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I. INTRODUCTION 

Electromagnetic scattering from waveguide transition struc-

tures is a canonical problem. During the last few decades, there 

have been extensive studies on the scattering of waveguide tran-

sitions for many applications such as transformers [1], filters [2], 

and power dividers [3]. Moreover, a tapered waveguide can be 

used in a measurement system to characterize the electromag-

netic properties of biaxial anisotropic materials [4]. 

The numerical method can be used to analyze electromagnet-

ic scatterings from discontinuities in rectangular waveguides, but 

the more powerful method is the mode-matching method be-

cause it provides rigorous mode solutions in given regions. The 

analysis of the waveguide with one or more discontinuities is 

usually conducted using the mode-matching method in con-

junction with the generalized scattering matrix technique [5–7]. 

In fact, the tapered structure can be analyzed using the mode-

matching method by dividing the transition region into a num-

ber of sub-regions where the electromagnetic field can be de-

fined in a series form of modes [2, 8, 9]. One study analyzed the 

rectangular waveguide transition using mode matching in X- to 

Ku-band applications to predict scattering parameters [2]. Stud-

ies on tapered waveguides have also been conducted using im-

pedances [10], equivalent circuits, and the numerical method 

[11]. However, there has been no study on tapered waveguides 

based on the mode-matching method for V to W band applica-

tions, and much of the research has focused only on reflection 

and transmission characteristics to design the transition struc-

ture. 

In this paper, we solve an electromagnetic boundary-value 

problem on a linearly tapered waveguide based on the mode-

matching method. The eigenfunction expansion is used to rep-

resent the electromagnetic field in each region. The boundary 

conditions are enforced to obtain a set of simultaneous equa-

tions. Scattering parameters are represented in a series form and 

computed. To validate our formulation, simulation results of 

ANSYS High Frequency Structure Simulator (HFSS), a full-

wave electromagnetic simulator, are compared with our results. 
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Conduction loss in each rectangular waveguide is also calculated 

and discussed. 

II. FIELD ANALYSIS 

The geometry of a tapered rectangular waveguide is shown in 

Fig. 1. An incident wave is assumed to be 𝑇𝐸ଵ଴ mode, which 

is a dominant mode of rectangular waveguides. Region II 

should be divided into a number of rectangular waveguides to 

solve a boundary-value problem of a rectangular waveguide 

transition based on the mode-matching method. Each step 

waveguide has different widths and heights. A time convention 

of 𝑒௝ఠ௧ is suppressed throughout the analysis. The permittivi-

ties and permeabilities in each region are 𝜖ଵ, 𝜇ଵ, 𝜖ଶ, 𝜇ଶ, 𝜖ଷ, 

and 𝜇ଷ. In Region I, the incident and reflected fields based on 

vector potentials are: 
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Region II, the transmitted and reflected fields can be represent-

ed by vector potentials, as follows: 
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The vector potentials in Region III are: 

 

 
Fig. 1. Rectangular waveguide transition structure: a tapered rec-

tangular waveguide. 
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all regions, electromagnetic fields can be obtained by using the 

above vector potentials [12]. The boundary conditions are en-

forced to obtain a set of simultaneous equations for modal coef-
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III. NUMERICAL RESULTS AND DISCUSSION 

In order to predict the transmission characteristics of the line-

arly tapered rectangular transition structure, we calculate scatter-

ing parameters that can be represented as: 
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With calculated modal coefficients, the incident and reflected 

powers in Region I (𝑃௜௡, 𝑃௥௘௙) and the transmitted power in 

Region III (𝑃௧௥௔௡௦) can be obtained as follows: 
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To validate our formulation and analyze the transmission 

characteristic of the tapered rectangular waveguide shown in Fig. 

1, our computation results are compared with the simulation 

results from ANSYS HFSS. We take into account different 

combinations of rectangular waveguides designed for the V, E, 

and W bands in the analysis. The rectangular waveguides oper-

ating at each band have the following dimensions: 𝑎௏ ൌ
3.7592  mm, 𝑏௏ ൌ 1.8796  mm, 𝑎ா ൌ 3.0988  mm, 𝑏ா ൌ
1.5494  mm, 𝑎ௐ ൌ 2.54  mm, and 𝑏ௐ ൌ 1.27  mm. Sub-

