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Abstract
Chronic alcohol feeding increases the levels of 2-arachidonoylglycerol (2-AG) in the liver, which activates hepatic can-
nabinoid receptor type 1 (CB1R), leading to oxidative liver injury. 2-AG biosynthesis is catalyzed by diacylglycerol lipase 
(DAGL). However, the mechanisms regulating hepatic DAGL gene expression and 2-AG production are largely unknown. In 
this study, we show that CB1R-induced estrogen-related receptor γ (ERRγ) controls hepatic DAGL gene expression and 2-AG 
levels. Arachidonyl-2′-chloroethylamide (ACEA), a synthetic CB1R agonist, significantly upregulated ERRγ, DAGLα, and 
DAGLβ, and increased 2-AG levels in the liver (10 mg/kg) and hepatocytes (10 μM) of wild-type (WT) mice. ERRγ over-
expression upregulated DAGLα and DAGLβ expressions and increased 2-AG levels, whereas ERRγ knockdown abolished 
ACEA-induced DAGLα, DAGLβ, and 2-AG in vitro and in vivo. Promoter assays showed that ERRγ positively regulated 
DAGLα and DAGLβ transcription by binding to the ERR response element in the DAGLα and DAGLβ promoters. Chronic 
alcohol feeding (27.5% of total calories) induced hepatic steatosis and upregulated ERRγ, leading to increased DAGLα, 
DAGLβ, or 2-AG in WT mice, whereas these alcohol-induced effects did not occur in hepatocyte-specific CB1R knockout 
mice or in those treated with the ERRγ inverse agonist GSK5182 (40 mg/kg in mice and 10 μM in vitro). Taken together, 
these results indicate that suppression of alcohol-induced DAGLα and DAGLβ gene expressions and 2-AG levels by an 
ERRγ-specific inverse agonist may be a novel and attractive therapeutic approach for the treatment of alcoholic liver disease.
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Introduction

Alcoholic liver disease (ALD) is a severe medical compli-
cation of alcohol abuse and the primary cause of chronic 
liver disease in the Western world (Gao and Bataller 2011). 
Chronic alcohol drinking leads to the development of fatty 
liver, which can progress to steatohepatitis and liver cir-
rhosis (Dey and Cederbaum 2006; Garcia-Villafranca et al. 
2008; Lieber and Schmid 1961; Lieber et al. 1966; You et al. 

2002). Alcohol drinking increases lipogenesis and decreases 
fatty acid oxidation in the liver (Garcia-Villafranca et al. 
2008; You et al. 2004). Moreover, chronic alcohol use pro-
motes the production of reactive oxygen species (ROS) such 
as superoxide or hydrogen peroxide, which increase oxida-
tive stress in the liver (Arteel 2003; Cederbaum et al. 2009). 
Alcohol is oxidized to acetaldehyde through the action of 
alcohol dehydrogenase and the cytochrome P450-depend-
ent microsomal ethanol oxidizing system (MEOS) (Ceder-
baum et al. 2009). Cytochrome P450 2E1 (CYP2E1), a key 
enzyme of MEOS, is a crucial mediator of alcohol-induced 
ROS and liver injury (Gonzalez 2005).

Endogenous cannabinoids (CB; endocannabinoids) are 
lipid mediators that interact with two G protein-coupled 
CB receptors, CB1 and CB2, taking part in a complex lipid 
signaling network. The CB1R is expressed in brain, vascu-
lar tissues, heart and liver. The CB2 receptor is expressed 
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in most immune and hematopoietic cells. Arachidonoyl 
ethanolamine (anandamide) and 2-arachidonoylglycerol 
(2-AG) are endogenous cannabinoid activators of CB1 and 
CB2 (Sugiura et al. 2002). 2-AG is synthesized from arachi-
donic acid-containing membrane phospholipids through the 
action of phosphatidylinositol (PI)–phospholipase C (PLC) 
and diacylglycerol (DAG) lipase (DAGL). 2-AG synthesis 
involves the sequential hydrolysis of PI catalyzed by (PI)-
phospholipase A1 (PLA1) and lyso PI-specific PLCs, and is 
regulated by the hydrolysis of DAG by DAGLα and DAGLβ 
(Ueda et al. 2011). However, the mechanism underlying the 
regulation of hepatic DAGLα and DAGLβ gene expressions 
remains unknown.

