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Abstract

Background: The analysis of integrated multi-omics data enables the identification of disease-related biomarkers
that cannot be identified from a single omics profile. Although protein-level data reflects the cellular status of
cancer tissue more directly than gene-level data, past studies have mainly focused on multi-omics integration using
gene-level data as opposed to protein-level data. However, the use of protein-level data (such as mass
spectrometry) in multi-omics integration has some limitations. For example, the correlation between the
characteristics of gene-level data (such as mRNA) and protein-level data is weak, and it is difficult to detect low-
abundance signaling proteins that are used to target cancer. The reverse phase protein array (RPPA) is a highly
sensitive antibody-based quantification method for signaling proteins. However, the number of protein features in
RPPA data is extremely low compared to the number of gene features in gene-level data. In this study, we present
a new method for integrating RPPA profiles with RNA-Seq and DNA methylation profiles for survival prediction
based on the integrative directed random walk (iDRW) framework proposed in our previous study. In the iDRW
framework, each omics profile is merged into a single pathway profile that reflects the topological information of
the pathway. In order to address the sparsity of RPPA profiles, we employ the random walk with restart (RWR)
approach on the pathway network.

Results: Our model was validated using survival prediction analysis for a breast cancer dataset from The Cancer
Genome Atlas. Our proposed model exhibited improved performance compared with other methods that utilize
pathway information and also out-performed models that did not include the RPPA data utilized in our study. The risk
pathways identified for breast cancer in this study were closely related to well-known breast cancer risk pathways.

Conclusions: Our results indicated that RPPA data is useful for survival prediction for breast cancer patients under our
framework. We also observed that iDRW effectively integrates RNA-Seq, DNA methylation, and RPPA profiles, while
variation in the composition of the omics data can affect both prediction performance and risk pathway identification.
These results suggest that omics data composition is a critical parameter for iDRW.
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Background
Advances in high-throughput sequencing technologies
and their integration, including genome, transcriptome,
epigenome, and proteome sequencing, has shifted
perspectives from the micro-level to the macro-level in
biological research. Certain phenomena can be observed
in each omics layer, enabling researchers to understand
the complex interactions within and between biological
mechanisms. Several studies have proposed methods for
integrating omics data obtained from high-throughput
sequencing in different layers to provide insights into
systems biology [1–4]. In cancer research, integrative
models for multi-omics data not only greatly improve
clinical prognosis predictions but also allow
cancer-related biomarkers to be identified [5–12]. For
example, Kim et al. proposed a graph-based framework
for integrating multi-omics data (including CNA, DNA
methylation, miRNA, and gene expression data) with
prior knowledge to improve the clinical outcome predic-
tion performance for glioblastoma multiformes and ser-
ous cystadenocarcinoma [13]. In addition, Bertrand et al.
developed a patient-specific data integration framework
(OncoIMPACT) to identify driver genes using the scored
impact of single nucleotide polymorphism (SNP), indel,
and copy number variation (CNV) data for individual
patients with one of five different cancer types [14].
Their prediction of patient-specific driver genes using
OncoIMPACT was validated with in silico and in vitro
experiments, with their model proving to be more
robust and precise than the baseline model.
Although many previous studies have focused on the

integration of multi-omics data, proteomic data is rarely
used for integrative multi-omics data analysis. Proteins
are a fundamental unit of a biological complex, in which
they have a functional role, and protein expression data
can be utilized for the diagnostic prognosis of cancer
patients [15–18]. However, combining protein-level and
gene-level data is challenging because the relationship
between the two data types is unclear [19]. Not all
genomic variation is translated into proteins via pertur-
bations (e.g. post-transcriptional regulation or post-
translational regulation and modification) [20, 21], thus
gene- expression data may not accurately reflect active
cellular function [22, 23]. Furthermore, other limitations,
such as mass spectrometry-based technology for the
quantitative analysis of proteins, which exhibits low sensi-
tivity for low-abundance proteins, make it difficult to col-
lect information on cancer-related signaling proteins [24].
The reverse phase protein array (RPPA) is an

antibody-based protein assay platform for high-throughput
sequencing that quantifies the expression of a target
protein. It is cost-effective and highly sensitive to the target
protein, even at low concentrations [24]. However, it
greatly relies on the quality of the antibodies and requires

screening to select the appropriate antibodies for the
corresponding target proteins. Although RPPAs face
these limitations, several studies have adopted the
RPPA platform to produce proteomic data for the de-
tection of cancer tissue phenotypes. Additionally, The
Cancer Genome Atlas (TCGA) has also generated and
made public RPPA data for TCGA cancer samples for
use in characterizing various cancer types. This data
is publicly accessible in The Cancer Proteomics Atlas
(TCPA) [25].
Pathway-level analysis is necessary because it is not

