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Abstract

Background: Integrative analysis on multi-omics data has gained much attention recently. To investigate the
interactive effect of gene expression and DNA methylation on cancer, we propose a directed random walk-based
approach on an integrated gene-gene graph that is guided by pathway information.

Methods: Our approach first extracts a single pathway profile matrix out of the gene expression and DNA methylation
data by performing the random walk over the integrated graph. We then apply a denoising autoencoder to the
pathway profile to further identify important pathway features and genes. The extracted features are validated
in the survival prediction task for breast cancer patients.

Results: The results show that the proposed method substantially improves the survival prediction performance compared
to that of other pathway-based prediction methods, revealing that the combined effect of gene expression and methylation
data is well reflected in the integrated gene-gene graph combined with pathway information. Furthermore, we show that
our joint analysis on the methylation features and gene expression profile identifies cancer-specific pathways with genes
related to breast cancer.

Conclusions: In this study, we proposed a DRW-based method on an integrated gene-gene graph with expression
and methylation profiles in order to utilize the interactions between them. The results showed that the constructed
integrated gene-gene graph can successfully reflect the combined effect of methylation features on gene expression
profiles. We also found that the selected features by DA can effectively extract topologically important pathways and
genes specifically related to breast cancer.
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Background
Integrative analysis on multi-omics data to find bio-
markers or pathway features highly associated with cancer
has received considerable attention [1–6]. Considering the
rich information contained in multi-omics data, many
studies have investigated the interrelationships among
multiple meta-dimensional data for improved biological
interpretation and analysis [7–12]. To understand the
interaction between different types of genomic features re-
quires more sophisticated modeling and analysis. In par-
ticular, the causal relationships between gene expression
data and DNA methylation have been extensively studied
[13–16]. For joint analysis of gene expression and methy-
lation data in cancer, pathway and subtype information
have proven especially useful [17–19]. In this study, we
address the problem of pathway-driven integrated analysis
of gene expression and methylation data in cancer.
To combine pathway information into genomic ana-

lysis and cancer prediction, several methods of inferring
pathway activity have been proposed [20–24]. For ex-
ample, the mean and median of the expression values of
pathway member genes can be used for precise cancer
classification [24]. In [20], pathway activity inference
method of condition-responsive genes (the pathway
member genes whose combined expression show opti-
mal discriminative power for the disease phenotype)
have been proposed to incorporate pathway information
into the precise disease classification. Pathway activity
inference approaches using probabilistic inference have
been used for combining multiple types of omics data
and a better cancer classification [21–23]. However,
those existing pathway-based methods simply take path-
ways as the set of genes and have ignored the topological
importance of the hub genes in the pathway network
that can be highly associated with diseases. In this re-
spect, Liu, et al. proposed a directed random walk
(DRW)-based pathway inference method to identify the
topologically important genes and pathways by weight-
ing the genes in the pathway network [25]. Because this
original DRW method targeted a single profile of gene
expression data, recent approaches have focused on inte-
grating multiple types of data, for example, gene expres-
sion and metabolite data [26]. Directed random walk on
a gene-metabolite graph (DRW-GM) was performed
guided by pathway information, and identified important
differential genes and risk pathways in prostate cancer.
In this study, we propose a DRW-based approach on

an integrated gene-gene graph especially redefined for
gene expression and methylation data in order to extract
important pathway and gene features for survival predic-
tion. We first construct an integrated gene-gene graph
by adding edges between gene expression and methyla-
tion features as well as edges within each profile. In con-
structing the integrated gene-gene graph, we consider