The estrogen-related receptor (ERR) subfamily consists of 
three members, ERRα, β, and γ (also known as NR3B1–3). 
ERRs bind to both classic estrogen response elements as 
dimers or to the half-site core sequence (TNAAG​GTC​A; 
ERR response element or ERRE) as monomers. ERRs are 
expressed at high levels in tissues with a high metabolic 
demand and are regulated by a peripheral circadian clock 
in key metabolic tissues such as white and brown adipose 
tissues, muscle, pancreas, heart, brain, and liver (Giguere 
et al. 1988; Luo et al. 2003; Razzaque et al. 2004). Struc-
tural studies suggest that ERRγ is constitutively active in 
the absence of endogenous ligands, whereas small molecule 
ligands activate or repress ERRγ transactivation (Giguere 
2008). GSK5182, a specific inverse agonist of ERRγ, inhib-
its its transcriptional activity by recruiting small heterodimer 
partner (SHP)-interacting leucine zipper protein (SMILE) 
(Xie et al. 2009). The ligand-independent transactivation 
of ERRγ is regulated by nuclear receptor co-regulators 
such as PGC-1α, NCoA-2, receptor-interacting protein 140 
(RIP140), SMILE, and SHP, which are involved in liver 
metabolism (Hentschke et al. 2002; Herzog et al. 2007; 
Hong et al. 1999; Huss et al. 2002; Sanyal et al. 2002). ERRγ 
transcriptional activity is inhibited by protein kinase B/
Akt-mediated phosphorylation at S179 and translocation of 
ERRγ from the nucleus to the cytoplasm (Kim et al. 2014b). 
ERRγ induces gluconeogenesis by regulating the expres-
sion of glucose-6-phosphate and phosphoenolpyruvate car-
boxykinase 1 (Kim et al. 2012). We recently showed that 
ERRγ increases bile acid synthesis by inducing CYP7A1 
gene expression (Zhang et al. 2015), and the ERRγ inverse 
agonist GSK5182 controls hepcidin gene expression and 
improves salmonella typhimurium infection by modulating 
host iron homeostasis (Kim et al. 2014a). We also reported 
that ERRγ induces pyruvate dehydrogenase kinase 4 gene 
expression (Lee et al. 2012). Furthermore, hepatic ERRγ 
regulates Lipin-1 gene expression and DAG levels in hepato-
cytes (Kim et al. 2011).

In this study, we demonstrate that ERRγ is required for 
CB1R-induced DAGLα and DAGLβ gene expressions and 
2-AG synthesis in hepatocytes.

Materials and methods

Animal studies

Male mice were used for all experiments. C57BL/6 wild-
type (WT) mice were obtained from the Korea Research 
Institute of Bioscience and Biotechnology (KRIBB; 
Daejeon, Korea). CNR1flox/flox mice were generated as 
described previously (Gonzalez-Mariscal et  al. 2018). 
Mice expressing Cre under the Alb gene promoter (Alb1-
Cre, stock # 016832; Jackson Laboratories, Bar Har-
bor, Maine) and CNR1flox/flox mice were bred to obtain 
CNR1flox/flox-Alb-Cre+ (CB1R HKO) mice and CNR1flox/

flox-Alb-Cre− (WT) control littermates. Prior to experi-
ments, mice were acclimatized to a 12 h light/dark cycle 
at 22 ± 2 °C for 2 weeks with unlimited food and water in 
a specific pathogen-free facility. To setup the CB1 receptor 
agonist treatment model, 8-week-old WT mice were treated 
with ACEA (10 mg/kg) for the indicated days. Ad-GFP 
or Ad-ERRγ was injected into male C57BL/6 J mice via 
the tail vein. Mice were sacrificed 5 days after adenovirus 
injection. Ad-US and Ad-shERRγ were injected into male 
C57BL/6J mice via the tail vein. Four days after injec-
tion, mice were treated with ACEA (10 mg/kg) for 3 days. 
GSK5182 (40 mg/kg) was administered to male C57BL/6J 
mice daily by intraperitoneal injection for 4 days. ACEA 
(10 mg/kg) was also given daily by intraperitoneal injection 
during the final 3 days. To establish the chronic alcoholic 
hepatosteatosis model, 8-week-old WT and CB1R HKO 
mice were treated for 4 weeks with an alcohol-containing 
Lieber–DeCarli formulation-based liquid (Dyets, Bethle-
hem, PA, USA) diet (27.5% of total calories) or a pair-
fed control liquid diet in which alcohol was replaced iso-
calorically with carbohydrate. For the compound study, 
mice were assigned to four groups: (a) alcohol-containing 
Lieber–DeCarli formulation-based liquid diet, (b) pair-fed 
control diet in which alcohol was replaced isocalorically 
with carbohydrate, (c) control diet supplemented with 
GSK5182 (40 mg/kg, p.o.), and (d) alcohol-containing 
diet supplemented with GSK5182. In the latter two groups, 
GSK5182 was injected once daily for the last 2 weeks of 
the study. All mice were euthanized by CO2 asphyxiation. 
All experimental procedures were approved by the Institu-
tional Animal Care and Use Committee of KRIBB (Dae-
jeon, Korea), and were performed in accordance with the 
National Institutes of Health Guide for the Care and Use 
of Laboratory Animals (Guide for the Care and Use of 
Laboratory Animals, 8th edition).

