
2404
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.9 SEPTEMBER 2018

LETTER

Data Recovery Aware Garbage Collection Mechanism in
Flash-Based Storage Devices

Joon-Young PAIK†a), Nonmember, Rize JIN††b), Member, and Tae-Sun CHUNG†c), Nonmember

SUMMARY In terms of system reliability, data recovery is a crucial ca-
pability. The lack of data recovery leads to the permanent loss of valuable
data. This paper aims at improving data recovery in flash-based storage
devices where extremely poor data recovery is shown. For this, we focus
on garbage collection that determines the life span of data which have high
possibility of data recovery requests by users. A new garbage collection
mechanism with awareness of data recovery is proposed. First, deleted or
overwritten data are categorized into shallow invalid data and deep invalid
data based on the possibility of data recovery requests. Second, the pro-
posed mechanism selects victim area for reclamation of free space, consid-
ering the shallow invalid data that have the high possibility of data recov-
ery requests. Our proposal prohibits more shallow invalid data from being
eliminated during garbage collections. The experimental results show that
our garbage collection mechanism can improve data recovery with minor
performance degradation.
key words: NAND flash memory, Flash Translation Layer (FTL), storage
system, data recovery

1. Introduction

Data recovery is an indispensable factor in general systems.
Data recovery is required to retrieve data deleted, overwrit-
ten, or damaged by human error, malicious behavior, or dis-
aster from storage devices. A lack of data recovery capa-
bility can result in the permanent loss of valuable data. To
avoid such a critical situation, many techniques for data re-
covery were proposed, including the Sleuth, FTK Imager,
Recuva, and EnCase tools, especially in the forensic data
area [1].

In commercial hard disk drives (HDDs), most of the
deleted files were recovered by state-of-the-art tools, which
showed data recovery rates of over 99.99% [1]. However,
challenges have occurred recently, as NAND flash memory
is quickly replacing traditional HDDs. Commercial solid-
state devices (SSDs) based on flash memory showed ex-
tremely poor data recovery at a maximum rate of 5.43% [1].

Flash memory has different properties from HDDs:
not-in-place updates of write operations, a new erase op-
eration, the disparities in size and access speed among basic

Manuscript received November 22, 2017.
Manuscript revised May 14, 2018.
Manuscript publicized June 20, 2018.
†The authors are with the Dept. of Computer Engineering,

Ajou University, Republic of Korea.
††The author is with the School of Computer Science & Soft-

ware Engineering, Tianjin Polytechnic University, China.
a) E-mail: lucadi@ajou.ac.kr
b) E-mail: jinrize@tjpu.edu.cn
c) E-mail: tschung@ajou.ac.kr (Corresponding author)

DOI: 10.1587/transinf.2017EDL8255

operational units, and so on. Thus, new software compo-
nents have been designed for flash-based SSDs, including
the Flash Translation Layer (FTL), wear leveling compo-
nent, and garbage collector [2], [3]. The prior efforts have
dramatic performance enhancement. However, these com-
ponents make it difficult to recover data that are deleted,
overwritten, or corrupted. First, the dynamic location pol-
icy of FTL and the wear leveling component prohibit the
internal layout of stored data from being exposed to the host
system. Second, the garbage collector physically eliminates
meaningless data in order to create more free space for in-
coming write requests. The hidden information about the
physical locations managed by these internal mechanisms in
SSDs makes the host-level recovery techniques have inher-
ited restrictions for data recovery. Therefore, it is required
to design internal components that constitute an SSD, taking
data recovery into account.

In this study, we target the garbage collector for the
improvement of data recovery because it determines the life
span of data, called invalid data, for which the user might
demand recovery. Such invalid data are generated by the re-
quests for overwriting or by the TRIM command [4]. We
propose a Data Recovery aware Garbage Collection mech-
anism (DaRe-GC), which aims at prolonging the life span
of invalid data that have a high possibility of data recovery
requests.

The remainder of this paper is structured as follows.
Section 2 describes garbage collection mechanism and re-
lated work. In Sect. 3, we explain our new garbage collec-
tion mechanism, DaRe-GC, to improve data recovery. Then,
we compare DaRe-GC with a traditional garbage collection
mechanism in terms of data recovery and performance in
Sect. 4. Finally, we conclude our paper in Sect. 5.

2. Background and Related Work

In this section, we describe garbage collection mechanism.
Then, we briefly discuss related work on data recovery in
flash-based storage devices.

Garbage collection is an internal mechanism for flash-
based storage systems [3], [5]–[8] that was designed to han-
dle problems incurred by the not-in-place updates of write
operations. In flash memory, fresh data are stored in a free
location and overwritten data are marked as invalid data.
Free space for write operations decreases as the invalid data
increase. Eventually, this trend would exhaust available
space. Garbage collection recycles such invalid space into

Copyright c© 2018 The Institute of Electronics, Information and Communication Engineers

LETTER
2405

Fig. 1 Example of the garbage collection procedure.

available space for write operations. Figure 1 elaborates
how garbage collection makes free space by erasing a victim
block, following the migration of valid pages in the block.