two approaches: one that adds bi-directional edges be-
tween expression and methylation features of the same
gene that has both profiles, and another that considers
only the anti-correlated interactions between the expres-
sion and methylation data. For the edges within each
single profile, we adopt the pathway-based interaction
graph from the previous study [25]. DRW is then per-
formed, which produces the weight values of both ex-
pression and methylation features. The initial weights of
the gene expression nodes are measured by DESeq2
[27], which is a method for differential gene expression
analysis in count data from high-throughput sequencing
assays. The methylation feature nodes are initially
weighted by using a two-tailed t-test between two phe-
notypes. By using the output from the DRW, a pathway
activity profile is computed. In summary, integrative
DRW (iDRW) on a graph defined over gene expression
and methylation features transforms the combined pro-
file of gene expression and methylation data into a single
pathway profile. To further extract important pathway
features, we apply a denoising autoencoder (DA) [28] to
the pathway profile matrix. DA has proven to be effect-
ive in selecting robust features against input noise and
extracting more specific cancer-related pathways or
genes [29–31]. The resulting features are validated on a
survival prediction task of breast cancer patients. The
topologically significant pathways and pathway member
genes are identified and analyzed as well. The overall
process of the proposed approach is illustrated in Fig. 1.
The pathway features selected with our scheme are

based on gene expression and methylation features as
well as interactions between the two. These extracted
pathway features are effective at improving the predic-
tion performance when compared to the gene-based
profile or other pathway-driven methods. We also reveal
that the iDRW method with a denoising autoencoder se-
lects a more cancer-specific pathways or genes as com-
pared to that directly selected by the iDRW method.

Methods
Dataset
Gene expression and DNA methylation data of 868
breast cancer patients were obtained from the TCGA
dataset of the Broad Institute GDAC Firehose [32]. Gene
expression data from RNA sequencing consisted of
17,673 genes, which are upper-quartile normalized RSEM
count estimates in the Broad Institute GDAC Firehose
[33]. DNA methylation data were obtained as a gene-level
feature of 17,037 genes by selecting the probe having a
minimum correlation with expression data for each gene
[34]. We removed genes in which more than half had gene
expression values of 0. In contrast to gene expression data,
5134 missing values were present in the methylation data.
To impute missing values, we replaced them with a
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median of the corresponding patient’s data. For each
breast cancer patient, the vital status and survival days
were recorded. Among 868 patients, we extracted 568
samples that had both RNA sequencing and methylation
data. We removed patients whose survival days were not
recorded or wrongly so as negative values. In this study,
we split the patients into good (> 3 years) and poor (≤
3 years) groups with respect to their survival days [35]. Pa-
tients who were living (vital status reported as 1) but
whose survival days were less than 3 years were removed.
In total, 465 samples were divided into two groups of 218
good and 247 poor. Finally, the gene expression and
methylation data were normalized for the mean to be 0
and standard deviation to be 1 over all samples.

Pathway-based global directed integrated gene-gene graph
To transform each gene profile into a pathway profile, a
DRW-based method was performed on a global directed
gene-gene graph, which was constructed based on both
150 metabolic and 150 non-metabolic KEGG pathways
[25]. Interactions between genes in the global directed
graph were manually drawn from the KEGG database
[36] by researchers in [25]. The global directed graph
contained 4113 genes and 40,875 directed edges. Details
regarding the construction method of the global directed
graph are provided in [25].
To define the directed graph across gene expression

and methylation data, we first included all edges in the
global directed graph from [25] within each profile. In
addition, the interactions between 16,454 overlapping
genes in the two profiles were defined in the global
directed graph. As most of the methylation profiles
inhibited the genes in the gene expression data [37], we
experimented with two cases. First, we assigned bi-direc-
tional edges to all overlapping genes between gene ex-
pression and methylation data. Second, we only assigned
the edge when the expression and methylation values of

the same gene were anti-correlated. Correlation was
measured by the Pearson correlation and significance
test of a correlation coefficient was performed. The cor-
relation coefficient with a negative value and p-value of
a significant test < 0.05 meant that the methylation pro-
file might inhibit the corresponding gene expression.
The final integrated gene-gene graph contained 4113
genes as nodes, which were either from the gene expres-
sion data or methylation profiles. The number of di-
rected edges in the graph was 88,440 when all
overlapping edges were added and 81,750 (the removal
of edges is about 7.6% of all overlapping edges) when
only the anti-correlated edges were added.