Chemicals

GSK5182 was synthesized as described previously (Chao 
et al. 2006) and used at a concentration of 40 mg/kg for 
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in vivo experiments and 10 μM for in vitro experiments. 
Arachidonyl-2′-chloroethylamide (ACEA) was purchased 
from Tocris Bioscience.

Histopathology

For oil-red-O staining, liver tissues were embedded in a 
Tissue-Tek optimal cutting temperature compound (Sakura 
Finetek, Tokyo, Japan) and sectioned at a thickness of 8 μm 
using a cryotome (Sakura Finetek). Cryostat sections of liver 
tissue were fixed in 10% neutral buffered formalin. After 
fixation, liver tissue sections were stained with 0.3% oil-
red-O solution and counterstained with hematoxylin. Images 
were captured using a light microscope (BX51; Olympus 
Corporation, Tokyo, Japan).

Plasmids and DNA constructs

The promoters of mouse DAGLα (− 2487 bp/ + 360 bp) and 
DAGLβ (− 2966 bp/ + 35 bp) were cloned into the SacI/
BglIII site of the PGL3-basic vector. DAGLα ERR response 
element mut-Luc (−763bpTCA​GGTCACA​−753bp to −763bpTCA​
TTTCACA​−753bp) and DAGLβ ERR response element  
mut-Luc (−1368bpCCA​GGTCACT​−1358bp to −1368bpCCA​
TTTCACT​−1358bp) were generated using the QuikChange 
II site-directed mutagenesis kit (Stratagene, La Jolla, CA, 
USA). FLAG-ERRα, FLAG-ERRβ, and FLAG-ERRγ 
constructs were described previously (Sanyal et al. 2002). 
All plasmids used were confirmed by complete sequence 
analysis.

Recombinant adenoviruses

Ad-GFP, Ad-FLAG-ERRγ, Ad-US, and Ad-shERRγ were 
described previously (Xie et al. 2009). All viruses were puri-
fied by CsCl2. Adenovirus infection in cells and mice was 
performed as described previously (Xie et al. 2009).

Cell culture and transient transfection assays

HepG2 (human hepatoma cells), 293T (human embryonic 
kidney cells), and AML12 (mouse immortalized hepato-
cytes) cells were obtained as described previously (Ryu et al. 
2009). The cells were maintained in a humidified atmos-
phere containing 5% CO2 at 37 °C and used for experiments 
at 75% confluence. Transient transfections were performed 
using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) 
according to the manufacturer’s instructions/protocol. The 
cells were treated with 10 μM GSK5182 unless noted oth-
erwise. After 48 h of transfection, the cells were harvested, 
and luciferase activity was measured and normalized to 
β-galactosidase activity.

RNA isolation and analysis

Total RNA was isolated using the TRIzol reagent (Invitro-
gen) according to the manufacturer’s instructions, and real-
time quantitative PCR (qPCR) analysis was performed using 
the following primers: ERRγ (mouse/human), 5′-AAG​ATC​
GAC​ACA​TTG​ATT​CCAGC-3′ (forward) and 5′-CAT​GGT​
TGA​ACT​GAA​TTC​CCAC-3′ (reverse); DAGLα (mouse), 
5′-CTG​TCT​GTG​GTG​CTC​TTC​G-3′ (forward) and 5′-CGG​
GGT​TCT​GTG​TAG​AGG​A-3′ (reverse); DAGLα (human), 
5′-CGG​CCT​GGT​CTA​TAA​CCC​G-3′ (forward) and 5′-ATC​
TCA​GCG​ATC​ATG​CAG​CTC-3′ (reverse); DAGLβ (mouse), 
5′-GGG​AAG​ATG​GCT​CCG​TAT​C-3′ (forward) and 5′-ACG​
CCA​CCC​TGG​TGT​TAT​C-3′ (reverse); DAGLβ (human), 
5′-ATG​CCG​GGG​ATG​GTA​CTC​TT-3′ (forward) and 
5′-CAG​AAT​GCC​AAT​CCA​CCA​CAG-3′ (reverse); and 
CB1R (mouse), 5′-GAT​CTT​AGA​CGG​CCT​TGC​AG-3′ (for-
ward) and 5′-TTG​GAT​GCC​ATG​TCT​CCT​TT-3′ (reverse). 
Data were normalized to β-actin (mouse/human) expression, 
which was determined using 5′-TCT​GGC​ACC​ACA​CCT​
TCT​AC-3′ (forward) and 5′-TCG​TAG​ATG​GGC​ACA​GTG​
TGG-3′ (reverse) primers.

