibiting
their H2 and CO chemisorption capacity. Thus, the chemical strength between the active metals and
their supports is important.

3. Recent Approaches

Numerous works have reported increases in the selectivity toward the desired products.
In literature, there are different preparations of catalysts for light hydrocarbon or middle distillate
production precipitation, co-precipitation, co-precipitation in slurry, impregnation, hydrothermal
synthesis, etc. In this section, we describe some recent approaches.

3.1. Hybrid Catalysts with Cracking Catalysts

For the purpose of direct liquid hydrocarbon production, the simplest approach is well known
to involve a combination of FTS and cracking catalysts. However, technically, four types of catalyst
can be categorized, as shown in Figure 7 [27]. First, from the review literature, the simplest hybrid
catalysts are the two-bed catalysts with a simple layered structure composed of FTS and cracking
catalysts. The second type is a one-bed catalyst that consists of a mixed catalyst in a bed or in a catalyst
template. The third type is a catalyst coated or layered onto an FTS catalyst. The fourth type is an
active phase supported on a zeolite. Some authors have suggested that the improved performance of
one-bed over two-bed systems results in increased selectivity toward gasoline-range hydrocarbons
on Co-based catalysts. For Fe-based catalysts, supported or coated systems have been shown to be
more selective than one-bed systems toward the C5–C11 fraction [72,73]. According to Sartipi et al. [27],
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the combination of zeolites with an active FTS phase increases the product selectivity toward liquid
hydrocarbons. This approach offers great potential for intensified and direct production of synthetic
fuels from syngas. Among different zeolite topologies, the most promising results have been obtained
with H–ZSM–5 (H formed Zeolite Socony Mobil–5; aluminosilicate zeolite).
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3.2. Encapsuled Core–Shell Catalysts

As previously mentioned, coated catalysts are advanced catalysts sometimes called core–shell
or capsule catalysts. Yang et al. [74–76] reported on the performance of H-ZSM-5/Co/SiO2 capsule
catalysts with different sizes for the direct synthesis of iso-paraffins under FTS reaction conditions,
as shown in Figure 8 [74]. Calderone et al. [77] reported improved results with respect to catalyst
deactivation of Fe-based catalysts when they were used to coat a Co core, resulting in a Co-Fe core–shell
catalyst. The difference in stability of the two catalysts with time on stream is shown in Figure 9.
The Fe-based catalyst shows a higher starting activity but loses 50% of its activity after just 10 h and
becomes almost inactive after 90 h. Conversely, the core–shell catalyst, although less active, retains its
activity throughout the duration of the test. The schematic of the encapsulated core–shell FTS catalysts
reported by Jin et al. is shown in Figure 10 [78]. In addition, TEM images of encapsulated core–shell
catalysts used in an FTS reaction were reported after 2011 (Figure 11) [79,80]. The results obtained in
these studies indicate superior selectivity toward the desired products [74–84]. For example, a Co@Ru
core–shell structure led to a substantial increase in CO conversion and C5+ selectivity (Table 2) [79].
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Table 2. FTS product distributions achieved with various synthesized catalysts [85].

Catalysts Reaction
Temperature (◦C)

Hydrocarnon Selectivity (%)

CH4 C2–C4 C5+

5Co/γ-Al2O3
220 24.06 51.59 24.33
230 24.47 50.12 25.39

5Co-0.55Ru/γ-Al2O3
220 13.43 33.00 53.55
230 13.12 32.24 54.62

5Co-1.25Ru/γ-Al2O3
220 13.31 27.93 58.75
230 12.49 26.21 61.28

5Co-2.14Ru/γ-Al2O3
220 11.48 22.43 66.07
230 11.20 21.90 66.88

5Co-3.33Ru/γ-Al2O3
220 17.02 15.08 67.94
230 16.86 17.94 68.27

5Co-5Ru/γ-Al2O3
220 18.37 13.75 67.86
230 17.86 13.36 68.76

Reaction conditions: 2 MPa, CO/H2 = 2, GHSV = 900 h−1; Co and Ru are weight percent (wt%).
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3.3. Catalysts with Well Organized Size and Shape Active Material

In the early 1990s, Ponec reported activity differences related to the CO adsorption position
on the surface of catalysts (e.g., promoter or active metal); however, the suggestions were based on
simulations related to the structure and the composition of active sites using broad collected data [11].
Although the shape of a catalyst’s surface is difficult to define, researchers can now directly observe
surface shape and manufacture materials with controlled specific shapes and sizes because imaging
technologies such as scanning electron microscopy (SEM), scanning transmission electron microscopy
(STEM), and high-resolution transmission electron microscopy (HRTEM) have become more advanced
and more accessible.