possible to define biological functions via a single gene
or a single molecule. The Kyoto Encyclopedia of Genes
and Genomes (KEGG) [26] provides pathway informa-
tion that represents a functional network consisting of a
set of gene products (such as proteins and functional
RNA) and their relationship. Based on this pathway in-
formation, several previous studies have utilized gene- or
protein-level expression data to infer pathway activity
[27–29]. These studies have shown that pathway-level
information provides a better description of disease phe-
notypes than does gene-level information. Furthermore,
previous research employing directed random walk on a
gene-metabolite graph (DRW-GM) [30] and integrative
directed random walk (iDRW) [31] has proposed a
method for the integration of multi-omics into pathway
information based on [27]. DRW-GM involves the
pathway-based integration of gene expression and me-
tabolite data, while iDRW, which was proposed in our
previous study, utilizes the pathway-based integration of
RNA-Seq and DNA methylation profiles. Both methods
demonstrate improved performance and reveal that the
integration of multi-omics data into pathway informa-
tion is useful for predicting disease phenotypes and
identifying risk pathways.
In this study, we propose a pathway-based integration

method for RPPAs and other omics data. Specifically, we
focus on the utilization of RPPA data in which the
proteins are sparse with respect to the pathway gene set.
In our experiments, we merge RNA-Seq, DNA methyla-
tion, and RPPA profiles into a single pathway profile that
is employed for survival prediction and risk-pathway
identification in breast cancer.

Methods
Data
We downloaded pathway annotation files from KEGG
[32]. Of these pathways, we selected 327 human path-
ways containing 7389 gene features. Level 3 multi-omics
profiles for breast cancer were collected from the TCGA
breast cancer dataset from the Broad Institute GDAC
Firehose [33]. We employed RNA-Seq, DNA methyla-
tion, and RPPA profiles as transcriptomic, epigenomic,
and proteomic data, respectively. The RNA-Seq profile
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contained 17,673 genes from 869 samples, the DNA
methylation profile 17,037 genes from 868 samples, and
the RPPA profile 188 proteins from 937 samples. For
missing values, we imputed the median of the corre-
sponding gene, protein, or methylation. We analyzed the
common features of the pathways and each omics
profile, as shown in Fig. 1a. In order to assess the level
of sparsity in the RPPA profile, we calculated the ratio of
matched genes in each omics profile with the genes in
each pathway. As shown in Fig. 1b, the RNA-Seq and
DNA methylation profiles included almost a full set of
genes for each pathway, while the RPPA profile
contained only a few matched proteins for each pathway.
The 422 samples found in common in all three profiles

were extracted (Fig. 1c). They contained clinical infor-
mation on vital status and survival period. We excluded
samples for which the survival period was missing or
negative. Those samples whose vital status was reported
as 1 (living) but for whom the survival period was less
than three years were also excluded, leaving a total of
376 extracted samples. For survival analysis, we classified
each patient into one of two groups: patients whose sur-
vival exceeded three years were placed in the long-term
survival group, while those with a survival period of less
than three years were placed in the short-term survival
group [34]. Of the 376 extracted samples, 177 exhibited
long-term survival (≥ 3 years) and 199 exhibited
short-term survival (< 3 years).

Fig. 1 Distribution of RNA-Seq, DNA methylation, RPPA profile, and KEGG pathway data. (a). Venn diagram for genes (or proteins) in RNA-Seq,
DNA methylation, RPPA profile, and KEGG pathway. Venn diagram for showing the distribution of logical relation among genes (or proteins) in
each profile (Venn diagram was drawn using a tool in this website - http://bioinformatics.psb.ugent.be/webtools/Venn/). (b). Distribution of the
ratio of overlapping genes (or proteins) with those genes in each pathway. The frequency over the ratio of overlapping genes (or proteins) in
each omics profile with genes in each pathway is shown as histogram and density plot. (c). Venn diagram for the number of samples in each
omics profile
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Overview of the proposed framework
In order to integrate the RPPA profile with other
multi-omics data and merge them into a single pathway
profile, we deployed and extended the iDRW framework
[31]. The overall process of the proposed framework is
illustrated in Fig. 2. Our proposed framework included
four steps, which are explained briefly below.

(1). Statistical testing (t-tests or DESeq2) was conducted
to obtain initial gene weights that indicate the
extent to which a gene (or protein) differentiates
between long-term and short-term survival for
breast cancer.