Western blot analysis

Cultured cells or mouse liver tissues were lysed with RIPA 
buffer and subjected to immunoblot analysis as described 
previously (Lee et al. 2008). The membranes were probed 
with anti-ERRγ (Cell Signaling Technology, Danvers, MA, 
USA; diluted 1:1000), anti-β-actin (AbFrontier, Seoul, 
Korea; diluted 1:5000) (Kim et al. 2013), and anti-DAGLα 
(Cell Signaling Technology; 1:1000) (Martin et al. 2016) 
antibodies.

Analysis of 2‑AG by gas chromatography–mass 
spectrometry (GC–MS)

Samples were extracted with 1 mL cold acetonitrile (ACN) 
in a tissue lyser with an iron ball for 1 min. The homog-
enized sample was transferred to a 7 mL vial containing 
3 mL ACN. The homogenized sample was centrifuged, 
and the supernatant was extracted and dried using N2 gas 
(37 °C). Dried extracts (1 mg in a GC vial) were treated 
with 70 µL N-methyl-N-(trimethylsilyl) trifluoroacetamide 
(MSTFA) + 1% trimethylchlorosilane (TMCS) (99:1), heated 
at 60 °C for 30 min, and allowed to cool to room tempera-
ture. The derivatized samples were analyzed by GC–MS 
(Agilent 7890 Series GC system, Agilent Technologies, 
Palo Alto, CA, USA) coupled to an Agilent 5975C mass 
spectrometer (Agilent Technologies) using the HP-5MS cap-
illary column (30 m × 0.20 mm i.d. × 0.25 µm film thick-
ness) (J&W Scientific, Folsom, CA, USA), and run under 
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the following GC temperature program: initial 80 °C held 
for 5 min, raised to 240 °C at 20 °C /min rate, held at this 
temp for 8 min, then raised to 320 °C at 40 °C/min rate, and 
finally held at this temperature for 5 min. The injection port, 
GC interface, and ionization chamber were maintained at 
270 °C, 230 °C, and 150 °C, respectively. Ultra-high purity 
helium was used as the carrier gas and the flow rate was 
2 mL/min. The sample injection volume was 3 µL. The MS 
detector was a magnetic sector; spectra were acquired in the 
positive, low resolution, total ion scan mode, and selected 
ion mode (203 m/z for 2-AG). The retention time for 2-AG 
was 21.3 min. Quantitative determination of 2-AG in the 
samples was performed using a calibration curve from an 
external standard of 2-AG (9,179,881.51x − 1,348,658.11; 
R2 = 1.00).

Lipid quantification

Frozen livers were homogenized in 0.9% saline, and a 
100% chloroform:100% methanol (1:2, v/v) solution was 
then added to the samples. The solution was vortexed and 
centrifuged at 890×g for 20 min. The chloroform layer was 
transferred to a glass tube and air-dried until only the pel-
let remained. Hepatic triglyceride (TG) concentration was 
analyzed using a commercially available kit (cat. no. AM 
157S-K; Asan Pharmaceuticals Co., Ltd., Seoul, Korea) in 
accordance with the manufacturer’s protocol.

Chromatin immunoprecipitation assay

Chromatin immunoprecipitation (ChIP) assays were per-
formed according to the manufacturer’s protocol (Upstate 
Biotechnology, Lake Placid, NY, USA). Immunoprecipita-
tion was performed using an anti-ERRγ antibody or IgG 
as a negative control. After recovery of DNA, qPCR was 
performed using primers encompassing the DAGL-α and -β 
promoter regions. The primers used for PCR were as follows: 
DAGLα − 1.9 kb/ − 1.7 kb, 5′-ATG​TGA​AAG​TTT​GGG​AAA​
TT-3′ (forward) and 5′-GAT​GCC​CTA​CAT​GGG​GCT​CA-3′ 
(reverse); and − 0.8 kb/ − 0.6 kb, 5′-GCT​GCA​GCT​GCA​
CAG​GGG​GT-3′ (forward) and 5′-TGG​CTA​CAG​TCA​ATT​
GCT​GG-3′ (reverse); DAGLβ − 2.7 kb/ − 2.5 kb, 5′-AAG​
AAA​ATT​TAC​AAA​AGA​TT-3′ (forward) and 5′-GAA​GCA​
GAG​TTT​AGA​AAG​CA-3′ (reverse); and − 1.5 kb/ − 1.3 kb, 
5′-TCT​GGG​GTA​CAC​TGC​TGG​GA-3′ (forward) and 5′-ATT​
AAA​TAA​AAT​TGG​CTA​CA-3′ (reverse).

