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Abstract: The optimum solvent for Nb2Se9 dispersion, which is a new type of one dimensional
(1D) material, is investigated. Among several solvents (16 solvents in total), strong dispersion was
observed in benzyl alcohol, isopropyl alcohol, isobutyl alcohol, and diacetone alcohol, which have
medium dielectric constants in the range of 10 to 30 and surface tension in the range of 25 to 35 mJ
m−2. 1D Nb2Se9 chains, whose size is less than 10 nm, are well dispersed and it is possible to disperse
mono-chains of 1 nm or less in a specific dispersion region. The 1D unit chain with dangling bond free
surface and high volume to area ratio is expected to be used in applications that utilize the surface of
the material. Such dispersion is an important first step towards various potential applications and is
an indispensable scientific goal for the practical applications of Nb2Se9.

Keywords: 1D materials; Nb2Se9; liquid exfoliation; solvent dispersion

1. Introduction

Among the great variety of nanomaterials available, one-dimensional (1D) materials, including
nanowires and carbon nanotubes (CNTs), have been extensively studied due to their remarkable
physical and chemical properties such as high carrier mobility [1–3], high chemical stability [4],
high mechanical strength [4,5], and large surface area [5]. These unique properties allow 1D materials
to be applied as building blocks for numerous applications, such as field-effect transistors (FETs),
sensors, and nanocomposites.

Other types of 1D materials, such as LiMo3Se3 [6–10], Mo6S3I6 [11–14], and Mo6S4.5I4.5 [15,16]
have been investigated by several researchers. These materials were obtained by exfoliating 1D
bulk crystals into nanowires or molecular chains, because there exists weak van der Waals (vdW)
interactions or ionic bonds between the unit chains in 1D bulk crystals, similar to those observed in
2D materials such as graphene and 2D transition metal dichalcogenides (TMDCs). Thus, these 1D
bulk crystals provide a way to easily obtain nanowires or inorganic molecular chains less than 1 nm
in diameter. When isolated from bulk crystals, molecular chains have unique surface characteristics.
LiMo3Se3 has a negative charge on the chain surface due to ionic interactions between Li+ ions
and Mo3Se3

−chains [17] Mo6S3I6 and Mo6S4.5I4.5, on the other hand, undergo vdW interactions
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and thus dangling bonds exist on their chains, similar to the case in graphene and transition
metal dichalcogenides(TMDC). Due to these structural features [11], they have unique physical and
chemical properties, which leads to many useful applications such as transistor [12,18–20], sensor [21],
composite [13] and solar cell [22,23]. In addition, new 1D bulk materials, Sb2S3 [24] and Sb2Se3 [25,26],
have been reported to have excellent optoelectronic properties due to the absence of dangling bonds
on their chain surfaces.

Recently, we demonstrated the preparation of new 1D bulk crystals of Nb2Se9. The crystals
were synthesized by a solid-state reaction and could be reproduced in large quantities; furthermore,
they were stable in air (these properties are essential characteristics for the subsequent processes).
Therefore, it is important to obtain nanowires or molecular chains from bulk 1D crystals. For example,
CNTs, which are initially a bundle of unit tubes put together by vdW attraction forces, were exfoliated
to yield individual tubes which can be used in many applications [27–29]. Therefore, exfoliation
is an important method for fabricating 1D structures and might potentially be applied on Nb2Se9.
Although there are a few reports of the synthesis of Nb2Se9 bulk materials reported 30 to 40 years
ago [30–32], few studies have been done to obtain the unit chain of Nb2Se9 through liquid exfoliation.
In order to obtain the unit chain of Nb2Se9 in the liquid phase, it is possible to apply the previous
approaches used for the exfoliation or dispersion of nanomaterials. Typically, approaches to design
solvent combinations [33,34] or dispersants [35,36] have been utilized and information on the surface
properties of materials such as surface tension, dielectric constant, solubility parameter can be useful
for these strategies. Herein, we exfoliated Nb2Se9 bulk crystals in various solvents because this method
is simple and can result in large amounts of the samples, and provide the basic information of the
material’s surface for the further exfoliation strategy. In this study, we tried to find an optimal solvent
for the exfoliation process and also verify whether single molecular chains can be obtained from the
said solvent.