The literature contains only a few reports of sophisticated controlled nano-sizing and shaping
technologies in the field of fuel cells and water electrolysis for hydrogen generation. Calderone et al.,
for example, reported a well-organized cobalt oxide particle with a particle size of 7 nm [77].
Christopher et al. surmised that hierarchical porous materials can benefit certain catalytic applications
(e.g., C–C bond-forming reactions) [85]. C5+ selectivity is changed with various manufacturing methods
of active materials (shown in Figure 12) [86]. In addition, Liu et al. and Chen et al. summarized the
particle size and the crystal phase effect of Fe, Co, and Ru-based FTS catalysts [87,88]. From their
review report, for the Fe-based catalysts, the smaller iron carbide particles display higher turnover
frequency (TOF) for CO conversion, but with the high CO conversion, the particle size is less than
about 6 nm. However, in the case of Ru- and Co-based catalysts, the crystal phase is more important
(Co-based; hexagonal closed packed (HCP), Ru-based; face centered cubic (FCC)), because the different
morphologies by the crystal phases affect the electronic stats and result in substantial activity and
selectivity [87,88].
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3.4. Catalysts on Shape- and Size-Controlling Supports

In some cases, FTS catalysts with well-organized supports have shown better selectivity toward
the desired product. One example is the MCM-41-supported Co–Ru catalyst reported by Bahome et al.
(denoted MCM-41 means Mobil Composition of Matter No. 41 which has the mesoporous hierarchical
structure) [53]. The MCM-41-supported catalysts have Brunauer–Emmett–Teller (BET) surface areas
of 200–300 m2/g, a maximum pore size distribution of 7 nm, and well-organized XRD patterns with
(100) index. However, the results of N2 adsorption, H2 chemisorption, and energy-dispersive X-ray
spectroscopy (EDX) experiments suggest that some of the pores were blocked when a large amount
of Co was impregnated into the small-pore MCM-41, resulting in a non-uniform distribution of Co.
Nonetheless, higher reaction rates were observed, even with the higher Co-content catalysts because
of the good dispersion of the active material (Co). In addition, even though the reaction differs from
the FTS reaction, Parlett et al. reported that a Pd/mesoporous SiO2 (KIT-6, SBA-16, SBA-15) catalyst
enhances the aerobic oxidation of alcohols (denoted KIT-6 means highly ordered cubic Ia3d silica
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templated by P123 block-copolymer surfactant and SBA means Santa Barbara Amorphous which is
well-ordered mesoporous silica templated by triblock copolymer) [89]. These results indicate that
well-organized support materials not only provide a large surface area for the dispersion of active
materials but also provide the best selectivity of the desired product via control of the mass transfer of
reactants and products and that such enhancements are not limited to FTS reactions.

With advances in nanoscale manufacturing technologies, carbon nanotubes (CNTs) have been
used to control shape and size of the active materials of FTS catalysts. Bahome et al. reported an
Fe-based CNT-supported catalyst for the FTS reaction. They used various methods to load Fe into the
CNTs (average diameter of 15 nm) [53]. Xiong et al. discussed shaped carbons that led to improved
catalytic conversion from syngas in their review paper [90]. Their summarized results of the research
theme of carbon black- and activated carbon-supported catalysts for the FTS reaction are presented in
Table 3 [90]. The summary includes results for catalysts supported on carbon nanofibers (CNFs) and
CNTs, ordered mesoporous carbon (OMC), graphene, and graphite. In the case of CNFs and CNTs, the
FTS reactions are affected by pretreatment, pore size, and structure of the carbon materials as well as
by the particle size of the active materials. For example, when CNTs were pretreated with HNO3, the
BET surface area of the CNTs increased because of the formation of defects. The larger surface area led
to greater reducibility, which in turn led to greater CO conversion [91].

Table 3. Carbon properties, reaction conditions, and research theme of carbon black- and activated
carbon-supported catalysts used in Fischer–Tropsch synthesis [42].

Catalysts Support Type
and Property

FTS Conditions Reaction
Parameter

Performance
Reduction Reaction

Fe/CB Columbia, T-10157 400 ◦C 0.1 MPa, 275 ◦C, H2:
CO = 1–9 porosity, stability X = N.A.,

S5+ = 2–10%

Fe/CB SA = 763 m2/g 300 ◦C, 0.5 MPa 260–280 ◦C, 20 MPa,
H2/CO = 1

support effect,
ozone treatment

X = 40–80%,
S5+ = 60–80%

Fe/CB Vulcan 3
(SA = 56 m2/g) 400 ◦C 275 ◦C, 101 kPa,

H2/CO = 3 dispersion effect X = 2.8–3.9%,
S5+ = 5–12%

Ru/CB V3G (62 m2/g) 400 ◦C 190–250 ◦C 101 kPa
H2/CO = 3

selectivity,
interaction

X = 1.5–4.5%,
S5+ < 1%

Fe/AC from olive pits 400 ◦C 0.1 MPa, 275 ◦C,
H2/CO = 3 porosity, stability X = 2–27%,

S5+ = 2–10%

Fe-K/AC
Fe-Cu/AC Sigma-Aldrich 400 ◦C, 0.5 MPa 280 ◦C, 300 psig,

H2/CO = 0.9
Cu promoter

effect
X = 28–85%,

S5+ = 50–61%

Fe-Mo-Cu-K/AC
from peat, generic,

wood, pecan,
walnut

400 ◦C, 0.5 MPa 290 ◦C, 300 psig,
H2/CO = 0.9

K promoter, AC
nature effects

X = 29–97%,
S5+ = 16–62%

Fe/AC SA = 1170 m2/g 300 ◦C, 0.5 MPa 260–280 ◦C, 2.0 MPa,
H2/CO = 1

support effect,
ozone treatment

X = 40–80%,
S5+ = 60–80%

Co/AC N.A. 400 ◦C 220–250 ◦C, 2–4 MPa,
H2/CO = 1.0–2.5

Product,
distribution,

kinetics

X = 10–54%,
S5+ = N.A.