(2).A unified pathway network was conducted for the
iDRW method that reflected the topological
information of the pathway. Each gene (or protein)
weight vector was assigned to the corresponding
pathway network. Given that the RPPA profile
contains few protein expressions (approximately
180 proteins) and that there is only a very small

overlap between the genes corresponding to
proteins in the RPPA profile and the genes in the
pathway, many of the initial weights for the RPPA
profile were missing or assigned as zero. We
conducted random walk with restart (RWR), which
represents a network propagation algorithm, on the
protein-level pathway network to estimate the initial
weight of the missing proteins.

(3). iDRW was utilized to integrate the initial weight
of each gene (or protein) into the unified
pathway network. In the iDRW approach, the
initial gene (or protein) weights are mixed to
reflect the topological information of the
pathway. Thus, we obtained a final weight vector
that represented the topological importance of
each gene in terms of distinguishing between the
long-term and short-term survival groups.

(4).A pathway profile using the pathway activity
inference method derived from [27] was
constructed. Given the pathway profile, we

Fig. 2 Overview of the proposed framework
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performed survival prediction using a random
forest classifier and identified risk pathways for
breast cancer. Additionally, in this step, we
investigated the contribution of different
combinations of each omics type.

A more detailed description of these steps is given in
the following sections.

Unified pathway network construction
The iDRW framework operates on a unified pathway
network that consists of a set of pathway networks cor-
responding to the number of omics types. We first con-
structed pathway networks for each of the RNA-Seq,
DNA methylation, and RPPA profiles and combined
them into a unified pathway network. A pathway net-
work for a single omics profile contains relational infor-
mation for biological molecules (such as genes, gene
products, or chemical compounds) from the KEGG
database [32]. We used genes or gene products as nodes
for the pathway network and their relationships as edges.
We used the KEGGgraph R package, which facilitates
the conversion of KEGG pathway information into net-
work objects [35]. For the 327 pathways that had the
pathway id prefix hsa, a pathway network was generated
containing a total of 7389 nodes and 58,399 directed
edges. In this paper, we refer to the generated pathway
networks as the transcriptome network, epigenome
network, and proteome network for the RNA-Seq, DNA
methylation, and RPPA profiles, respectively.
To generate the unified pathway network, it was ne-

cessary to connect the three pathway networks. Figure 3
presents the structure of the unified pathway network. It
should be noted that the structure was designed to ob-
tain better-integrated gene or protein scores rather than
reflecting biological relationships. A detailed description

on the same is given in the following sections. As shown
in Fig. 3, each node represents a gene in a pathway net-
work. The inter-relationship edges are assigned to genes
that overlap two different omics profiles on the corre-
sponding pathway networks. For example, the RNA-Seq
profile contains the gene AKT1, while the RPPA profile
contains an antibody corresponding to the AKT1 pro-
tein; thus, a directional edge is assigned to the node for
AKT1 in the transcriptome network and the node for
AKT1 in the proteome network. In this structure, we as-
sign directional edges to the overlapping genes (with the
inter-network edge following the direction of epigenome
network → transcriptome network and proteome
network → transcriptome network). We selected this
structure for the unified pathway network empirically
based on the best performance in survival classification
for breast cancer (See Additional file 1: Supplementary
Material 1 for more information about the network
structures used in this experiment).

Topological integration of multi-omics profiles based
on iDRW
To apply the iDRW method to the unified pathway
network, an initial weight vector was assigned to the
network. The initial vector W0 for each omics profile
was defined as follows:

W 0 ¼ − log wg þ ε
� �

where wg denotes the weight of the gene g in the unified
pathway network and ϵ = 2.2 ∗ 10−16. Additionally, wg-
denotes the min-max normalized p-value of gene g
obtained using a different statistical method from an
omics profile. We performed a two-sided t-test for the
DNA methylation and RPPA profiles, while the

Fig. 3 Structure of the unified pathway network. A colored node indicates that the gene is included in the corresponding omics profile, and a
white node indicates that it is included in a pathway gene set although not in omics profile. A node with a bold borderline represents that the
gene appears in both corresponded profile and RNA-Seq profile. In this structure, the inter-relation edges are assigned between the nodes
containing the same gene feature in RNA-Seq profile, and the edge direction is set from a proteome network to a transcriptome network or from
an epigenome network to a transcriptome network
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differential expression test DESeq2 [36] was employed
for the RNA-Seq profile.
In the iDRW method, a random walker starts at the

ground node and then moves onto a randomly selected
neighbor node or returns to the ground node with
restart probability r at each time step t. The process is
defined as follows:

Wtþ1 ¼ 1−rð ÞMTWt þ rW 0

where Wt denotes the weight vector that represents the
probability of being at each node at time step t; M denotes
a row-normalized adjacency matrix of the unified pathway
network; r is the restart probability for the random walker;
W0 is the initial weight vector; and Wt is updated at each
time step and converges to steady-state W∞ when |Wt+ 1 −
Wt| ⋅ < ⋅ 10−10 as guaranteed by [37]. We performed par-
ameter tuning for r in the range of [0.2, 0.4, 0.6, 0.8].