Statistical analyses

Numerical data are presented as mean ± SEM. Comparison 
between two groups was performed using the two-tailed Stu-
dent’s t test, whereas comparison between multiple groups 
was performed by ordinary one-way ANOVA with Tukey’s 

multiple comparison test. Differences were considered sta-
tistically significant at P < 0.05.

Results

Activation of CB1R increases DAGLα and DAGLβ 
gene expressions and 2‑AG levels

In previous work, we showed that CB1R signaling induces 
ERRγ gene expression (Kim et al. 2013). In this study, we 
hypothesized that CB1R-induced ERRγ regulates hepatic 
2-AG synthesis. ACEA, a CB1R-specific agonist, signifi-
cantly upregulated ERRγ, DAGLα, and DAGLβ mRNA in 
AML12 at 1 h, and maximum levels were reached at 6 h. In 
HepG2 cells, ERRγ, DAGLα, and DAGLβ mRNA levels 
are increased by ACEA treatment at 3 h, reaching maximum 
levels at 6 h (Fig. 1a). CB1R activation by ACEA signifi-
cantly increased 2-AG levels in AML12 cells and HepG2 
cells (Fig. 1b). In C57BL/6J mice, injection of ACEA sig-
nificantly increased hepatic ERRγ, DAGLα, and DAGLβ 
mRNA levels, and maximum levels were observed at 3 days 
after ACEA injection (Fig. 1c). Western blot analysis shows 
that ACEA significantly induces ERRγ protein expression 
in the liver of mice at day 1, which sustaines until day 5. 
In accordance with changes in ERRγ protein expression, 
DAGLα protein levels are increased at day 1 after ACEA 
treatment (Fig. 1d). Finally, ACEA treatment significantly 
increases 2-AG levels at day 1 after injection, reaching 
maximum levels at day 5 (Fig. 1e). These data indicate that 
ACEA increases DAGLα and DAGLβ gene expressions and 
2-AG levels.

ERRγ overexpression or knockdown regulate 
hepatic DAGLα and DAGLβ gene expressions 
and 2‑AG levels

Overexpression of ERRγ using adenoviral ERRγ (Ad-ERRγ) 
significantly upregulated DAGLα and DAGLβ mRNA 
expressions in AML12 and HepG2 cells (Fig. 2a). Over-
expression of ERRγ also increased 2-AG levels in AML12 
and HepG2 cells (Fig. 2b). DAGLα and DAGLβ mRNA 
levels, DAGLα protein expression, and 2-AG levels were 
increased in Ad-ERRγ-infected mouse livers (Fig. 2c–e). To 
determine whether the effect of ACEA on hepatic DAGLα 
and DAGLβ gene expressions and increased 2-AG levels 
was ERRγ dependent, ERRγ was knocked down by adeno-
viral shERRγ (Ad-shERRγ) infection. ERRγ depletion sig-
nificantly decreased ACEA-induced DAGLα and DAGLβ 
mRNA expressions, DAGLα protein expression, and 2-AG 
levels (Fig. 2f–j). These data demonstrate that ERRγ is 
required for ACEA-induced DAGLα and DAGLβ gene 
expressions and 2-AG biosynthesis.
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ERRγ activates DAGLα and DAGLβ gene promoter 
activity

To examine the direct ERRγ-mediated transcriptional acti-
vation of the DAGLα and DAGLβ gene promoters upon 
ACEA stimulation in AML12 cells, gene promoter-reporter 
studies were performed after modulating ERRγ expression. 
Knockdown of ERRγ by Ad-shERRγ decreased, whereas 
overexpression of ERRγ, but not that of ERRα and ERRβ, 
increased luciferase activity in AML12 cells in response 
to ACEA stimulation (Fig. 3a, b). ERRγ overexpression/
ACEA-induced reporter activity was significantly inhibited 
in a mutant reporter construct generated by site-directed 
mutagenesis of a conserved ERRγ consensus sequence 

(AGG​TCA​, a consensus response element) in the DAGLα 
and the DAGLβ promoters (Fig.  3c–e). ACEA-induced 
ERRγ binding to the DAGLα and DAGLβ promoters was 
confirmed using ChIP assays (Fig. 3f, g). Collectively, these 
data indicate that ERRγ is a direct transcriptional activator 
of DAGLα and DAGLβ in response to ACEA-mediated CB1 
activation.