Zr-Co/AC
La-Zr-Co/AC

SA = 1068.7 m2/g
PV = 0.65 cm3/g

400 ◦C 250 ◦C, 2.5 MPa,
H2/CO = 2

Lanthanum,
promoter

X = 49–93%,
S5+ = 63–75%

ZSM-5-Fe/AC Norit SX Ultra
(Sigma-Aldrich) 1 atm, 400 ◦C 280–320 ◦C, 300 psig,

H2/CO = 1 zeolite promoter X = 70–90%,
S5+ = N.A

Fe-Cu-K/AC Sigma-Aldrich 0.5 MPa, 400 ◦C 310–320 ◦C, 2.2 MPa,
H2/CO = 0.9

Mo promoter,
reducibility

X = N.A.,
S5+ = 39–52%

3.5. Other Approaches

Ekbashir and Buker [92] reviewed advanced FTS reactions in a supercritical fluid extractor.
They asserted that the supercritical extractor helps overcome transport limitations, integrate reaction
processes, and enhance in situ extraction of low-volatility products (e.g., heavy hydrocarbons) from
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porous catalysts. Fan and Fujimoto [93] investigated the effect of supercritical extraction on the
olefin contents of hydrocarbon products using a Ru/Al2O3 catalyst. Their results showed that the
supercritical-phase reaction enhanced olefin yield with a wide range of product carbon numbers
because the hydrogenation rate increased relative to the diffusion rate with increasing carbon number
of the products.

Computation studies are recently being advised in the field of kinetics and engineering simulations
for the design of more efficient catalysts and novel reactor technologies (e.g., microchannel reactor and
monolith reactor). For the FTS reaction, Mendez et al. are trying to generalize the modeling scheme of
the fixed-bed reactor [94]. In addition, computational studies by Jacobs et al. [28] indicate that certain
promoters can inhibit polymeric C formation by hindering C–C coupling.

4. A State-of-Arts in South Korea

4.1. Zeolite Supported Catalyst

4.1.1. Dual-Bed Catalysts

Park et al. reported on FTS in a dual-bed reactor including an FTS catalyst and a cracking catalyst
for the production of C2–C4 olefins directly from synthesis gas. The Fe–Cu–Al-based FTS catalyst and
the ZSM-5 cracking catalyst were used in a consecutive dual-bed reactor system. The FTS catalyst was
Fe-based, such as Fe–Cu–Al, and ZSM-5 was used as the cracking catalyst. As a result, the first bed
(Fe–Cu–Al catalyst) produced little methane and large amounts of C5+ hydrocarbons and the second
bed (ZSM-5 catalyst) improved the selectivity toward C2–C4 hydrocarbons by 52% [95].

4.1.2. Supported with ZSM-5 Focused Olefin Production

In 2008, Kang et al. used characterization methods such as XRD, temperature-programmed
reduction (TPR), and NH3-TPD (Temperature-Programed Desorption) to study the effects of support
materials such as ZSM-5, mordenite, and beta zeolite on the activities of Fe-based catalysts prepared via
the typical wet-impregnation method with Cu and K as a promoter [96]. The Fe–Cu–K/ZSM-5 catalyst
showed the highest yield of light olefin (13.8%) because of the reducibility of Cu and the molecular
sieve and acidic site effects of the ZSM-5 support under conditions of a H2/CO ratio of 2.0, temperature
of 300 ◦C, pressure of 1.0 MPa, and GHSV of 2000 mL/g-cat after a 5 vol. % H2 reduction process
at 450 ◦C for 12 h. The light-olefin selectivity [O/(O + P); Olefin/(Oleifin + Paraffin)] was inversely
proportional to the total amount of acid sites, as shown in Figure 13. Kang et al. also studied the
optimal Si/Al ratio of ZSM-5 for the Fe–Cu–K/ZSM-5 FTS catalysts [97].

After the reports by Kang et al. [96], studies of C2–C4 production from syngas were expeditiously
focused on optimal catalyst design using ZSM-5 as the support in South Korea. Cheon et al. [98]
reported the optimal Fe content of the Fe–Cu–K/ZSM-5 catalysts to maximize the yield of light olefins.
They investigated the catalytic performances with various Fe contents (5, 20, 30, 40 wt%). They reported
that the optimal Fe content of the catalyst was 30%, which resulted in the highest CO conversion of
89.3% and the light olefin selectivity [O/(O + P)] of 75.2% because of the formation of Fe–C, as evaluated
using CO-TPR analysis (Figure 14). They also used NH3-TPD experiments to determine that the Fe
content affects the amounts of weakly and strongly acidic sites.