Estimation of missing values in the RPPA profile using a
network propagation algorithm
Because the W0 of the RPPA profile is extremely sparse,
we employed a network propagation algorithm to esti-
mate the putative expression levels of the missing pro-
teins in the pathway via the diffusr package (https://
github.com/dirmeier/diffusr). With diffusr, RWR was
used for missing value estimation. ri

t denotes the propa-
gated weight vector at time step t at node i, and is ob-
tained by RWR [38] as follows:

rtþ1
i ¼ pArti þ 1−pð Þei

where A denotes the column-normalized adjacency
matrix of a given network; ei is the W0 for the RPPA
profile at node i; and p is the restart probability, which
controls how much of the local topological information
is reflected when the random walk converges to its
steady state. Thus, the higher the restart probability, the
more local the topological information, and the lower
the restart probability, the more global the information.
p was tuned by a grid search on [0.2, 0.4, 0.6, 0.8]. At
each time step, rtþ1

i was updated, and the steady-state
weight vector ri

∞ was obtained from a fixed number of
iterations. ri

∞ was used as W0 for the RPPA profile, and
the W0 for each omics profile was assigned to the corre-
sponding pathway network.

Pathway activity inference
Pathway activity inference using a gene profile was
conducted using the method suggested by [27]. To infer
the pathway activity using a multi-omics profile, we
redefined the general inference method for the activity
of the j-th pathway as

α P j
� � ¼

Xk

l¼1

Pn j

i¼1w∞ O lgi
� � � score O lgi

� � � z O lgi
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn j

i¼1 W∞ O lgi
� �� �2q

ð1Þ
where Pj, which corresponds to the j-th pathway,
contains nj differentially expressed genes ðg1; g2;…; gn j

Þ
in which the p-value (wg) is < 0.05; k is the number of
omics profiles employed; Ol represents the l-th omics
profile used when inferring the pathway activity; Olgi

represents gene gi in Ol; W∞ðOlgiÞ is the weight of gi cal-
culated in Ol; and zðOlgiÞ is the normalized value for the
expression of gi in Ol. In addition, in the RNA-Seq
profile, which consists of count-based data, scoreðOlgiÞ is
the log2fold change from the DESeq2 method [36] for gi
in Ol. In the DNA methylation and RPPA profiles, score
ðOlgiÞ is the signðtscoreðOlgiÞÞ from a two-tailed t-test.
This process generates the pathway activity profile Pj,
which is used as an input feature for survival classification.
To investigate the contribution of each omics type to

survival prediction within the same model, we experi-
mented with variants of the aforementioned pathway ac-
tivity inference formula. P denotes a power set
(excluding the null set) of k omics profiles {O1,O2…Ok},
which is used as the input profile. In this study, we used
three omics profiles so that the power set of {O1,O2,O3}
can be denoted as

P ¼ O1f g; O2f g; O3f g; O1;O2f g; O1;O3f g; O2;O3f g; O1;O2;O3f gf g:

We denote the r-th subset of P as Sr. The refined
pathway activity inference formula is as follows:

α P j
� � ¼

Xk

l¼1

Pn j

i¼1w∞ Srgi
� � � score Srgi

� � � z Srgi
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn j

i¼1 W∞ Srgi
� �� �2q

ð2Þ
Eqs. 1 and 2 are almost identical except for the number

of omics types used to infer the pathway activity. We used
Eq. 2 to measure the predictive power of the combination
of each omics type and determined the optimal combin-
ation for survival prediction. For example, the RNA-Seq,
DNA methylation, and RPPA profiles were used as an in-
put to produce iDRW(GMP) and the RNA-Seq and DNA
methylation profiles were used to produce iDRW(GM).
When generating the pathway profile in iDRW(GMP)
using RNA-Seq, DNA methylation, and RPPA data to infer
the pathway activity score, Ol contains {RNA-seq, DNA
methylation, RPPA} and k = 3 for Eq. 2. However, when
RNA-Seq and RPPA data was used in iDRW(GMP) to
infer pathway activity, Ol contained {RNA-seq, RPPA} and
k = 2 for Eqs. 1 and 2 was used for cases in which different
omics combinations were used as input to calculate the
pathway activity score.
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Survival classification and evaluation
In our study, we conducted survival analysis using a bin-
ary classification of long-term survival (surviving more
than three years) and short-term survival (surviving
fewer than three years) using the pathway profiles. In
our dataset, 177 samples exhibited long-term survival
and 199 exhibited short-term survival. Using the
pathway activity profile, we first extracted the top-N
pathways from among the 327 pathways that exhibited
the best performance for survival classification to obtain
an optimal pathway list that significantly differentiated
between the long-term and short-term survival groups.
To achieve this, we sorted all pathways by increasing
p-value from the two-tailed t-tests for the pathway activ-
ity (i.e., pathways with a lower p-value were ranked
higher). Based on this ranking, we selected the top k
pathways, and the model was then evaluated using
5-fold cross validation (with the caret R package [39])
via a random forest classifier (with therandomForest
[40] R package) and varying k = 5, 10, …, for half of the
total pathways. The procedure was repeated ten times
for reliability. With the top-N pathways chosen, we per-
formed leave-one-out cross-validation (LOOCV) using
the caret R package [39] in a dataset with n observations
via a random forest classifier for survival classification.
Random forest is composed of several decision trees. A
decision tree makes decision rules that enable a correct
decision for the target label. A random forest classifier
can be used for non-linear datasets and is also robust to
overfitting [41].

Results and discussion
Integrative analysis utilizing the RPPA profile to achieve
accurate survival prediction
The pathway-based prediction model created using the
RPPA profile exhibited significantly lower accuracy than
that created using the RNA-Seq profile or the DNA
methylation profile (Fig. 4a). We suspect that this is due
to the sparsity of RPPA proteins. To verify this, we
developed an alternative experimental setting by filtering
the RNA-Seq and DNA methylation profiles to include
only genes that overlapped with the corresponding
RPPA proteins. As a result, the RNA-Seq profile
included 183 genes and the DNA methylation profile
included 176 genes (Fig. 1a). iDRW(GRMR) denotes the
pathway-based integration model obtained using the
reduced RNA-Seq and DNA methylation profiles for
survival classification. The addition of the RPPA profile
to this model is denoted as iDRW(GRMRP). As shown in
Fig. 4b, the addition of the RPPA profile improved the sur-
vival classification performance. The iDRWprop(G

RMRP)
model, which utilized the propagated proteome net-
work, produced an accuracy exceeding that of the
iDRW(GRMRP) model.

We also compared the performance of iDRW(GMP)
with iDRW(GM) that is our previously proposed model
(Fig. 4c). Compared with iDRW(GM), iDRW(GMP) had
a greater survival prediction accuracy. This indicates
that, although the RPPA profile does not exhibit a high
accuracy when used alone, it can be used to effectively
discriminate between the long-term and short-term sur-
vival groups when employed with other omics profiles to
create a pathway-based prediction model. To illustrate
the overall prediction performance for the survival
period, we generated two additional survival curves
using the survival [42] R package for iDRW (GM) and
iDRW(GMP) (see Additional file 2: Supplementary
Material 2a and b). The difference between the survival
curves for the long-term and short-term group was sta-
tistically significant based on chi-square tests for both
models (p = 2e-07 and p = 5e-13, respectively). Based on
the much lower p-value for iDRW(GMP), it is clear that
the RPPA data significantly improves survival classifica-
tion performance for TCGA breast cancer data. In
addition, it can be concluded that network propagation
using the proteome network is a reasonable approach
for addressing the sparsity of the RPPA profile.

Predictive power of different omics type combinations
when inferring pathway activity scores
To investigate the effect of different combinations of
omics profiles on survival prediction, we conducted
pathway activity inference with different combinations of
omics profiles. As shown in Fig. 2, the experiment was
performed using iDRW(GMP) until Step (3), and Eq. 2
was used on different combinations only in Step (4).
Prediction accuracy was compared by varying γ (Fig. 5).
Interestingly, the (G + P) combination, which used infor-
mation from the RNA-Seq and RPPA profiles in pathway
activity inference, exhibited superior performance in sur-
vival prediction, while (P), which used information from
the RPPA profile only, exhibited the worst performance.
(G +M+ P), which used information from all of the
three profiles to infer pathway activity, had the best
accuracy when γ = 0.4. However, (G + P) generally exhib-
ited a more stable and higher overall accuracy and was
robust with respect to γ.