DRW-based method on an integrated gene-gene graph
We utilized the recently proposed DRW method
(DRW-GM) [26] to integrate information in a graph
constructed from multiple profiles. To perform random
walk, the initial weights of the genes should be assigned.
As the DRW-GM method is specifically designed to in-
tegrate gene expression profiles and metabolomic pro-
files, the weights of the genes were modified for the
graph from the gene expression and methylation pro-
files. For each gene profile, W0 is constructed as:

W 0 ¼ − log wg þ ϵ
� �

where wg is the weight of the gene g in the directed inte-
grated gene-gene graph G, and ϵ = 2.2e−16. The weight of
the gene is the p-value from either a two-tailed t-test for
the methylation profiles or a DESeq2, which is a method
for differential gene expression analysis based on nega-
tive binomial distribution for RNA sequence genes [27].
Each gene weight vector is normalized to scale the range
between 0 and 1. Finally, W0 is L1-normalized to a unit
vector. A random walker starts on a source node s and
transits to a randomly selected neighbor or returns to

Fig. 1 Overview of the proposed integrative pathway-based survival prediction method
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the source node s with a restart probability r at each
time step t. The DRW method is formally defined as:

Wtþ1 ¼ 1−rð ÞMTWt þ rW 0

where Wt is the weight vector in which the i-th element
represents the probability of being at node i at time step
t; M is a row-normalized adjacency matrix of the di-
rected integrated gene-gene graph G; r is the restart
probability, which is set to 0.7 (as it was previously
shown that the performance of the DRW method is not
sensitive to the varying r [25]), and W0 is the initial
weight vector of genes in the graph G. At each time step,
Wt is updated and guaranteed to converge to a steady
state W∞ [38] when∣Wt + 1 −Wt∣< 10−10.

Pathway activity inference
For a j-th pathway Pj containing nj differential genes ðg1;
g2;…; gn j

Þ whose p-value (wg) is < 0.05, the pathway ac-

tivity is defined as:

a P j
� � ¼

Pn j

i¼1W∞ gi
� � � score gi

� � � z gi
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn j

i¼1 W∞ gi
� �� �2q

where W∞(gi) is the weight of gene gi from the DRW
method, z(gi) is the normalized expression vector of gi
across overall samples, and score(gi) is either a log2 fold
change from the DESeq2 [27] analysis if gi is a gene from
the gene expression data, or a sign(tscore(gi)) from two-
tailed t-test statistics if gi is a gene with the methylation
feature. For DESeq2 in the gene expression data, log2
fold change indicates the extent to which gene expres-
sion values have changed between groups of samples.
For each pathway, the pathway activity is computed
from the normalized gene expression values for each
sample, which corresponds to a pathway profile. As a re-
sult, the pathway profile is used as an input to a classifi-
cation model.

Feature selection and ranking strategy
To select pathway features, the pathways are first scored
by the weight matrix from DA [28]. Given an input x ∈
ℝd that is a feature vector and corrupted input ~x∈ℝd that
is perturbed by a random binomial error, ~x is mapped to
a hidden representation y ∈ ℝp as follows:

y ¼ s W~xþ bð Þ
where s is a sigmoid activation function, W is a weight
matrix that is randomly initialized depending on its in-
put and hidden layer size, b is a bias, and y is a latent
representation of the encoded ~x by the encoder. y is then
used as an input into a decoder to reconstruct z as
follows:

z ¼ s WTyþ bT
� �

Here, z C input of x given y. To calculate the recon-
struction error, we used a mean squared error, not the
cross-entropy as the scale of our data was not in [0, 1].
L(xz), which is the loss on the reconstruction of the ori-
ginal input x from z, is defined as:

L xzð Þ ¼ ∥x−z∥2

2

For feature importance scoring purposes, we used a
single hidden layer because the input features are scored
by the weight matrix between input and hidden layers,
and the more abstract features are selected when using
the more number of hidden layers which can lead to lose
pathway information. Note that the purpose of using DA
in this study was primarily for feature selection than for
accurate reconstruction of the original input. To rank
the pathway features, we first trained the DA to obtain
the weight matrix between input and hidden layers. The
weight of each input feature was then defined as the
mean value of the weight vector of the input node to all
hidden nodes. We experimented with a varying number
of hidden nodes (50, 100, 150, 200). As the number of
hidden nodes did not greatly affect the list of selected
pathway features and the final classification perform-
ance, the number of hidden nodes was set to 200. In the
experiments, the selected pathway features from DA
combined with the iDRW method (iDRW+DA) were
compared with those obtained using the iDRW method.
The pathway features were ranked by their p-values
from the t-test of pathway activities across samples with
the iDRW method. Therefore, the ranked features by the
iDRW+DA method were selected to best fit the classifi-
cation model using a greedy search as performed in [25].