2. Materials and Methods

2.1. Synthesis

Nb2Se9 was produced from elemental powders of niobium (325 mesh, 99.5%, Sigma-Aldrich,
St. Louis, MO, USA) and selenium (99+%, Alfa Aesar, Haverhill, MA, USA) using a flux method.
2.15 mmol of Nb powder (0.2 g) and 430 mmol of Se powder (34 g) were thoroughly mixed and
sealed in a quartz tube designed with a compartment and neck in which unreacted Se flux collects
after reaction. The evacuated quartz tube was placed in a box furnace and heated to 800 ◦C for 72 h
(at 5.5 ◦C h−1) and then cooled (at 10 ◦C h−1). After cooling, the quartz tube was turned upside down
and heated again to 250 ◦C for 12 h in order to drop the unreacted flux onto the other side of the tube.
Finally, residual Se was sublimed in a low-pressure tube furnace at 250 ◦C for 24 h under Ar flow
(100 sccm). The resulting material was gray needle-shaped crystals.

2.2. Dispersion

Nb2Se9 crystals were dispersed in different solvents by ultrasonication. Firstly, vials were filled
with 10 mg of Nb2Se9 and 10 mL of the chosen solvent and sonicated for 5 min in a probe sonicator
(VC 505, Sonics & Materials, Inc., Newtown, CT, USA) in order to break down any large crystals.
After the pre-sonication process, bath sonication (B2005S-68K, 68 kHz, 200 W, KODO Technical,
Hwaseong, South Korea) was conducted for 3 h. Later, the solutions were centrifuged at 6000 rpm for
10 min to remove insufficiently exfoliated chains. Five milliliters of the supernatant solution was used
for further analysis.

2.3. Characterization

X-ray diffraction (XRD) patterns of Nb2Se9 crystals were obtained by powder XRD (Mac Science,
M18XHF22, Tokyo, Japan) with Cu-Kα radiation (λ = 0.154 nm). Field-emission scanning electron
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microscopy (FE-SEM, Hitachi, S-4300SE, Chiyoda, Tokyo, Japan) was performed to examine the
morphological characteristics of the Nb2Se9 crystals. An aberration-corrected scanning transmission
electron microscope (STEM, JEM ARM 200F, JEOL, Tokyo, Japan) operating at an acceleration voltage
of 80 kV was used for further morphological analysis. For sample preparation, drop casting was
carried out on a graphene-coated Quantifoil TEM grid. The concentration of the dispersion solution
was confirmed by Inductively coupled plasma mass spectrometry (ICP-MS, Agilent 7500, Agilent
Technologies Inc., Santa Clara, CA, USA). To evaluate the morphology of the exfoliated Nb2Se9,
Atomic force Microscopy (AFM, Park systems, NX10, Suwon, South Korea) was performed on Nb2Se9

spin-coated SiO2/Si wafers in the non-contact mode.