Bae et al. [99] compared the productivity of light olefins by varying the ratio of Cu (2, 4, 6 wt%) as a
co-catalyst in the Fe–Cu–K/ZSM-5 catalyst system prepared by the impregnation method. The addition
of Cu improved the reducibility of the catalyst, and, at 2 wt% Cu, the catalyst exhibited stable activity
and high light-olefin yield. However, when the Cu content exceeded 2 wt%, re-oxidation phenomena
from iron carbide to inactive iron species was observed.
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4.1.3. Paraffin Production

A large amount of recent literature from South Korea has been focused on paraffin light-hydrocarbon
production. Unlike studies based on olefin production, these studies were mainly conducted under a
H2/CO ratio of 3.0 (instead of 2.0). These studies of FTS reactions under high H2/CO ratio conditions
tend to focus on high-calorific synthetic natural gas production through the simultaneous methanation
process during the FTS reaction.
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For these purposes, Kim et al., at the Institute for Advanced Engineering (IAE) in South Korea,
registered a patent describing their use of ZSM-5 as a support and comparison of its catalytic
performance [100]. They investigated the performance of various catalysts with different Ni and
Co ratios and different amounts of co-catalyst supported on ZSM-5 under various conditions.
They concluded that the CO conversion and the C2+ selectivity were improved when the Co content
was high or when Ru was used as a co-catalyst. Kim et al. later registered another patent in South
Korea in which they compared the FTS processes in a one-stage reactor using a Co–Fe–Ni catalyst
supported on Al2O3 and in a two-stage reactor in which the catalysts were layered, with the Ni
component separated from the other components [101]. In the case of the one-stage reactor using the
same 5CO-15Fe, when the Ni content was increased, the selectivity of hydrocarbons increased because
of a decrease in the conversion ratio from CO to CO2; nevertheless, the CH4 selectivity was superior
to that of C2+. In the case of the two-stage reactor, they obtained enhanced results with a high CO
conversion rate and a high C2+ selectivity of 30.2%.

Kang et al. [102] conducted a study to produce paraffinic light hydrocarbons with CH4 using
Ni and Fe catalysts on the Al2O3 support with various Ni/Fe ratios. In the case of the Fe content of
0.7, the C2–C5 selectivity was the highest, as shown in Figure 15. They concluded that the higher Fe
content was reducing the CH4 and C2–C5 selectivity because it was enhancing the water-gas shift
(WGS) reaction.
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Lee et al. used the Fe-based catalysts to produce high-calorific synthetic natural gas [103].
They investigated the effect of the surface properties of the Fe catalysts on their activity toward the
production of synthetic natural gas. As the reaction progressed, the adsorption amount of CO on the
surface of the catalyst increased, and the conversion rate of CO and the selectivity toward C2–C4 increased.

Jo et al. expeditiously optimized the catalyst design and the operating conditions based on various
experimental data, focusing on C2–C4 selectivity and paraffin ratios [104,105]. They investigated the
catalytic performances using the various bimetallic (Co and Fe) catalysts on Al2O3, where the content
of Co was varied; their results are shown in Figure 16. The 5CO–15Fe/Al2O3 catalyst showed the best
performances for the production of light paraffin hydrocarbons due to the iron reducibility for the
bimetallic catalysts as shown in Figure 17. They reported the effect of H2/CO ratio on the activity of the
bimetallic FTS catalyst. The CO conversion increased remarkably with the temperature at all H2/CO
ratios. Furthermore, higher H2/CO ratios also improved the CO conversion. With increasing reaction
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temperature, the CH4 yield increases and C2+ yield decreases. The paraffin ratio shows a positive
correlation with the CO conversion according to increasing H2/CO ratio, while reaction pressure and
temperature have little effect on the paraffin ratio at an H2/CO ratio of 3.0. The optimum FTS conditions
to produce the highest C2–C4 paraffin products were determined to be H2/CO = 3.0 and 300 ◦C of
reaction temperature at 10 bar for the bimetallic Co–Fe catalyst supported on the γ-alumina, as shown
in Figure 18. From additional discussion by Jo et al. [105], it was found that CO conversion increases
with a decrease in space velocity and with an increase in reaction pressure and temperature, as shown
in Figure 19.

Catalysts 2020, 10, 99 16 of 32 

 

With increasing reaction temperature, the CH4 yield increases and C2+ yield decreases. The paraffin 
ratio shows a positive correlation with the CO conversion according to increasing H2/CO ratio, while 
reaction pressure and temperature have little effect on the paraffin ratio at an H2/CO ratio of 3.0. The 
optimum FTS conditions to produce the highest C2–C4 paraffin products were determined to be 
H2/CO = 3.0 and 300 °C of reaction temperature at 10 bar for the bimetallic Co–Fe catalyst supported 
on the γ-alumina, as shown in Figure 18. From additional discussion by Jo et al. [105], it was found 
that CO conversion increases with a decrease in space velocity and with an increase in reaction 
pressure and temperature, as shown in Figure 19.  

 
Figure 16. CO conversion and selectivity of CH4 and C2–C4 hydrocarbons with various content. 
Reprinted with permission from [104]. Copyright (2018) Elsevier Science BV, Amsterdam, 
Netherlands. 