The extra operations for valid page migrations, involv-
ing garbage collections, impose a burden on performance.
The most popular garbage collection mechanism, greedy
scheme, aims at reducing garbage collection overhead by
aggressively considering the migration costs of valid pages.
For this, it selects a block of the lowest utilization of valid
pages as a victim block. It accelerates performance by re-
ducing the number of migrated pages.

There are several schemes for crash recovery in flash-
based storage devices [9]. They aims at maintaining con-
sistency between FTL metadata and data in flash memory
from sudden crashes such as when powering off. To recover
corrupted FTL metadata, they leverage a log-based recovery
mechanism as in traditional database system. Our DaRe-GC
as well as the previous schemes target the resident data in
flash-based storage devices. However, our scheme focuses
on the recovery of invalid data while they do on the recovery
of FTL metadata.

3. DaRe-GC Mechanism

We propose a new garbage collection mechanism called
DaRe-GC. Our goal is to prolong the life span of deleted
or overwritten data, which are likely to be retrieved, and
to retain more of such data on flash-based SSDs. For this,
DaRe-GC selects a victim block for space reclamation based
on the possibility of requests for data recovery. It prevents
blocks that include invalid data with a high data-recovery
possibility from being chosen as victim blocks.

3.1 State Transition of Physical Pages

To effectively secure invalid data of high possibility for data
recovery requests in advance of actual recovery requests, we
should solve a problem: how to estimate the possibility of
data recovery requests. We exploit the depth of versions of
invalid pages related to deleted or overwritten data to solve
this. The latest versioned invalid data have a higher pos-
sibility of data recovery requests than the older-versioned
ones. This is fundamentally similar to the approaches of
data forensic tools in that they adopt the latest information
about any actions to files deleted or corrupted as important

Fig. 2 State transition diagram of a physical page.

evidence for data recovery.
In flash-based SSDs, a valid page has several versioned

invalid data owing to its out-of-place manner. We categorize
an invalid page into a shallow invalid page (sInvalid page)
and a deep invalid page (dInvalid page) according to the de-
gree of importance of data recovery. An sInvalid page indi-
cates the latest invalidated page of a valid page, and a dIn-
valid page refers to one of the invalid pages that is not the
latest invalid page of a valid page. Therefore, sInvalid pages
are more valuable than dInvalid pages in terms of data re-
covery.

Figure 2 shows the state transition of a physical page:
free, valid, sInvalid, and dInvalid states. Transition 1 is in-
vocated when a physical page stores new data of a write
operation in which the physical page becomes a valid state.
In Transition 2, a physical page that has stored the valid data
changes to an sInvalid state when valid data existing on the
physical page are requested for an update or for a TRIM
command. When the valid data that have the correspond-
ing sInvalid data are updated by a write operation again, the
state of the sInvalid data is changed from sInvalid to dIn-
valid data, thereby causing Transition 3. Finally, the sInvalid
state and a dInvalid state are transited to a free state by erase
operations, which indicates Transition 4 and Transition 5,
respectively.

3.2 Proposed Victim Block Selection Policy

The victim block selection policy of DaRe-GC takes ac-
count of sInvalid pages for data recovery. When an amount
of available space is less than a certain threshold, our DaRe-
GC scheme selects a victim block that minimizes the fol-
lowing formula:

of valid pages
of pages in a block

+
of sInvalid pages

of pages in a block
×Weight (1)

where Weight indicates how much an sInvalid page is con-
sidered as important as a valid page.

In Eq. (1), the former part, # of valid pages
of pages in a block , calculates

the migration overhead for valid pages, and the latter part,
of sInvalid pages

of pages in a block ×Weight, shows the degree of data recovery
requests for invalid pages in a block. The equation implies
that blocks that have fewer valid pages for performance and

2406
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.9 SEPTEMBER 2018

Fig. 3 Comparison of a victim selection in DaRe-GC and greedy
scheme.

fewer sInvalid pages for data recovery are selected. There-
fore, the blocks with more sInvalid pages are unlikely to be
chosen as victims. Then, the value of Weight ranges from
0 to 1.0. The Weight of 1.0 indicates that an sInvalid page
is treated the same as a valid page, and Weight of 0.0 indi-
cates that DaRe-GC ignores sInvalid pages where DaRe-GC
works exactly the same as a greedy victim selection pol-
icy [5]. That is, our proposed victim block selection pol-
icy can be flexibly adjusted according to the importance of
performance and data recovery by changing the value of
Weight.