The ERRγ‑specific inverse agonist GSK5182 inhibits 
ACEA‑induced DAGLα and DAGLβ gene expressions 
and 2‑AG levels

GSK5182, an ERRγ-specific inverse agonist, sup-
presses ERRγ target gene expression by inhibiting ERRγ 
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Fig. 1   ACEA induces DAGLα and DAGLβ gene expression and 
increases 2-AG levels. a Q-PCR analysis of total RNAs isolated 
from AML12 and HepG2 cells treated with ACEA for different times 
as indicated. b Measurement of 2-AG levels from ACEA-treated 
AML12 and HepG2 cells. c Q-PCR analysis of total RNAs isolated 
from livers of ACEA-treated mice (n = 5 per group). d Western blot 
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ERRγ and DAGLα western blot bands were quantified using ImageJ 
software and normalized to actin (n = 3 per group). e Measurement of 
2-AG levels in livers from ACEA-treated mice (n = 5 per group). All 
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transactivation. GSK5182 inhibited ACEA-induced 
DAGLα and DAGLβ promoter activation in AML12 cells 
(Fig. 4a). GSK5182 treatment decreased ACEA-induced 
DAGLα and DAGLβ mRNA levels in AML12 and HepG2 
cells (Fig. 4b) and 2-AG levels in AML12 cells (Fig. 4c). 

GSK5182 administration decreased ACEA-induced DAGLα 
and β mRNA levels, DAGLα protein, and 2-AG levels in the 
mouse liver (Fig. 4d, e). These data suggest the potential of 
GSK5182 as a small molecule inhibitor of the CB1R/2-AG 
axis.
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Alcohol feeding‑induced DAGLα and DAGLβ gene 
expressions and 2‑AG production are absent in CB1R 
knockout mice and inhibited upon GSK5182 
treatment

In vitro findings were confirmed in a model of alcohol-
induced damage generated by exposing hepatocyte-specific 
CB1R knockout mice to alcohol feeding for 4 weeks. Hepatic 
steatosis, assessed by oil-red-O staining of liver sections, 
was significantly lower in ethanol-fed CB1R HKO mice than 
in WT mice (Fig. 5a). Consistent with these observations, 
alcohol treatment-induced hepatic TG levels were signifi-
cantly lower in hepatocyte-specific CB1R depleted mice 
than in WT mice (Fig. 5b). Hepatocyte-specific CB1R abla-
tion or GSK treatment inhibited the effect of chronic alco-
hol exposure on upregulating ERRγ, DAGLα, and DAGLβ 
mRNA and protein and increasing 2-AG levels (Fig. 5c–e). 
Finally, we tested the effect of GSK5182 on DAGLα and 
β gene expressions and 2-AG levels in chronic alcohol-fed 
mice. Chronic alcohol exposure dramatically upregulated 
DAGLα and DAGLβ mRNA expressions, and GSK5182 
inhibited alcohol-induced DAGLα and DAGLβ in the mouse 
liver (Fig. 5f). DAGLα protein levels and 2-AG levels were 
also inhibited by GSK5182 in the mouse liver (Fig. 5g, h). 
These data suggest that chronic alcohol exposure-mediated 
ERRγ, DAGLα, and DAGLβ upregulation and increase in 
2-AG levels were dependent on CB1R activation in hepato-
cytes and associated with the development of alcoholic fatty 
liver. GSK5182 inhibited alcohol feeding-induced DAGLα 
and DAGLβ gene expressions and 2-AG levels in the mouse 
liver.

Discussion

In this study, we demonstrated that activation of CB1R 
in hepatocytes promoted the expression of DAGLα and 
DAGLβ and increased liver 2-AG levels through ERRγ-
mediated DAGLα and DAGLβ gene promoter activation 
leading to 2-AG production in hepatocytes. These results 
were supported by treatment with GSK5182, a selective 
ERRγ inverse agonist, which attenuated the alcohol feed-
ing-induced upregulation of DAGLα and DAGLβ and 2-AG 
levels in the liver.