 
Figure 17. H2-TPR profiles of monometallic and bimetallic catalysts supported on γ-alumina: (a) 
20Co/γ-Al2O3, (b) 15Co–5Fe/γ-Al2O3, (c) 10Co–10Fe/γ-Al2O3, (d) 5Co–15Fe/γ-Al2O3, and (e) 20Fe/γ-
Al2O3. Reprinted with permission from [104]. Copyright (2018) Elsevier Science BV, Amsterdam, 
Netherlands. 

Figure 16. CO conversion and selectivity of CH4 and C2–C4 hydrocarbons with various content.
Reprinted with permission from [104]. Copyright (2018) Elsevier Science BV, Amsterdam, Netherlands.

Catalysts 2020, 10, 99 16 of 32 

 

With increasing reaction temperature, the CH4 yield increases and C2+ yield decreases. The paraffin 
ratio shows a positive correlation with the CO conversion according to increasing H2/CO ratio, while 
reaction pressure and temperature have little effect on the paraffin ratio at an H2/CO ratio of 3.0. The 
optimum FTS conditions to produce the highest C2–C4 paraffin products were determined to be 
H2/CO = 3.0 and 300 °C of reaction temperature at 10 bar for the bimetallic Co–Fe catalyst supported 
on the γ-alumina, as shown in Figure 18. From additional discussion by Jo et al. [105], it was found 
that CO conversion increases with a decrease in space velocity and with an increase in reaction 
pressure and temperature, as shown in Figure 19.  

 
Figure 16. CO conversion and selectivity of CH4 and C2–C4 hydrocarbons with various content. 
Reprinted with permission from [104]. Copyright (2018) Elsevier Science BV, Amsterdam, 
Netherlands. 

 
Figure 17. H2-TPR profiles of monometallic and bimetallic catalysts supported on γ-alumina: (a) 
20Co/γ-Al2O3, (b) 15Co–5Fe/γ-Al2O3, (c) 10Co–10Fe/γ-Al2O3, (d) 5Co–15Fe/γ-Al2O3, and (e) 20Fe/γ-
Al2O3. Reprinted with permission from [104]. Copyright (2018) Elsevier Science BV, Amsterdam, 
Netherlands. 

Figure 17. H2-TPR profiles of monometallic and bimetallic catalysts supported on γ-alumina:
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20Fe/γ-Al2O3. Reprinted with permission from [104]. Copyright (2018) Elsevier Science BV,
Amsterdam, Netherlands.
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4.1.4. Process Design

The typical reactor design concepts are not different from the typical heterogeneous catalyst
reactor design that is categorized as a fixed-bed, slurry bubble column, circulating and fluidized-bed
reactor. In the FTS process, the reactor is chosen appropriately according to the targeted products such
as light olefin, gasoline, diesel, or heavy hydrocarbons including wax; the process also requires the
selection of an appropriate catalyst preparation method depending on the type of reactor, such as plug
flow (fixed-bed or supercritical), fluidized-bed, or slurry bubble column reactor [106,107].

The FTS processes are usually divided by operating temperature ranges of 300–350 ◦C
(high-temperature FTS; HT-FTS) and 200–240 ◦C (low-temperature FTS; LT-FTS). In addition,
temperature control is important to prevent catalyst deactivation phenomena such as active material
sintering and carbon coke production caused by non-ideal temperature behavior resulting from these
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exothermic reactions. As previously mentioned, typical LT-FTS processes introduced the slurry and
the fix-bed reactor to produce linear long-chain hydrocarbons (some paraffin and waxes), and HT-FTS
processes introduced the fluidized-bed reactor to produce C2–C15 hydrocarbons [16,108,109].

As noted in 3.1.3, Kim et al. compared the one-stage reactor and the two-stage reactor with two
layered catalysts [101]. The dual-bed reactor exhibited improved the C2–C4 selectivity, as shown in
Figure 20 [110]. However, Kang et al. [111] reported other research on the performance of a fixed-bed
reactor (FBR) and a bubbling fluidized-bed reactor (BFBR) using an Fe-based catalyst—the two types
of reactors used in their work. Under similar operating conditions (e.g., temperature and pressure),
the C2–C4 selectivity and the olefin selectivity in the BFBR were higher than those in the FBR with
K/FeCuAlOx and K/FeOx catalysts. They suggested that the K/FeCuAlOx and the K/FeOx catalysts are
candidates for use in BFBRs for the MT-FTS (middle-temperature Fischer–Tropsch, typically conducted
at ~300 ◦C) reaction with high C2–C4 olefin selectivity and high CO conversion. However, the K/FeOx
catalyst, which was simply impregnated with a potassium promoter, showed a high resistance to
catalyst attrition and high catalytic performance; this catalyst is potentially one of the best catalysts for
MT-FTS reaction in a BFBR.
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4.2. Light Hydrocarbon

Most of the research analyzed herein into the production of light hydrocarbons below C5 has
focused on the production of liquefied petroleum gas (LPG)-class paraffin and olefin (C2–C4). In the
FTS reaction under a H2/CO ratio greater than 2.0, the methane selectivity increases, and the selectivity
of paraffin to olefin increases; the catalysts used in these processes are typically a combination of Co,
Fe, and Ni. Meanwhile, in the case of light-olefin production, a H2/CO ratio of 2.0 is used, along with
predominantly Fe catalysts.