3. Result and Discussion

The structure of a Nb2Se9 chain is described as a 1D molecular chain of niobium (Nb) atoms
linearly connected with each other and selenium (Se) atoms decorated on the outside of niobium atoms
(belonging to point group 1, space group P1. Nb is located in the octahedral site constructed by Se atoms.
See top of Figure 1a). During the dispersion process, single molecular chains can be exfoliated from the
bulk crystal due to weak vdW interactions between the chains (bottom of Figure 1a). Single crystalline
Nb2Se9 was synthesized by chemical reactions between Nb and Se in the quartz ample. To prevent the
formation of another niobium selenide compounds such as NbSe3 [37] and NbSe2 [38], we used high
niobium to selenium ratio of 1:200. Only the Nb2Se9 and Se phase can be formed in the composition,
and the selenium phase can be selectively removed through heat treatment [39]. When the Nb-Se
mixture at 700–800 ◦C was cooled down to room temperature, dark gray needle-shaped crystals were
formed (see the experimental section for details) and X-ray diffraction (XRD) analysis confirmed
that the material contained a highly crystalline Nb2Se9 phase (JCPDS 33-0968) (Figure 1b). The inset
of Figure 1b shows digital and scanning electron microscope (SEM) images of the Nb2Se9 crystals
prepared in this study. It is observed that large needle-shaped Nb2Se9 crystals (length in the range
of a few centimeters) were successfully grown. Additionally, some Nb2Se9 crystals are naturally
exfoliated in the form of chains; consequently, the material synthesized in this study can be dispersed
as 1D units if we can find a suitable solvent.
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The liquid exfoliation method is known to be insensitive to air and can potentially be scaled up to
yield large quantities of the exfoliated material [40]. Since the organic solvents used in the solution
process mainly have toxicity problems and sustainability issues, it is necessary to increase the process
efficiency to minimize the use of solvents and to select less hazardous solvents [41,42]. In order to find
the best exfoliation solvent for Nb2Se9 crystals, 16 common solvents with different dielectric constants
and surface energies were studied (Table 1). In order to find the optimum solvents for exfoliation of
Nb2Se9, various solvents with a broad dielectric constant of approximately 1 to 80 and a surface tension
(mJ m−2) of 18 to 73, which are mainly used for the dispersion of nanomaterials [40,43,44]. Nb2Se9

particles were dispersed in each solvent by sonication and centrifuged to obtain a well dispersed
supernatant fraction after removing large and un-exfoliated particles (see the experimental part
for details). Digital photos of the dispersed solutions before and after centrifugation are shown in
Figure 2a. A strong Tyndall effect (laser scattering due to nano-scale dispersion) was observed in
dispersions in benzyl alcohol, isopropyl alcohol (IPA), isobutyl alcohol (IBA), and diacetone alcohol
(DAA). These solvents are the sustainable green solvents that have no serious environmental, health,
or safety hazards in the industry [45]. The concentration of Nb2Se9 was measured by inductively
coupled plasma mass spectrometry (ICP-MS) and the concentration of Nb2Se9 was found to be high in
the solvent exhibiting a strong Tyndall effect (Figure 2b). The top three solvents have a reproducible
result with a standard deviation of less than 5%.

Table 1. Molecular structure, surface tension, and dielectric constant of the 16 selected solvents.

Solvent Molecular Structure Surface Tension (mJ m−2) Dielectric Constant

Hexane
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Solvent Molecular Structure 
Surface Tension 

(mJ m−2) 
Dielectric Constant 

Hexane 
 

18.43 1.89 

Toluene 
 

28.43 2.38 

Chloroform 

 

27.5 4.81 

Tetrahydrofuran (THF) 

 

26.4 7.58 

Dichloromethane (DCM) 
 

26.5 8.93 

Ethyl lactate 

 

30 13.1 

Benzyl alcohol 

 

39 13.5 

1-butanol 
 

25 17.8 

Isopropyl alcohol (IPA) 

 

23 17.9 

Isobutyl alcohol (IBA) 
 

22.98 18.1 

Diacetone alcohol (DAA) 
 

30 18.2 

Acetone 

 

25.2 20.7 

Methanol 
 

22.7 32.7 

Acrylonitrile 
 

26.7 38 

Dimethyl sulfoxide (DMSO) 

 

36 46.7 

Water 
 

72.8 80.1 

39 13.5

1-butanol

Nanomaterials 2018, 8, x FOR PEER REVIEW  4 of 8 

 

find the best exfoliation solvent for Nb2Se9 crystals, 16 common solvents with different dielectric 

constants and surface energies were studied (Table 1). In order to find the optimum solvents for 

exfoliation of Nb2Se9, various solvents with a broad dielectric constant of approximately 1 to 80 and 

a surface tension (mJ m−2) of 18 to 73, which are mainly used for the dispersion of nanomaterials 

[40,43,44]. Nb2Se9 particles were dispersed in each solvent by sonication and centrifuged to obtain a 

well dispersed supernatant fraction after removing large and un-exfoliated particles (see the 

experimental part for details). Digital photos of the dispersed solutions before and after 

centrifugation are shown in Figure 2a. A strong Tyndall effect (laser scattering due to nano-scale 

dispersion) was observed in dispersions in benzyl alcohol, isopropyl alcohol (IPA), isobutyl alcohol 