2-AG is synthesized by DAGLα and DAGLβ in the liver 
and brain (Bisogno et al. 2003; Gao et al. 2010). Alcohol 
feeding induces 2-AG production in hepatic stellate cells 
by upregulating DAGLβ expression (Jeong et al. 2008). 
Increased 2-AG levels in the liver activate CB1R signaling in 
hepatocytes, thereby activating the expression of lipogenic 
genes such as FAS and sterol regulatory element-binding 
protein-1c (Jeong et al. 2008). Moreover, previous study 
suggests that alcohol consumption increased hepatic gluta-
mate release and mGluR5 (metabotropic glutamate recep-
tor-5) stimulated 2-AG production via induction of DAGLβ 
gene expression in hepatic stellate cells (Choi et al. 2019). 
The present data suggested that CB1R activation increases 
ERRγ-mediated DAGLα and DAGLβ gene expressions and 
2-AG levels in human hepatoma cells (HepG2) and mouse 
immortalized hepatocytes (AML12). Moreover, chronic 
alcohol feeding-induced DAGLα and β gene expressions 
and 2-AG levels were significantly attenuated in hepato-
cyte-specific CB1R knockout and GSK5182-treated mice. 
These data suggest an autocrine regulatory loop in which 
CB1-mediated ERRγ activation modulates DAGLα and β 
gene transcription in hepatocytes, leading to increased 2-AG 
levels in the liver. This indicates that in addition to hepatic 
stellate cells, hepatocytes are involved in alcohol exposure-
induced 2-AG synthesis.

ERRγ binds to estrogen response elements as a dimer or 
to the half-site core sequence (TNAAG​GTC​A) as a mono-
mer (Giguere et al. 1988; Luo et al. 2003; Razzaque et al. 
2004). We previously showed that ERRγ directly binds to 
various gene promoters and regulates target gene promoter 
activity. We identified binding sites for ERRγ in the DAGLα 
and β promoters. The production of DAGLα- and DAGLβ-
deficient mice was recently reported (Gao et al. 2010; Tani-
mura et al. 2010). Moreover, DAGL activity can be regulated 
by a synthetic agonist (Bisogno et al. 2006, 2009), although 
the DAGL synthetic agonist also inhibits other serine hydro-
lases (Hoover et al. 2008). In this study, GSK5182 decreased 
DAGLα and β promoter activity, inhibited DAGLα and β 

Fig. 2   ERRγ overexpression and knockdown modulate DAGLα 
and β gene expressions and 2-AG levels. a Q-PCR analysis of total 
RNAs isolated from AML12 and HepG2 cells infected with Ad-GFP 
or Ad-ERRγ. b Measurement of 2-AG levels in AML12 and HepG2 
cells infected with Ad-GFP or Ad-ERRγ. c Q-PCR analysis of total 
RNAs isolated from livers of Ad-GFP- or Ad-ERRγ-infected mice 
(n = 5 per group). d Western blot analysis of total protein isolated 
from livers of Ad-GFP- or Ad-ERRγ-infected mice (n = 3 per group). 
e Measurement of 2-AG levels in livers from Ad-GFP- or Ad-ERRγ-
infected mice (n = 5 per group). Q-PCR analysis of total RNAs f and 
measurement of 2-AG levels g in AML12 and HepG2 cells infected 
with Ad-US or Ad-shERRγ for 36 h, and then treated with ACEA for 
3 h. Q-PCR analysis of total RNAs (h), western blot analysis of total 
proteins (i) and measurement of 2-AG levels (j) in livers of Ad-US- 
or Ad-shERRγ-infected mice, treated or not with ACEA (n = 4 per 
group). All cell culture experiments were performed as three inde-
pendent replicates. Data represent mean ± SEM. Data in a–c, e were 
analyzed by two-tailed Student’s t test, and data in f–h, j were ana-
lyzed by ordinary one-way ANOVA with Tukey’s multiple compari-
son test as *p < 0.05; **p < 0.01; ***p < 0.001; not significant (N.S)

◂
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Fig. 3   ERRγ activates mouse DAGLα and β gene promoter activity. 
a AML12 cells were transfected with mDAGLα-Luc or mDAGLβ-
Luc, and then stimulated with ACEA for 3  h. b 293T cells were 
transfected with mDAGLα-Luc or mDAGLβ-Luc, along with expres-
sion vectors for ERRα, ERRβ, or ERRγ. c The alignment of poten-
tial ERRE sequences in mouse DAGLα and β promoters is shown. 
d 293T cells were co-transfected with vectors expressing WT or 
ERRE mutant DAGLα and DAGLβ promoter luciferase constructs 
and ERR overexpression plasmids. e AML12 cells were transfected 
with WT or ERRE mutant DAGLα and DAGLβ promoter luciferase 
constructs and stimulated with ACEA for 3 h. f, g ChIP assay, show-

ing binding of ERR to DAGLα and DAGLβ gene promoters. AML12 
cells were treated with ACEA and soluble chromatin was immuno-
precipitated with an ERR antibody. Purified DNA samples were 
used for PCR with primers that bind to the ERREs in DAGLα (− 0.8 
to − 0.6 kb) and DAGLβ (− 1.5 to − 1.3 kb) gene promoters. All cell 
culture experiments were performed as three independent replicates. 
Data represent mean ± SEM. Data in a, d, e were analyzed by ordi-
nary one-way ANOVA with Tukey’s multiple comparison test, and 
data in b were analyzed by two-tailed Student’s t test as *p < 0.05; 
***p < 0.001
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gene expressions in response to ACEA under ethanol-fed 
conditions, and decreased 2-AG levels in alcohol-treated 
mice. Taken together, these results suggest that GSK5182 
improves liver disease caused by ethanol feeding by 

regulating DAGLα and DAGLβ gene expressions at the 
transcriptional level and decreasing 2-AG levels.