It is noteworthy that researchers in Japan and South Korea, where natural gas is expensive, report
their research on light hydrocarbon production. In the United States, Europe, and Iran, there is a
great interest in producing middle distillates rather than light hydrocarbons. Because the standards,
especially the calorific values, for domestic pipeline (natural gas) networks in Japan and South Korea
differ from those in the USA and Europe, Japanese and South Korean researchers have focused on the
production of high-calorific-value synthetic natural gas. Several related patents have been registered
in Japan. A representative patent is that by the COSMO Company of Japan, who patented a catalyst
containing Ru in an active Al2O3 support and the design of a reactor for manufacturing high-calorific
synthetic natural gas.
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4.2.1. Supported with Alumina or Silica Focused Olefin Production

Since the 2000s, researchers in South Korean have reported numerous supported catalysts for
olefin production. Researchers have focused particularly on the direct production of olefin light
hydrocarbons from syngas. Hong et al. published the first study concerning the production of light
hydrocarbons using Fe–Cu–K–Al in 2001 [112]. Even though their study focused on the conversion
from CO2, the catalytic performance was very low (41.15% CO2 conversion), and the catalysts were
deactivated by the growth of crystallites with increasing time-on-stream. In 2004, Jun et al. [113]
reported that Al2O3 is a more suitable support material than SiO2 for Fe–Cu–K catalysts for the FTS
from biomass-derived syngas, which consists of CO, CO2, and H2 gases, because of the good dispersion
of Fe, Cu, and K (as revealed by measurements of their BET surface area and chemisorption of CO2

and H2).
Lee et al. [110] and Park et al. [95] focused on the direct production of C2–C4 olefins from syngas

using a dual reactor with Fe–Cu–K–Al FTS catalysts and H-ZSM5 cracking catalyst. They reported that
the dual reactor system increased the C2–C4 selectivity at a H2/CO ratio between 1.0 and 2.0, and the
alkalization of the Fe-based FTS catalysts promoted chain growth due to the formation of an Fe2O3

crystalline phase. As a result, Figure 21 shows an increase of the C2–C4 selectivity with increasing
cracking temperature.
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Figure 21. Effect of cracking reaction temperature on product selectivity. Reprinted with permission
from [95]. Copyright (2009) Elsevier Science Inc., New York, America.

Kang et al. [114] reported the effect of the preparation method of Fe–Cu–Al catalysts promoted
with K. They compared the performance of catalysts prepared by typical co-precipitation (CP), Sol–Gel
(SG), typical wet-impregnation on alumina (WI), and co-precipitation on the slurry of Al2O3 (CPS).
The highest C2–C4 olefin yield was 11.4% and was achieved with the SG catalyst, which exhibited the
highest surface area and reducibility among the investigated catalysts. The SG catalyst maintained
95.5% CO conversion at ~70 h, as shown in Figure 22.
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the case where Al2O3 was used as a support rather than SiO2, which is advantageous in synthesizing 
light hydrocarbons. They found that the catalytic performance was correlated with X-ray 
photoelectron spectroscopy (XPS) analysis results (Iads: 284.4 eV, Idep: 288.2 eV), as shown in Figure 23. 
The C2–C4 selectivity for the six evaluated catalysts was reported to be proportional to the intensity 
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Kang et al. [115] compared the FTS activities of catalysts prepared using different Fe precursors,
including iron nitrate, iron chloride, and iron acetate, and Al2O3 and SiO2 supports. In this case,
the CO conversion rate, the CO2 selectivity, and the C2–C4 formation rate were higher than those
of C5 in the case where Al2O3 was used as a support rather than SiO2, which is advantageous in
synthesizing light hydrocarbons. They found that the catalytic performance was correlated with X-ray
photoelectron spectroscopy (XPS) analysis results (Iads: 284.4 eV, Idep: 288.2 eV), as shown in Figure 23.
The C2–C4 selectivity for the six evaluated catalysts was reported to be proportional to the intensity
ratio (Idep/Iads), which was attributed the effect of the production amount of iron carbide.
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Kang et al. [111] compared the yields of light olefins obtained with Fe catalysts in a fixed bed
reactor (FBR) and a bubbling fluidized bed reactor (BFBR). The light-olefin yield of K/FeCuAlOx
prepared by the co-precipitation method and that of the K/FeOx catalyst prepared by the impregnation
method both exceeded 20%, as shown in Figure 24. Although not a result obtained during long-term
operation, the BFBR was found to be advantageous for olefin production.
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4.2.2. Recent Advancements with Cracking Catalysts in South Korea

As previously mentioned, in efforts to improve the selectivity toward C2–C4 hydrocarbons,
improvements were achieved with zeolite-type cracking catalysts, which have acidic sites. In addition,
the selectivity and the yield are determined by the composition as well as by the preparation method
of the catalysts.