Figure 3 shows how DaRe-GC selects a victim block
with different values of Weight in DaRe-GC. Each of Block
0 and Block 1 has two valid pages. A greedy garbage col-
lection considers the two blocks as a victim block evenly
because they are utilized in the same manner. In DaRe-
GC, when Weight is 0, either block is selected, as in greedy
garbage collection, because the blocks have the same calcu-
lated value of Eq. (1). When Weight is 0.5 or 1.0, Block 0 be-
comes a victim block. Block 0 has the lower value of Eq. (1)
than Block 1 at each case because Block 1 has one sInvalid
page. Thus, DaRe-GC prohibits a sInvalid page from being
eliminated, compared to the greedy algorithm.

To handle information about the states of physical
pages for victim selection and track the relations between
valid pages and their respective invalid pages, we introduce
a new data structure called TrackTable. Each entry in it con-
sists of a flag to indicate the free, sInvalid, dInvalid, or valid
state and a physical page address of the previous versioned
page from a valid or an invalid page. TrackTable changes
accordingly to the transitions of pages and is used for vic-
tim block selections with awareness of data recovery.

4. Evaluation

In this section, we evaluate how DaRe-GC affects data re-
covery and performance, compared to traditional garbage
collection using greedy victim selection (hereafter referred
to as greedy-GC). In Sect. 4.1, we describe the experimental
environments used to evaluate DaRe-GC. Then, we compare
DaRe-GC with greedy-GC with realistic traces in Sect. 4.2.

4.1 Experimental Environments

To evaluate the effects of DaRe-GC on data recovery and
performance, we implemented DaRe-GC on an SSD simu-
lator, EagleTree [10], which supports a variety of function-

Table 1 Configuration parameters for experiments.

Table 2 Characteristics of realistic traces used.

alities of multichannel parallelism [11], FTLs, garbage col-
lectors, and so on. Table 1 shows the experimental configu-
ration of the SSD.

Realistic read and write requests of Microsoft research
traces (MSRs) [12] were used in our experiments. The fea-
tures of the used traces are listed in Table 2. Each MSR trace
was repeated more than one time per experiment so that it
generated enough garbage collections to investigate the ef-
fects of our proposal on data recovery and performance.

4.2 Experimental Results

We measured the average number of sInvalid pages elimi-
nated and the average number of valid pages migrated dur-
ing 200,000 garbage collections with five realistic traces
in greedy-GC and DaRe-GC, in which the value of Weight
changed from 0.1 to 0.5 in DaRe-GC.

The average number of sInvalid pages in victim blocks
with greedy-GC and DaRe-GC is shown in Fig. 4. It indi-
cates how many sInvalid pages of a high possibility of data
recovery requests are eliminated per garbage collection. For
all traces, DaRe-GC allows less sInvalid pages to disappear
per garbage collection, thereby securing more invalid data
of high possibility for data recovery requests in flash mem-
ory. It is because a victim block is selected with awareness
of sInvalid pages as well as valid pages in a block in DaRe-
GC, unlike in greedy-GC. In case of MSR-src1 2, DaRe-GC
reduces the number of sInvalid pages by up to 40.55. This
trace has the largest-sized write requests, 32.51 KB, as indi-
cated in Table 2. Those write requests of large data cause

LETTER
2407

Fig. 4 Change in average number of sInvalid pages eliminated per
garbage collection.

Fig. 5 Change in average number of valid pages migrated per garbage
collection.

sInvalid pages rather than dInvalid pages with greedy-GC.
It is because large-sized write requests have lower temporal
locality than small-sized write requests [13].

In addition, larger values of Weight result in fewer sIn-
valid pages being eliminated during garbage collections be-
cause a larger value of Weight prohibits a block with more
sInvalid pages from being selected as a victim block. As
a result, DaRe-GC prolongs the life span of more sInvalid
pages than greedy-GC, which increases the possibility of
data recovery.

Figure 5 describes the migration overhead per garbage
collection. DaRe-GC has a negative impact on performance.
MSR-hm 0, MSR-stg 0, and MSR-usr 0 traces have a sim-
ilar number of valid pages in a victim block in which the
increase is limited by five valid pages. However, MSR-
wdev 0 and MSR-src1 2 traces cause more valid pages of
13 and 14 to be migrated, respectively, in DaRe-GC than in
greedy-GC. The resultant performance degradation can be
explained from the victim selection policy of DaRe-GC. A
block with more valid pages can be chosen as a victim owing
to the weighted value of sInvalid pages, even though other
blocks have less valid pages.

Figures 4 and 5 show the trade-off between data recov-
ery and performance. We can improve data recovery with a
minor performance degradation by adjusting Weight accord-
ing to the type of trace. The performance is estimated at an
SSD level. The performance can be optimized further more
via I/O stack of general systems (i.e., Linux, Windows, and
SQLite). In particular, the overhead can be minimized by
I/O optimization techniques through the I/O stack.