The results of the present study indicate that CB1R-
induced ERRγ regulates DAGLα and β mRNA and promoter 

A AML12
R

el
at

iv
e 

Fo
ld

 A
ct

iv
ity

+ACEA +-- + +--

mDAGLα 
-luc (2kb) 

mDAGLβ 
-luc (2kb) 

-GSK5182 ++- - ++-

***
N.S

***

***
N.S

***

0

10

5

DAGLα
β-Actin

E Mouse liver

Con ACEA GSK5182 ACEA
GSK5182

ERRγ

B AML12
Con
ACEA
GSK5182
ACEA
+GSK5182

R
el

at
iv

e 
m

R
N

A
 le

ve
l

ERRγ DAGLα DAGLβ

***

N.S
***

***

N.S
***

***

N.S
***

0

6

4

2

HepG2

R
el

at
iv

e 
m

R
N

A
 le

ve
l

ERRγ DAGLα DAGLβ

***

N.S
***

***

N.S
***

***

*
***

Con
ACEA
GSK5182
ACEA
+GSK5182

0

15

10

5

C AML12 cells

2-
AG

 (p
m

ol
/ 1

06 
ce

lls
)

***

N.S
**

Con
ACEA
GSK5182
ACEA
+GSK5182

0

75

50

25

100

D Mouse liver

R
el

at
iv

e 
m

R
N

A
 le

ve
l

Con
ACEA
GSK5182
ACEA
+GSK5182

ERRγ DAGLα DAGLβ

***

N.S
***

***

N.S
***

**

N.S
***

0

15

10

5

F Mouse liver

2-
AG

 (n
m

ol
/ g

 ti
ss

ue
)

**

N.S
**

Con
ACEA
GSK5182
ACEA
+GSK5182

0

10

5

Fig. 4   GSK5182 inhibits ACEA-mediated induction of DAGLα and 
β gene expressions and 2-AG levels. a AML12 cells were transfected 
with mDAGLα-Luc or mDAGLβ–Luc, and stimulated with ACEA 
for 3  h in the presence or absence of GSK5182. b Q-PCR analysis 
of total RNAs isolated from AML12 and HepG2 cells treated with 
ACEA in the presence or absence of GSK5182. c Measurement of 
2-AG levels from AML12 cells treated with ACEA in the presence 
or absence of GSK5182. Q-PCR analysis of total RNAs (d, n = 4 per 

group), western blot analysis of total proteins (e, n = 3 per group) 
and measurement of 2-AG levels (f, n = 4 per group) from livers of 
mice treated with ACEA, with or without GSK5182. All cell culture 
experiments were performed as three independent replicates. Data 
represent mean ± SEM. All data were analyzed by ordinary one-
way ANOVA with Tukey’s multiple comparison test as *p < 0.05; 
**p < 0.01; ***p < 0.001; not significant (N.S)
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activity, and GSK5182 inhibits hepatic CB1R-induced 
DAGLα and β gene expressions and 2-AG levels in hepato-
cytes (Fig. 5i). Inhibition of chronic alcohol-mediated liver 
damage and fatty liver by the ERRγ-specific inverse agonist 
GSK5182 may provide an attractive therapeutic strategy for 
the treatment of alcoholic liver disease.
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Fig. 5   Hepatocyte-specific CB1R knockout or GSK5182 treatment 
decreases chronic alcohol-feeding-induced DAGLα and DAGLβ gene 
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mice. b Measuring triglyceride levels from control or ethanol fed 
WT and CB1R HKO mice livers (n = 6 per group). Q-PCR analysis 
of total RNAs (c, n = 6 per group), western blot analysis of total pro-
teins (d, n = 3 per group) and measurement of 2-AG levels (e, n = 6 
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analysis of total proteins (g, n = 3 per group) and measurement of 
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with or without GSK5182. i Schematic diagram of ERRγ-mediated 
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2-AG synthesis. Data represent mean ± SEM. All data were analyzed 
by ordinary one-way ANOVA with Tukey’s multiple comparison test 
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