4.3. Middle Distillates Production

Researchers’ interests in middle-distillates production differ markedly from their interests in
light-hydrocarbon production because the middle distillates are related to gasoline and diesel fuel
production from syngas in processes known as Biomass to Liquid (BTL), Coal to Liquid (CTL), or Gas
to Liquid (GTL). However, little research has reported on the direct production of middle distillates
(C5–C22). [115]. Most of the literature concerns (i) the comparison of Fe- or Co-based catalysts with
novel metal catalysts such as Pt, Pd, or Rh as an active component on Al2O3 or SiO2; (ii) physically
mixed catalysts with zeolite for cracking reaction; (iii) impregnated catalysts on the zeolite prepared by
specialized methods; and (iv) hybrid catalysts consisting of a cracking catalyst coated onto a Co-based
catalyst. Some reports concern the production of hydrocarbons smaller than C12 using a catalyst on
zeolite; however, few studies on the direct synthesis of C5–C22 hydrocarbons have been reported.

4.3.1. ZSM Supported Co-Based Catalyst

In South Korea, Kang et al. [116] prepared a Co/ZSM-5 catalyst on ZSM-5 as a support by
impregnation to achieve direct middle-distillates production. They investigated the selectivity of C5–C9

hydrocarbons in the range of gasoline while changing operating temperature (220 ◦C and 240 ◦C) and
using various ZSM-5 catalysts with different Si/Al ratios (15, 25, 140, and 250). As shown in Figure 25,
the selectivity of C5–C9 tended to increase with increasing density of weak acid sites.
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Kang et al. [117] reported the activities of the modified ZSM-5/(Co/SiO2) catalyst with various
ZSM-5 weight ratios to produce the middle distillates. As shown in Figure 26, even though the CO
conversions were slightly decreased with increasing density of the acid point, the C5–C22 selectivity was
not affected on the basis of the proposed mechanism (attributed to the formation of a small crystallite
size of cobalt oxides by the adjacent contact of weak acidic sites of ZSM-5 on the Co/SiO2 surface).
ZSM-5 particles with cobalt oxides can also enhance the extent of olefin cracking reaction of FTS
products, and it increases the C5–C22 hydrocarbon selectivity, as shown in Figure 27. Kang et al. [118]
also reported on the effect of a novel metal additive (Ru-nitrate, Pt-nitrate/chloride, and La-nitrate), as
shown in Figure 28. Ryu et al. later investigated the FTS reaction performance using Co-based catalysts
supported on ZSM-5 with Ru, Pt, and La as co-catalysts [119]. Compared with other promoters, Pt
tended to show high CO conversion rates because of its excellent reducibility. Even strongly acidic
sites showed no clear difference when the promoter was varied; however, the selectivity of C5–C9 was
improved because of the strength of the weak acid points.
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Kang et al. [120] reported the optimal Pt content is 0.3 wt%. They reported that, when the Pt
content was increased, the C10+ selectivity increased. They attributed this behavior to the improvement
in reducibility resulting from improved dispersion of the active material. On the basis of the
aforementioned results, they concluded that the selectivity of the product in the C5–C9 range was
determined by the density of the weak acid sites of the hybrid catalyst.

4.3.2. KIT-6 Supported Catalysts

Cho et al. [121] observed the FTS reaction characteristics and the structural characteristics of
hybrid catalysts using a mixed oxide (Fe-Zr) catalyst of Fe2O3–ZrO2 in mesoporous KIT-6 to produce
intermediate fractions. The mixed catalyst was prepared with various Zr/Fe ratios (0.0, 0.1, 0.3, 0.5,
and 1.0). The conversion to CO2 was high, but the CO conversion rate and the C5+ selectivity of 80%
or more were higher. Cho et al. [122] investigated the FTS reaction and the structural characteristics
of Fe2O3 catalysts as functions of the pore size of mesoporous KIT-6. The pore size was changed to
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~0.7 nm (M7), ~5 nm (B5), 4 nm and 3.6 nm (B4), etc., and KFe/KIT-6 (B5) was used as a promoter with
2 wt% of K (potassium). The mesoporous size of the catalysts was found to affect the hydrocarbon
conversion. The addition of a small amount of K as a promoter slightly increased C5+ selectivity, CO
conversion, and olefin selectivity.

Park et al. [123] observed FTS reaction characteristics and structural characteristics of Co3O4–Al2O3

(mesopore-CoAl) catalysts prepared by the nano-casting method using a KIT-6 hard template.
The mesoporous KIT-6 catalyst affected hydrocarbon conversion and intermediate oil production
depending on the phosphorus content. Among the developed catalysts, that with 0.3 wt% of P was
reported to exhibit the best performance.

Cho et al. [124] prepared CoZrP/KIT-6 catalysts for the FTS reaction and studied their structural
characteristics. The amounts of P in catalysts with 20 wt% Co and 12 wt% Zr were 0.1, 0.2, 0.6,
and 2 wt%. They found that the mesoporous KIT-6 catalyst affected hydrocarbon conversion and
intermediate oil production depending on the phosphorus content. Compared with the FeZr-based
catalysts studied previously, the catalyst with 0.1 wt% P exhibited low CO conversion but improved
C2–C4 selectivity.