(IBA), and diacetone alcohol (DAA). These solvents are the sustainable green solvents that have no 

serious environmental, health, or safety hazards in the industry [45]. The concentration of Nb2Se9 was 

measured by inductively coupled plasma mass spectrometry (ICP-MS) and the concentration of 

Nb2Se9 was found to be high in the solvent exhibiting a strong Tyndall effect (Figure 2b). The top 

three solvents have a reproducible result with a standard deviation of less than 5%. 
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Solvent Molecular Structure 
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Dielectric Constant 
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28.43 2.38 

Chloroform 

 

27.5 4.81 

Tetrahydrofuran (THF) 

 

26.4 7.58 

Dichloromethane (DCM) 
 

26.5 8.93 

Ethyl lactate 

 

30 13.1 

Benzyl alcohol 

 

39 13.5 

1-butanol 
 

25 17.8 

Isopropyl alcohol (IPA) 

 

23 17.9 

Isobutyl alcohol (IBA) 
 

22.98 18.1 

Diacetone alcohol (DAA) 
 

30 18.2 

Acetone 

 

25.2 20.7 

Methanol 
 

22.7 32.7 

Acrylonitrile 
 

26.7 38 

Dimethyl sulfoxide (DMSO) 

 

36 46.7 

Water 
 

72.8 80.1 

25 17.8

Isopropyl alcohol (IPA)
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Solvent Molecular Structure 
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Dielectric Constant 

Hexane 
 

18.43 1.89 

Toluene 
 

28.43 2.38 

Chloroform 

 

27.5 4.81 

Tetrahydrofuran (THF) 

 

26.4 7.58 

Dichloromethane (DCM) 
 

26.5 8.93 

Ethyl lactate 

 

30 13.1 

Benzyl alcohol 

 

39 13.5 

1-butanol 
 

25 17.8 

Isopropyl alcohol (IPA) 

 

23 17.9 

Isobutyl alcohol (IBA) 
 

22.98 18.1 

Diacetone alcohol (DAA) 
 

30 18.2 

Acetone 

 

25.2 20.7 

Methanol 
 

22.7 32.7 

Acrylonitrile 
 

26.7 38 

Dimethyl sulfoxide (DMSO) 

 

36 46.7 

Water 
 

72.8 80.1 

23 17.9

Isobutyl alcohol (IBA)
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Ethyl lactate 

 

30 13.1 
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39 13.5 
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23 17.9 

Isobutyl alcohol (IBA) 
 

22.98 18.1 
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25.2 20.7 
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22.7 32.7 
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Water 
 

72.8 80.1 

22.98 18.1
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25 17.8 

Isopropyl alcohol (IPA) 

 

23 17.9 

Isobutyl alcohol (IBA) 
 

22.98 18.1 

Diacetone alcohol (DAA) 
 

30 18.2 

Acetone 

 

25.2 20.7 
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22.7 32.7 
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26.7 38 

Dimethyl sulfoxide (DMSO) 

 

36 46.7 

Water 
 

72.8 80.1 

30 18.2
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26.5 8.93 
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Benzyl alcohol 

 

39 13.5 
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25 17.8 
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23 17.9 

Isobutyl alcohol (IBA) 
 

22.98 18.1 

Diacetone alcohol (DAA) 
 

30 18.2 

Acetone 

 

25.2 20.7 
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72.8 80.1 
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energy) are plotted, as shown in in Figure 3. It can be seen that the dispersion concentration is high 

in solvents with a medium dielectric constant of 10 to 30 and surface tension in the range of 25  
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in different solvents have shown that most TMDCs including MoS2, MoSe2, MoTe2, and NbSe2 are 

effectively dispersed in medium polar solvents with surface energy in the range of 30 to 40 mJ m−2 

[30]. 1D Nb2Se9 is structurally similar to 2D TMDCs in that the chalcogenide atoms enclose a transition 

metal core and the outermost surface is composed of chalcogenide atoms. In detail, Nb2Se9 chains 

exhibit a structure in which the core Nb atom is surrounded by Se atoms, while the TMDC layer is a 

structure in which an inner transition layer is sandwiched between two chalcogenide atom sheets. 