Classification performance evaluation
We performed a logistic regression analysis using the ex-
tracted features. A 5-fold cross validation was conducted
to evaluate the classification performance. We first di-
vided the entire samples into five folds. We then trained
the regression model using four folds and validated the
performance using the remaining fold. For each fold, the
top-N pathway features that yielded the best classifica-
tion performance were selected; this was measured by
area under the curve (AUC) and the accuracy. AUC is
the area under the Receiving operating characteristic
(ROC) curve evaluating the trade-off between true posi-
tive rate (sensitivity) and false positive rate (1- specifi-
city) and the accuracy measures the proportion of true
positives and true negatives; the more AUC and the ac-
curacy is, the better the trained regression model classi-
fies the test samples into good and poor group. To
select the best pathway features, we repeated the entire
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cross validation process 10 times and assessed the path-
way features that appeared more than three times in a
union of 50 feature sets. Finally, the average AUC and
accuracy after 10 repeats of the process using five folds
was used as a final classification performance.

Results
Performance comparison on a single type of feature data
To check the utility of the pathway profiles obtained
using the DRW method, we first experimented with each
single-layered feature data. The performances were eval-
uated using four types of data: RNA-seq gene expression
profile, methylation profile, RNA-seq pathway profile,
and methylation pathway profile. The pathway profiles
were obtained by the original DRW method. The classi-
fication performance was evaluated using the selected
top-N pathway features ranked by their t-test scores. For
a fair comparison, top-N genes of the gene profiles were
also ranked by their DESeq2 or t-test scores. Note that
the genes and pathways are weighted via two-group
(good and poor groups) comparison that is considered
as a supervised learning task. Figure 2 shows the average
AUC and the accuracy from a 5-fold cross validation
measured using a logistic regression model. As shown in
Fig. 2, the overall performance using the pathway

profiles from the DRW method was better than that
when using the gene profiles. These findings reveal that
the pathway features extracted using the DRW method
can improve the prediction performance when compared
to the gene features. We also determined that the per-
formance difference between RNA-seq data and the
methylation profile was considerable when using pathway
profiles. This means that gene expression plays a more
critical role in survival prediction in a breast cancer
patient group than does a methylation profile. Moreover,
this difference was particularly remarkable when raw
feature values were transformed into pathway features.

Performance comparison of the pathway-based prediction
methods on combined feature data
To show the utility of the proposed method on the com-
bined feature data, we compared different pathway-based
prediction methods on the combined RNA-seq and DNA
methylation data (Fig. 3). First, we simply employed means
(Mean) and medians (Median) of the expression values of
the significant pathway member genes to construct a
pathway profile matrix. To show the utility of the inte-
grated gene-gene graph, we also assessed the performance
when the pathway profiles obtained from the RNA-seq
and methylation data were concatenated (DRW-concat).

Fig. 2 Classification performance comparison between a single type of feature data and converted pathway profiles by DRW in terms of mean
AUC (left) and mean accuracy (right) after 10 repeats of 5-fold cross validation process. Gene and pathway profiles with gene expression and
methylation profiles were evaluated. The pathway profiles were obtained by the original DRW method. Error bars represent the standard
error of the mean values
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In this method, we used the DRW method to obtain path-
way profiles but the interaction of the RNA sequence and
methylation data were not considered. The last three
results shown in Fig. 3 are from the pathway profiles
obtained by the proposed DRW method on the integrated
gene-gene graph. As a baseline, the classification perform-
ance over the concatenated RNA-seq and methylation
profile without using pathway information is shown as a
dotted horizontal line in Fig. 3. All performances of the
iDRW-based methods outperformed the simple concaten-
ation of the DRW method and the baselines, as expected.
These results reveal that the interactions between gene

expression and methylation profiles have considerable joint
effect on the integrated gene-gene graph and survival predic-
tion. Regarding the construction of the integrated graph, we
first linked all the nodes of the same gene between RNA-seq
and methylation profiles (iDRW). Second, we only consid-
ered the anti-correlated interactions (iDRW-anti). The classi-
fication performance of iDRW combined with the DA
(iDRW+DA) was the best, whereas the performance differ-
ence between the three iDRWmethods was marginal.