4.4. Recent Trend for the Catalysts Design

The early FTS catalyst development in South Korea was reported in order to improve the
dispersibility of Fe and Co or in order to improve the reducibility by adding various promoters and
small amounts of novel metals to increase the productivity of the wax component. In particular, the
support selection is very important for use in SBCR or fluidized bed, and the evaluation for the attrition
test of the catalysts is also an important factor.

Recently, studies have reported producing light hydrocarbons and middle distillates in combination
with acid catalysts to overcome the ASF distribution. Particularly, since the acid site control of the
catalyst can be converted to light hydrocarbons or middle distillates by cracking heavy hydrocarbons
produced in the FTS reaction, studies on combinations of acid catalysts such as alumina or zeolite and
Fe- or Co-based catalysts (as FTS catalysts) have been reported.

It is noteworthy that various catalysts prepared by simple mixing, impregnation, co-precipitation,
and hydrothermal synthesis using FTS and acid catalysts have been studied, and the focus was placed
on improving the selectivity of the product by controlling the dispersibility of the FTS catalyst and the
acid site of the hybrid catalyst.

Besides, from the reports of Ponec, Liu et al., Chen et al., and many other researchers, the FTS
activity and selectivity are affected by the differences of particle size and crystal phase (e.g., FCC or HCP)
as mentioned in Section 3.3. Thus, well-organized (size and shape) nano-manufacturing technology is
one of the reasonable approaches to enhance activity and selectivity. In South Korea, there is some
research related to zeolite supported catalysts and nano-sized active materials. However, there are no
approaches related to well-organized shaped catalysts. With advances in nano-level manufacturing
technologies, some studies related to the design of novel catalysts have recently been reported in
South Korea. Choi et al. [125] introduced a 9 nm Pt–Ni octahedral catalyst for the oxygen reduction
reaction (ORR), which is a rate-determining step of fuel cell reactions. As shown in Figure 29, the
catalytic activity was extremely increased when well-defined Pt–Ni catalysts prepared with nano-level
manufacturing technologies were used. In addition, Park et al. [126] reported the PtCu@PtCuNi
dendrite@frame nano-catalysts for the oxygen reduction reaction. As shown in Figure 30, the ORR
catalysts exhibited a well-defined shape and size and extremely good stability, maintaining their activity
for 5000 cycles in an O2-saturated 0.1 M aqueous HClO4 solution. Although these studies are in fields
(for fuel cells and water electrolysis) unrelated to FTS, if these nano-level manufacturing technologies
are collaborating with the FTS catalyst design, this would be promising from the perspective of catalyst
design in South Korea.
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Figure 29. High-angle annular dark-field scanning transmission electron microscopy (HAADF-
STEM) image of the octahedral Pt–Ni with 9 nm edge length (left) and the comparison of Pt mass and 
specific activity of Pt/C and octahedral Pt2.5Ni/C (right). Reprinted with permission from [125]. 
Copyright (2013) ACS, Washington, DC, America. 
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STEM) image of PC@PCN, oxygen reduction reaction (ORR) polarization curves of PC@PCN/C and 
commercial Pt/C before and after the cycling test for 5000 cycles, and the schematic illustration of 
PC@PCN Dendrite@frame Reprinted with permission from [126]. Copyright (2017) ACS, Washington, 
DC, America.
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5. Conclusions

In this review, we surveyed typical and recent technologies related to FTS catalyst design for
the production of light hydrocarbons and middle distillates. Catalysts with high CO conversion
and selectivity require well-designed components (e.g., active material, promoter, and support).
Some studies with enhanced catalytic design technologies, including hybrid catalysts, encapsulated
core–shell catalysts, and well-organized catalysts were summarized. In South Korea, various Fe and Co
catalysts have been developed to improve the selectivity of light hydrocarbons and middle distillates
from syngas. In most cases, the activity of catalysts and the selectivity of products were compared on
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the basis of the addition of a promoter, the preparation method, and the support material (e.g., Al2O3,
SiO2, zeolites, and their combinations).

For the development of catalysts suitable for commercial-scale FTS processes, further studies
concerning mass production technology to improve the physical properties of the developed catalysts
and a suitable reactor design to maximize the lifetime of the catalysts are necessary. There were
many kinds of research in FTS catalyst design in South Korea, but some engineering data were not
confirmed on a commercial-scale, which include the reactor type (packed bed, slurry bobble column,
fluidized bed, etc.), the reactor design (adiabatic, shell and tube, micro channel reactor, etc.), and other
engineering data (temperature control, process flow diagram, recycle ratio, etc.). The engineering data
strictly affect the catalytic performances, and the types of the reactor design affect the catalyst lifetime
(which is affected by physical and chemical strength of the catalysts). There were simply no acceptable
catalytic-only performances (e.g., CO conversion, C2–C4 selectivity, etc.) in the commercial scale FTS
process. From an academic perspective, the fusion of typical FTS catalyst design technology with
nano-level manufacturing technologies will greatly advance FTS catalyst design, though it involves
high catalyst cost, hard to mass production, and complicated preparing methods.
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