Additionally, Nb2Se9 chains and TMDC sheets exhibit similar weak vdW interactions between the 

chain and layer. Thus, Nb2Se9 shows a dispersion tendency similar to that of TMDCs as both materials 

have similar surface structure and interaction forces between the unit chains and sheets.  
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Figure 2. (a) Photographs of dispersion solutions after ultrasonication (top) and separated supernatant
after centrifugation exhibiting a Tyndall effect (bottom); (b) Concentration of the Nb2Se9 dispersion
solution depending on the solvent. Error bars represent standard deviations obtained from three
measurements of the same sample.

In order to understand the dispersion characteristics of Nb2Se9 with respect to the solvent,
the concentrations of the dispersions according to solvent characteristics (dielectric constant and
surface energy) are plotted, as shown in in Figure 3. It can be seen that the dispersion concentration is
high in solvents with a medium dielectric constant of 10 to 30 and surface tension in the range of 25 to
35 mJ m−2, which is similar to the dispersion behavior of 2D TMDCs. Dispersions studies of TMDCs
in different solvents have shown that most TMDCs including MoS2, MoSe2, MoTe2, and NbSe2 are
effectively dispersed in medium polar solvents with surface energy in the range of 30 to 40 mJ m−2 [30].
1D Nb2Se9 is structurally similar to 2D TMDCs in that the chalcogenide atoms enclose a transition
metal core and the outermost surface is composed of chalcogenide atoms. In detail, Nb2Se9 chains
exhibit a structure in which the core Nb atom is surrounded by Se atoms, while the TMDC layer is
a structure in which an inner transition layer is sandwiched between two chalcogenide atom sheets.
Additionally, Nb2Se9 chains and TMDC sheets exhibit similar weak vdW interactions between the
chain and layer. Thus, Nb2Se9 shows a dispersion tendency similar to that of TMDCs as both materials
have similar surface structure and interaction forces between the unit chains and sheets.
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tension Error bars represent standard deviations obtained from three measurements of the same sample.

Dispersed Nb2Se9 particles in DAA were spin-coated on SiO2/Si substrates and the size of the
nano-chains was analyzed by atomic force microscopy (AFM) and transmission electron microscopy
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(TEM) (see Figure 4a,b). The 1D chains of Nb2Se9 with sizes less than 10 nm are well dispersed
(possible to disperse mono-chains to 1 nm or less in a specific dispersion region: line profile 4).
Additionally, the aspect ratio (length/diameter) of Nb2Se9 chains is important in device fabrication
and composite formation. The aspect ratio of Nb2Se9 chains dispersed in DAA is found to be about
542. It is expected that greater dispersion of 1D Nb2Se9 chains into atomic units will be possible after
optimization of the dispersion solvent and the dispersion process.
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Figure 4. (a) Atomic force microscopy (AFM) image of the exfoliated Nb2Se9 nanowires on Si/SiO2

wafers; the height profiles are shown along each dashed line; (b) Annular dark-field (ADF)-STEM
image of the exfoliated Nb2Se9 nanowires.

4. Conclusions

In summary, a novel 1D inorganic molecular chain material (Nb2Se9) was synthesized through
chemical reaction between Nb and Se; 1D nano-sized (≤10 nm) Nb2Se9 molecular chains were
successfully obtained by dispersion. Of the various solvents tested (total 16 solvents), strong dispersions
were obtained with green solvents such as benzyl alcohol, isopropyl alcohol, isobutyl alcohol,
and diacetone alcohol, whose dielectric constant was in the range of 10 to 30 and surface tension was in
the range of 25 to 35 mJ m−1. The best results were obtained in a diacetone alcohol with a concentration
of 85.83 µg mL−1. It can be enhanced through the additional design of solvent combination and
dispersant. These results can provide the essential information of the material’s surface for design of
the further exfoliation strategy, and can be recognized as an important step towards various potential
applications of 1D Nb2Se9, such as transistors, sensors, composites, and solar cells.
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