Identification of significant pathways and genes in breast
cancer
In our study, we could extract significant pathway fea-
tures from both the iDRW outputs and the iDRW+ DA.

Figure 4 compares the lists of selected pathways from
both the iDRW and the iDRW+DA as a heatmap. Each
cell in the heatmap represents similarity using the
Simpson coefficient [39] between two lists of differen-
tially expressed genes and methylation sites from a pair
of pathways. It measures how many genes were over-
lapped between the selected pathways by the iDRW and
the iDRW+DA. The rows and columns in the heatmap
represent selected pathways by DA and the iDRW
method, respectively. Note that the iDRW method
weighted the pathway features by the two-tailed t-test
statistics, whereas the iDRW+DA used the weight matrix
between the input nodes and hidden nodes in DA. We
observed that the pathways selected by the iDRW
method had similar patterns to those from iDRW+DA,
which are marked as colored rows in the heatmap. This
means that the iDRW method can detect general and
non-specific pathways such as MAPK signaling pathway
(86 genes), pathways in cancer (86 genes), and endocytosis
(47 genes). However, iDRW+DA identified dorso-ventral
axis formation as a top-scoring pathway which is an ex-
tremely specific pathway and contains four differentially
expressed genes: ETS proto-oncogene 1, transcription fac-
tor (ETS1); notch 2 (NOTCH); mitogen-activated protein
kinase 3 (MAPK3); and SOS Ras/Rac guanine nucleotide
exchange factor 1 (SOS1). The dorso-ventral axis formation

Fig. 3 Classification performance comparison of the pathway-based prediction methods on the combined feature data. Mean AUC (left) and
mean accuracy (right) after 10 repeats of 5-fold cross validation process are shown. Error bars represent the standard error of the mean values
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is related to the Wnt signaling pathway [40]. Wnt signaling
pathway is one of the closely associated pathways with can-
cer [41]. We also found that approximately 40% of patients
(439 of 1098) showed genetic alterations for the four genes
in the pathway from the Breast Invasive Carcinoma dataset
in the cBioPortal (http://www.cbioportal.org/), as shown in
Fig. 5. Moreover, the DisGeNET database (http://www.dis-
genet.org), which shows relations between genes and dis-
eases, indicates that those genes are associated with
cancer-related diseases or disorders such as precancerous
conditions (umls: C0032927), follicular thyroid carcinoma
(umls: C0206682), and tumor initiation (umls: C0598935).
We did not identify any strong evidence of association with
pancreatic secretion (KEGG ID: hsa04972). However, we
found that 13 genes in the pancreatic secretion pathway
may regulate blood circulation as a means of releasing nu-
cleic acids [42]. The circulating nucleic acids by the bio-
logical process can be a biomarker of breast cancer. Based
on our findings, we can hypothesize that the top-ranked
pathways can be directly associated with the survivability of
breast cancer patients given additional biological
experiments.
One of the advantages of our method is that it can

obtain both differentially expressed genes from gene
expression data as well as differentially methylated genes
in each pathway. Thus, we can perform a joint analysis