Performance comparison of pathway-based integration
models for survival classification
Based on the aforementioned results, we compared each
pathway-based integration model by varying the restart
probability γ for the iDRW method (Fig. 6). Unlike the
aforementioned experiments, the omics profiles used as
inputs and the omics profiles used to infer the pathway
activity were identical. As shown in Fig. 6, iDRW(GP)
produced the best performance for survival classification
when γ = 0.6. However, iDRWprop(GP) exhibited both
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stable and higher performance. For the iDRWprop model,
the optimized restart probability for proteome network
propagation was used for each γ in [0.2, 0.4, 0.6, 0.8] to
compare the performance of all models with respect to γ
(Fig. 6). All models using the RPPA profile (P) exhibited

better performance when compared with the iDRW(GM)
model presented in our previous study. Interestingly, the
iDRWprop model had a slightly lower performance
(though it was more stable) with changes in γ than that
of the iDRW model. This indicates that the iDRWprop

Fig. 5 Classification accuracy using different combination of each omics type in pathway activity score calculation. Each case in legend means
the combination of omics profiles which was used to calculate the pathway activity score. All cases in this experiment were originating from
iDRW(GMP) model (status before pathway activity inference step) with varying γ

Fig. 4 Performance comparison between different methods and profiles. (a). In case of using a single omics profile. DRW(G) used RNA-Seq profile;
DRW(M) used DNA methylation profile; DRW(P) used RPPA profile. (b). In case of using reduced RNA-Seq and DNA methylation profile. Each
profile was reduced to include genes overlapping with RPPA proteins. iDRW(GRMR) used reduced RNA-Seq and reduced DNA methylation profile;
iDRW(GRMRP) used reduced RNA-Seq, reduced DNA methylation, and RPPA profile; iDRWprop(G

RMRP) performed network propagation using RWR
on the proteome network. (c). Performance comparison of iDRW(GM) and iDRW(GMP). iDRW(GM) is a previous method which used RNA-seq and
DNA methylation profile. iDRW(GMP) is our proposed model which used RNA-seq, DNA methylation, and RPPA profile in this study
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model is more robust to changes in the restart probabil-
ity than is iDRW, and that network propagation miti-
gates the sparsity problem in RPPA data. Based on the
optimized models obtained from the experiment pre-
sented in Fig. 6, we measured the final performance of
all models for survival classification. As baseline models,
we considered the mean, median, and concat models.
The mean and median models computed either the
mean or median of the normalized expression values of
the pathway gene members in order to construct a path-
way profile. The concat model was constructed using
the simple concatenation of the pathway profiles ob-
tained from the RNA-Seq, DNA methylation, and RPPA
profiles in order to demonstrate the utility of our iDRW
framework. The others were generated using an
iDRW-based method that enables the integration of each
omics profile in a pathway profile on the unified path-
way network. As can be observed in Fig. 7, iDRW(GP)
exhibited the best performance for survival classification.
All models created using the RPPA profile
out-performed models without the RPPA profile. As a
result, it is clear that RPPA data is useful for the predic-
tion of long-term or short-term patient survival.

Identification of risk pathways and systemic analysis of
iDRW(GP) and iDRW(GMP)
We identified the top 10 risk pathways from the
ranked pathway list for iDRW(GP) and iDRW(GMP).
The ranked pathway list was obtained from the
p-values for two-tailed t-tests of the pathway activity

with respect to long-term and short-term survival.
The importance score was calculated based on predic-
tion error using the out-of-bag (OOB) estimate
method. OOB estimation is the mean prediction error
of random forest without training sample xi. The im-
portance of a feature was defined by the degree to
which the prediction error increased when xi was ex-
cluded. The score was scaled from 0 to 100 with the
caret R package [39].
Table 1 shows the top 10 risk pathways for iDRW(GP).

It can be observed that the list contains several pathways
that have been previously reported to have a direct
association with cancer. The p53 signaling pathway is a
well-known anti-cancer pathway that plays a role in
apoptosis and as a tumor suppressor [43–45]. The
pathway of pathways in cancer was also extracted [46].
Cellular senescence ceases cell division and suppresses
premalignant cell proliferation [47]. It also exhibits
age-related pathology and its abnormal function pro-
motes cancer progression [47–50]. The metabolic path-
way, which was the top-ranked risk pathway for
iDRW(GP), consists of a series of chemical reactions for
cell metabolism, including the anabolic (storing energy)
and catabolic (releasing energy) pathways. It is a general
pathway that is not cancer-specific. Evidently, the activ-
ity of the metabolic pathway in critical-state patients
(i.e., those with short-term survival) exhibits a pattern
that is distinct from that of non-critical patients (i.e.,
those with long-term survival) [51]. The metabolic
pathway functions based on the activity of biochemical