5. Conclusions

This paper presented a DaRe-GC mechanism that increases
the likelihood of recovering data deleted or overwritten by
a host system. In DaRe-GC, invalid data incurred by over-
writing request or delete requests is separated into sInvalid
data and dInvalid data. DaRe-GC selects victim blocks, con-
sidering sInvalid pages as well as valid pages. It prohibits
blocks that include more sInvalid pages from being chosen
as victim blocks, which increases the possibility of data re-
covery requests for data deleted or overwritten. The experi-
mental results showed that DaRe-GC reduced the number of
sInvalid pages eliminated per garbage collection, which was
likely to achieve more data recovery requests. However, it
caused larger garbage collection overhead. We plan to ac-
celerate data recovery while relieving negative impacts on
performance.

Acknowledgments

This research was supported by Basic Science Re-
search Program through the National Research Founda-
tion of Korea (NRF) funded by the Ministry of Education
(2017R1A6A3A11035567 and 2016R1D1A1B03934129).

References

[1] F. Geier, “The differences between SSD and HDD technology re-
garding forensic investigations,” Degree Project, Linnaeus Univer-
sity, Sweden, 2015.

[2] T.-S. Chung, D.-J. Park, S. Park, D.-H. Lee, S.-W. Lee, and H.-J.
Song, “A survey of flash translation layer,” J. Syst. Architect., vol.55,
no.5-6, pp.332–343, 2009. DOI: 10.1016/j.sysarc.2009.03.005

[3] M.-C. Yang, Y.-M. Chang, C.-W. Tsao, P.-C. Huang, Y.-H.
Chang, and T.-W. Kuo, “Garbage collection and wear leveling for
flash memory: past and future,” Proc. IEEE Smart Computing
(SMARTCOMP), pp.66–73, 2014. DOI: 10.1109/SMARTCOMP.
2014.7043841

[4] Information technology-ATA/ATAPI Command Set, [Online].
Available: http://www.t13.org/documents/UploadedDocuments/
docs2009/d2015r1a-ATAATAPI Command Set - 2 ACS-2.pdf.

[5] M. Wu and W. Zwaenepoel, “eNVy: a non-volatile, main memory
storage system,” Proc. ASPLOS, pp.86–97, 1994. DOI: 10.1145/
195473.195506

[6] A. Kauaguchi, S. Nishioka, and H. Motoda, “A flash-memory based
file system,” Proc. USENIX Tech. Conf., TCON, 1995.

[7] M.-L. Chiang and R.-C. Chang, “Cleaning algorithms in mobile
computers using flash memory,” J SYST SOFTWARE, vol.48, no.3,
pp.213–231, 1999. DOI: 10.1016/S0164-1212(99)00059-X

[8] O. Kwon, K. Koh, J. Lee, and H. Bahn, “FeGC: an efficient
garbage collection scheme for flash memory based storage sys-
tems,” J SYST SOFTWARE, vol.84, no.9, pp.1507–1523, 2011.
DOI: 10.1016/j.jss.2011.02.042

[9] C. Zhang, Y. Wang, T. Wang, R. Chen, D. Liu, and Z. Shao, “Deter-
ministic crash recovery for nand flash based storage systems,” Proc.
DAC, pp.1–6, 2014. DOI: 10.1145/2593069.2593124

[10] N. Dayan, M.K. Svendsen, M. Bjørling, P. Bonnet, and L.
Bouganim, “EagleTree: exploring the design space of SSD-based al-
gorithms,” VLDB (demo), vol.6, no.12, pp.1290–1293, 2013. DOI:
10.14778/2536274.2536298

[11] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and H. Zhang, “Perfor-
mance impact and interplay of SSD parallelism through advanced

http://dx.doi.org/10.1016/j.sysarc.2009.03.005
http://dx.doi.org/10.1109/smartcomp.2014.7043841
http://dx.doi.org/10.1145/195473.195506
http://dx.doi.org/10.1016/s0164-1212(99)00059-x
http://dx.doi.org/10.1016/j.jss.2011.02.042
http://dx.doi.org/10.1145/2593069.2593124
http://dx.doi.org/10.14778/2536274.2536298
http://dx.doi.org/10.1145/1995896.1995912

2408
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.9 SEPTEMBER 2018

commands, allocation strategy and data granularity,” Proc. ICS,
2011. DOI: 10.1145/1995896.1995912

[12] UMASS Trace Repository, [Online]. Available:
http://traces.cs.umass.edu/.

[13] S. Lee, D. Shin, Y.-J. Kim, and J. Kim, “LAST: locality-aware sector
translation for nand flash memory-based storage system,” SIGOPS
Oper. Syst. Rev., vol.42, no.6, p.36, Oct. 2008.

http://dx.doi.org/10.1145/1995896.1995912
http://dx.doi.org/10.1145/1453775.1453783