of the gene expression and methylation data. Table 1
shows the risk-active pathways selected by the proposed
iDRW+DA method. The pathways that appear more
than five times during 50 iterations are shown, and the
number of significant pathway member genes from the
gene expression and methylation data are also reported.
The top-ranked pathways (i.e., dorso-ventral axis forma-
tion, pancreatic secretion, and neurotrophin signaling
pathway) are reported as breast-cancer-related pathways
as shown above. The genes in the top-10 pathways in
Table 1 are also visualized in the gene-gene network
shown in Fig. 6. The hub genes in the network play a cru-
cial role in pathways selected by both the iDRW+DA
method and the iDRW method. For example, MAPK3,
transforming protein p21 (HRAS), and v-akt murine thym-
oma viral oncogene homolog 1 (AKT1) were all reported as
highly related to the MAPK signaling pathway (KEGG ID:
map 04010) known to be associated broadly with many can-
cers [43, 44]. In addition, PTK2 protein tyrosine kinase 2
(PTK2), phosphatidylinositol 3-kinase regulatory subunit
gamma (PIK3R3), and phosphatidylinositol-4,5-bisphosphate
3-kinase catalytic subunit delta (PIK3CD) are shown to be
related to pathways in cancer (KEGG ID: map 05200) [9].
Additionally, we investigated the association between the
genes in the network and breast cancer using a
gene-disease association (GDA) score from DisGeNET

Fig. 4 Heat-map for comparing selected pathways by the iDRW and iDRW+DA methods. Each cell represents similarity using Simpson coefficient
between two lists of differentially expressed genes and methylated genes from a pair of pathways selected by each method. Note that the rows and
columns represent selected pathways by iDRW+DA and the iDRW method, respectively, and are clustered via hierarchical clustering with
complete-linkage method
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database. Note that the hub genes whose degrees in the
network are greater than 4 and those genes detected in
differential methylation regions are selected (which are
colored in Fig. 6). Based on these criteria, 38 genes are
used as input to the DisGeNET database. The GDA score
above 0.2 for a gene can be interpreted to mean that it is
strongly related to the disease, and the GDA score of a
gene above 0 reveals that an association between that gene
and the disease may be found in public databases and
publications. Moreover, if the GDA score for a gene is 0,
then no reports exist in any database or literature showing
evidence of association between the gene and the disease.
According to the GDA scores, 73.69% of hub genes (28 of
38) have GDA scores above 0 for breast cancer-related
diseases, and we can claim that among hub-genes in the
network, these genes are highly related to the breast
cancer-related diseases. Table 2 summarizes the top-5
genes (as ranked by GDA scores from the DisGeNET
database) that are associated with each disease. Based on

these results, we can conclude that the genes and path-
ways detected by the proposed iDRW+DA method are re-
lated to breast cancer.

Discussion
The selected pathways by iDRW+DA showed different
patterns in comparison with the iDRW method. As the
heatmap in Fig. 4 shows, only two pathways of Focal ad-
hesion (KEGG ID: map 04510) and Endocytosis (KEGG
ID: map 04144) were identified by both the iDRW+DA
method and the iDRW method. In the iDRW+DA
method, the genes in the pathways of sphingolipid me-
tabolism (KEGG ID: map 00600), one carbon pool by
folate (KEGG ID: map 00670), and chemical carcinogen-
esis (KEGG ID: map 05204) were detected and previous
studies reported that these pathways are associated with
breast cancer. The pathway of sphingolipid metabolism
is activated by the steroid hormone estrogen. Estrogen
includes a variety of cytoplasmic second messengers

Table 1 Risk-active pathways identified by the proposed method (iDRW+DA)

Pathway ID Pathway name Frequencya Total genesb DE genes DM genes

map 04320 Dorso-ventral axis formation 10/50 27 4 0

map 04972 Pancreatic secretion 8/50 65 26 3

map 04722 Neurotrophin signaling pathway 7/50 90 47 3

map 05020 Prion diseases 7/50 30 12 0

map 00670 One carbon pool by folate 5/50 33 6 1

map 00592 alpha-Linolenic acid metabolism 5/50 23 8 1

map 00620 Pyruvate metabolism 5/50 96 7 1

map 03320 PPAR signaling pathway 5/50 61 13 1

map 04660 T cell receptor signaling pathway 5/50 85 52 8

map 04510 Focal adhesion 5/50 148 83 11

map 03010 Ribosome 5/50 143 1 0

map 05214 Glioma 5/50 52 27 0

map 04711 Circadian rhythm - fly 5/50 8 4 1

map 00960 Tropane, piperidine, and pyridine alkaloid biosynthesis 5/50 26 1 0
aFrequency: the number of times the pathway has been selected over 10 times of 5-fold cross validation process (50 iterations)
bTotal genes: the number of genes mapped to the pathway in the KEGG database
Note that the number of differentially expressed genes (DE genes) and differentially methylated genes (DM genes) are also shown (p-value of DESeq2 or t-test < 0.05)