Fig. 6 Performance comparison of pathway-based integration model with varying γ
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molecules, thus differentially expressed proteins do not
appear in the metabolic pathway.
Table 2 displays the top 10 risk pathways for

iDRW(GMP). Several of these pathways were directly
related to the immune system. For example, mitophagy
is a selective autophagy process that maintains cell
health via the degradation of damaged mitochondria
[52–54]. Spliceosomes are a biological unit that facili-
tates the alternative splicing of pre-mRNA and regulates
immune responses [55–57]. Viral inflammation-related
pathways were also observed on the list, including
systemic lupus erythematosus, toxoplasmosis, and epi-
thelial cell signaling in Helicobacter pylori infections.
These viral inflammation-related pathways are strongly as-
sociated with innate immune responses [58–63] and are
commonly accompanied by mitochondrial DNA (mtDNA)

mutation [64–70], which is the DNA found in mitochon-
dria that is maternally inherited [53]. Mitochondria are
cellular organelles that have a number of roles in a cell,
including producing cellular energy, controlling the cell
cycle for cell growth and death, biosynthesis, and
immunological responses [54]. Abnormal mitochondria
function due to mtDNA mutation or depletion could be
related to cancer progression. It has been reported that
epigenetic modification (such as DNA methylation) con-
trols the expression patterns of mtDNA [53, 71, 72]. Based
on our analysis, we conjecture that abnormal methylation
in mtDNA is associated with breast cancer.
To investigate the association of the risk pathways

identified by iDRW(GP) and iDRW(GMP), we created a
pathway-pathway interaction network (Fig. 8) with the
top 20 risk pathways from each model. The pathway

Table 1 Risk-active pathways identified iDRW(GP)

Pathway ID Pathway name Totala DE genes DE proteins Importance scoreb

hsa01100 Metabolic pathways 1273 220 0 100.00

hsa04115 p53 signaling pathway 68 17 4 28.86

hsa04621 NOD-like receptor signaling pathway 168 30 6 27.44

hsa04218 Cellular senescence 160 30 16 26.07

hsa05203 Viral carcinogenesis 201 50 8 21.07

hsa04066 HIF-1 signaling pathway 100 27 11 20.75

hsa05200 Pathways in cancer 526 131 20 20.05

hsa04714 Thermogenesis 229 37 4 20.01

hsa05120 Epithelial cell signaling in Helicobacter pylori infection 68 17 3 19.19

hsa04926 Relaxin signaling pathway 130 30 9 17.97
aTotal: the number of genes mapped to the pathway in the KEGG database
bImportance score: the importance of a variable measured by out-of-bag (OOB) estimate and it was scaled in 0 to 100
Note that the number of differentially expressed genes (DE genes) and differentially expressed proteins (DE proteins) are also shown (p-value of DESeq2 or t-test < 0.05)

Fig. 7 Performance comparison of the pathway-based integration model with optimized γ
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interaction network was constructed using Pathway-
Connector [73], which is a visualization tool for the dir-
ect connection among pathways based on public
databases such as KEGG [74] and Reactome [75]. Fig-
ure 8 displays the common risk pathways selected by
both iDRW(GP) and iDRW(GMP). The cellular senes-
cence pathway is a cancer suppressor which regulates
cell growth and death by ceasing the division of prema-
lignant or aged cells [47]. We examined the distribution
of patients’ ages to determine the relationship between age
and long-term/short-term survival. We found that the
average age of the long-term survival group was 6 years
younger than that for the short-term survival group
(p-value = 8.233e-05).

Viral carcinogenesis induces tumor progression via
oncogenic virus infection [76]. The human papillomavirus
(HPV) infection pathway, which is a DNA tumor virus in-
fection, was identified in iDRW(GP) and has been
reported to be closely related to breast cancer, with HPV
DNA being found in breast cancer cells [77–79]. It is
known that HPV targets tumor suppressor proteins [76].
The infection pathway for another oncovirus, Kaposi’s
sarcoma-associated herpesvirus (KSAH or HHV-8), was
identified in iDRW(GMP). It has been reported that
KSAH is associated with breast cancer. However, KSAH is
an etiologic factor for non-familiar breast cancer [80]. The
risk pathways identified by iDRW(GP) have a relatively
strong connection with cancer-related signaling pathways,

Table 2 Risk-active pathways identified iDRW(GMP)