script represents the frequency band name at which rectangular 

waveguides operate. The tapered rectangular waveguide is as-

sumed to have a linearly changing transition in Region II, and 

the length is 𝐿ଶ ൌ 1 mm. Before dividing the transition region 

(Region II) into sub-waveguides, we check the convergence of 

our formulation. Fig. 2 illustrates scattering parameters against 

frequency in the case of V to W transition. Regarding S21, the 

results show sufficient convergence. Likewise, S11 results also 

converge. Therefore, the transition region is divided by 10 rec-

tangular waveguides (M ൌ 10). The number of modes used in 

our computation is N ൌ 6 to achieve convergence to within 0.5 

dB. These numbers of modes are used throughout the analysis 

unless specified. Fig. 3 shows a simulation model of the linearly 

tapered rectangular waveguide in ANSYS HFSS and illustrates 

the comparison of computed scattering parameters based on our 

formulation with those of the HFSS simulation. The compari-

son between our results and the simulation results shows good 

agreement. From the results, it is verified that our formulation 

based on the mode-matching method is valid. Cut-off frequen-

cies of rectangular waveguides operating at the V, E, and W 

bands are 39.9, 48.4, and 59 GHz, respectively. Therefore, the 

reflection of V to W (Fig. 3(b)) or E to W (Fig. 3(c)) near 60 

GHz is larger than the reflection of the V to E (Fig. 3(d)) tran-

sition. 

In order to check that the dominant mode is sustained  

 
Fig. 2. Convergence test for the number of sub-waveguides. 

 

through the transition structure, the electric field distribution 

and surface current density in a receiving waveguide (Region III) 

are plotted in Fig. 4 in a case of V to W transition at 75 GHz. 

The electric field distribution is calculated at the center of the 

waveguide parallel to the wider plane and all truncated modes 

are considered. The electric field distribution is similar to that of 

𝑇𝐸ଵ଴. Moreover, the surface current density on the inner walls 

is similar to that of 𝑇𝐸ଵ଴. In addition, higher modes contribute 

to purely reactive powers and are evanescent modes produced by 

the junctions. The mode-matching method can provide the 

physical meaning, including the effects of each mode on the 

scattering characteristics, if the higher propagating modes exist 

in structures such as the W to V junction. As a result, the ta-

pered rectangular waveguide with a linearly changing slope can 

transmit most of the incident energy to the receiving port with-

out a significant change of mode. 

Because of the existence of surface current densities on the 

inner walls of the rectangular waveguide, conductor losses must 

exist. Conductor loss is defined as in [13]: 
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where 𝑅௦ ൌ ඥ𝜔𝜇/2𝜎, the surface resistance of a metal. In 

most cases, the perturbation method is used to estimate conduc-

tor loss in the rectangular waveguide [13]. However, in the 

transition region, it is hard to calculate conductor loss because 

the electromagnetic field cannot be defined easily in Region II. 

For the mode-matching method, the transition structure in Re-

gion II is divided into a number of small rectangular waveguides, 

and therefore conductor loss can be estimated approximately by 

using the electromagnetic field in the stepped waveguides. Fig. 

5 illustrates the calculated conductor loss of the 𝑇𝐸ଵ଴ mode 

with respect to the lengths of each waveguide in the linearly 

tapered rectangular waveguide. Note that our results are very 

similar to the theoretical results of 𝑇𝐸ଵ଴ because this mode  
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dominates over the proposed structure and there is rarely loss by 

conductor. In Table 1, we calculate the total percentage of con- 

ductor loss in three cases (no transition, single step transition, 

and tapered transition) when the total length is assumed to be 3 

mm. Compared to the result of WR15, conductor loss increases 

due to the discontinuity of the transition structure. In addition, 

the conductor loss of the single step transition structure is larger 

than that of the linearly tapered waveguide because the reflec-

tion increases. 

Total length is 3 mm, and the length of the waveguide for V 

band is 1 mm in the transition structure. 

IV. CONCLUSION 

We have solved the electromagnetic boundary-value problem 

 

 

(a) (b) 

 
(c) 

 
(d) 

Fig. 3. (a) Simulation model of the tapered rectangular waveguide in ANSYS HFSS and a comparison of our computation results with 

the HFSS simulation results. (b) V to W, (c) E to W, and (d) V to E transitions. 

 

 
      (a)                                        (b)                                      (c) 

Fig. 4. (a) Electric field distribution at the center of the receiving waveguide and (b) side view and (c) top view of surface current density 

on the walls of the receiving waveguide. 
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Table 1. Conductor loss of the general rectangular waveguide 

(WR15) and the single step and tapered transition struc-

ture (V to W)  

 Conductor loss (%)

WR15 (no transition) 0.0917 

Single step transition 0.1868 

Tapered transition (Fig. 4) 0.1559 

 

 
Fig. 5. Conductor loss of 𝑇𝐸ଵ଴ in the linearly tapered rectangular 

waveguide. 

 

of the tapered rectangular waveguide based on eigenfunction 

expansion and the mode-matching method. Scattering parame-

ters are represented in a series form and computed under differ- 

ent combinations of rectangular waveguides operating at the V, 

E, and W bands. Our formulation can also be applied to various 

transition structures and can be used researching a measurement 

system using waveguide transition structures. 
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