Fig. 5 Genetic alterations for the four genes in the dorso-ventral axis formation pathway from the Breast Invasive Carcinoma dataset in
cBioPortal (http://www.cbioportal.org/)
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linked to a multitude of tissue-specific effects, and Suko-
cheva et al. reported that this hormone triggers the
sphingolipid signaling cascade in various tissues, includ-
ing breast cancer [45]. We also identified chemical car-
cinogenesis (KEGG ID: map 05204) using our method. In
many cases, chemical and physical agents play a critical
role in cancer induction, and one study shows that di-
ethylstilbestrol (DES) and bisphenol A (BPA) are
estrogen-like endocrine disruption chemicals that induce
continual epigenetic changes affecting emerging breast
cancer [46]. Moreover, many studies revealed that one
carbon pool by folate (KEGG ID: map 00670) is related to
cancer. Experiments revealed that one carbon pool by
folate is upregulated in a cancer cell line [47]. Fur-
thermore, Shuvalov et al. reported cancer-related metabol-
ism is a hallmark of cancesr. In particular, one-carbon
metabolism is reported as the keystone of them all [48].
Thus, we can conclude that the proposed iDRW+DA
method contributes to identifying more specific
cancer-related pathways, whereas the iDRW method tends
to find generally important pathways for cancers. The
main difference between the iDRW and iDRW+DA
methods is the pathway features ranking strategy. Taken
pathway profiles as an input, the pathways are ranked by
the t-test statistics (iDRW) or the weight matrix of DA
(iDRW+DA). Denoising process of DA can differentiate

Fig. 6 Pathway-based gene-gene interaction network between gene expression profiles and DNA methylation features extracted by iDRW + DA.
The genes in the top-10 pathways are shown; the hub genes whose degree is greater than 4 in the gene expression data (green) and genes that
are detected in differential methylation regions (orange) are emphasized in different colors

Table 2 Top-5 genes ranked by GDA scores from the DisGeNET
database (http://www.disgenet.org/) that are associated with
breast-cancer-related diseases

Disease ID Disease Gene GDA score

C0678222 Breast Carcinoma AKT1 0.2418

PIK3CD 0.0448

MAPK3 0.0118

HRAS 0.0077

BCAR1 0.0074

C0006142 Malignant neoplasm of breast AKT1 0.2420

PIK3CD 0.0475

KDR 0.0119

MAPK3 0.0110

PAK1 0.0095

C3539878 Triple Negative Breast Neoplasms PIK3CD 0.0047

AKT1 0.0022

AKT3 0.0011

MAPK3 0.0011

KDR 0.0008
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the features more and discover interesting structure in the
input [28]. As it is shown that DA is effective at capturing
more distinctive features by learning latent representa-
tions of the input [28], we can observe that the iDRW
+DA method detects more cancer-specific pathways des-
pite that the performance difference between iDRW and
iDRW+DA methods was marginal.

Conclusions
In this study, we proposed a DRW-based method on an in-
tegrated gene-gene graph with expression and methylation
profiles in order to utilize the interactions between them.
DA-based feature selection was also employed to discover
more cancer-specific genes and pathways. The results
showed that the constructed integrated gene-gene graph
can successfully reflect the combined effect of methylation
features on gene expression profiles. The classification per-
formance of the methods showed that pathway-based pre-
diction outperforms gene-based methods. We also found
that the selected features by DA can effectively extract
topologically important pathways and genes specifically re-
lated to breast cancer. Although the classification perform-
ance improvement by DA was found to be marginal in our
study, DA can extract specific cancer-related biomarkers
and facilitate the analysis of biologically meaningful fea-
tures. The proposed method also identified known
breast-cancer-related genes and risk-active pathways suc-
cessfully. As the integrated gene-gene graph utilized the
pathway information using multi-omics data, our study
showed that an effective joint analysis on gene expression
and methylation data is possible under our framework.

Abbreviations
AUC: Area under the curve; DA: Denoising autoencoder; DRW: Directed random
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