Pathway ID Pathway name Totala DE genes DM genes DE proteins Importance scoreb

hsa04137 Mitophagy 65 10 12 3 100.00

hsa03040 Spliceosome 134 10 15 1 94.88

hsa05322 Systemic lupus erythematosus 133 24 15 0 90.26

hsa04218 Cellular senescence 160 30 27 16 87.13

hsa04974 Protein digestion and absorption 90 25 17 1 79.23

hsa04622 RIG-I-like receptor signaling pathway 70 10 5 3 79.02

hsa05145 Toxoplasmosis 113 34 11 10 78.72

hsa05120 Epithelial cell signaling in Helicobacter pylori infection 68 17 11 3 72.59

hsa04621 NOD-like receptor signaling pathway 168 30 26 6 69.23

hsa05230 Central carbon metabolism in cancer 65 12 14 8 68.91
aTotal: the number of genes mapped to the pathway in the KEGG database
bImportance score: the importance of a variable measured by out-of-bag (OOB) estimate and it was scaled in 0 to 100
Note that the number of differentially expressed genes (DE genes), differentially methylated genes (DM genes), and differentially expressed proteins (DE proteins)
are also shown (p-value of DESeq2 or t-test < 0.05)

Fig. 8 Risk pathway interaction network from iDRW(GP) and iDRW(GMP). Risk pathways obtained from iDRW(GP) and iDRW(GMP) are shown as
blue and orange nodes, respectively, and the common risk pathways in both iDRW(GP) and iDRW(GMP) are shown as yellow nodes. Each edge
represents pathway-pathway interaction
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such as the PI3K-Akt signaling pathway, Pathway in
cancer, Proteoglycans in cancer, and the FoxO signaling
pathway. The PI3K-Akt signaling pathway is frequently
observed in cancer cells and stimulates cell growth and
proliferation [81–83], while the FoxO signaling pathway is
a tumor suppressor that regulates the genes in cellular
physiological processes such as the cell cycle and
apoptosis [84–86]. The risk pathways identified by
iDRW(GMP) contain viral infection-related and immune
response-related pathways. Though hepatitis B and hepa-
titis C are not directly related to breast cancer, they cause
inflammation of liver tissue, which makes it difficult for
cancer patients to receive chemotherapy [87]. This can
negatively affect the clinical prognosis for breast cancer
patients.
It is known that protein-level data reflects the status of

cancer cells better than gene-level data [88]. In this
study, we observed that the iDRW(GP) model mainly
reflected the status of cancer cells at the cellular level,
while the iDRW(GMP) model tended to reflect immune
response-level information. From our observations, we
can infer that the iDRW(GP) model reflects protein-level
information more accurately when compared with
iDRW(GMP). As in [1], it is generally believed that in-
creasing the volume of data for integration leads to fur-
ther improvements in performance; we hypothesize that,
based on the above results, the reason why
iDRW(GP) out-performed iDRW(GMP) is that the
characteristics of DNA methylation hinder the identi-
fication of risk pathways which facilitate the predic-
tion of survivability for breast cancer patients that
were otherwise discovered by iDRW(GP). It should be
noted that the benefits of different combinations of
omics types will depend on the type of clinical
problem under examination. Clinical predictions for
survival are influenced by both genetic and environ-
mental factors. For survival classification, protein-level
information (such as vital signs) is more important
than gene-level information (such as innate immune
response information).

Conclusions
In this study, we combined RPPA proteomic data with
RNA-Seq and DNA methylation data to successfully de-
rive pathway information based on the iDRW framework.
This study found that RPPA data is a rich source of infor-
mation for survival prediction for breast cancer patients;
when RPPA data was employed in the iDRW framework,
improved performance was observed and feasible risk
pathways extracted. The proposed model successfully
identified both well-known and previously undiscovered
risk pathways for breast cancer. Systemic analysis was also
conducted to obtain better macroscopic insights. Further-
more, network propagation analysis and combinatorial

experiments were performed in order to fine-tune our
model. We employed network propagation on pathway
gene members to overcome the sparsity of RPPA proteins
using random walk with restart (RWR). Although the
iDRWprop model did not out-perform iDRW, it was robust
to the restart probability. The combinatorial experiments
assessed the performance of each omics combination, with
the (G + P) combination in iDRW(GMP) producing the
highest accuracy overall. Finally, we observed that
iDRW(GP) exhibited the best performance for survival
prediction for breast cancer patients and highlighted key
differences in the major risk pathways identified using
iDRW(GP) and iDRW(GMP). These findings highlight
that an appropriate combination of omics data is required
to properly address the topic under investigation.
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