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Abstract: Cycling has been considered as a healthy, environmentally friendly, and economical alternative mode of travel to motorized
vehicles (especially private motorized vehicles). However, bicycles have often been neglected in the transportation planning and travel de-
mand forecasting modeling processes. The current practice in modeling bicycle trips in a network is either nonexistent or too simplistic.
Current practices are simply based on the all-or-nothing (AON) assignment method using single attributes such as distance, safety, or a
composite measure of safety multiplied by distance. The purpose of this paper is to develop a two-stage traffic assignment model by con-
sidering key factors (or criteria) in cyclist route choice behavior. As an initial effort, the first stage considers two key criteria (distance-related
attributes and safety-related attributes) to generate a set of nondominated (or efficient) paths. These two criteria are a composite function of
subcriteria. Route distance consists of link distances and intersection turning penalties combined to give the distance-related attribute, while
route safety makes use of the bicycle level of service (BLOS) measure developed by the Highway Capacity Manual (HCM) to determine the
safety-related attribute. Efficient paths are generated based on the above two key criteria with a biobjective shortest path algorithm. The
second stage determines the flow allocation to the set of efficient paths. Several traffic assignment methods are adopted to determine the flow
allocations in a network. Numerical experiments are then conducted to demonstrate the two-stage approach for bicycle traffic assignment.
Overall, the results of the Winnipeg network demonstrate the applicability of the two-stage bicycle traffic assignment procedure with the
flexibility of using different criteria in the first stage to generate efficient paths and different traffic assignment methods in the second stage to
allocate flows. DOI: 10.1061/JTEPBS.0000108. © 2017 American Society of Civil Engineers.
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Introduction

Nonmotorized modes such as bicycles constitute an important part
of a community’s transportation system and are vital to the success
of transit-oriented developments (TODs). Yet, they have often been
ignored in transportation planning and travel demand forecasting
modeling or were at best treated as a by-product in the planning
process. Many cities have begun to invest in and to promote cycling
as a healthy, environmentally friendly, and economical alternative
mode of travel to motorized vehicles (especially private motorized
vehicles) (Northrop 2011). However, the current practice in mod-
eling bicycle trips in a network is inadequate, in part because cy-
clist behavior is not yet fully understood. While auto route choice
decisions are governed by a single dominate travel time factor [as
given by the Wardrop principle (1952)], cyclist route choice deci-
sions are governed by many influential factors.

Many empirical studies on bicycle route choice analysis indicate
that cyclists choose routes based on several criteria (e.g., distance,
number of intersections, road grade, bike facility, safety, and so on).
Stinson and Bhat (2003), Hunt and Abraham (2007), and Broach
et al. (2011) found that cyclists are concerned with travel distance

or time when making route choice decisions, while Hopkinson and
Wardman (1996), Akar and Clifton (2009), Dill and Carr (2003),
Winters et al. (2011), and Lee et al. (2015) indicated that safety
played an important role in a cyclist’s route decision-making pro-
cess. Sener et al. (2009) also found that travel distance/time and
safety were important factors in cyclists’ route choices. Mekuria
et al. (2012) suggested that stress is an important factor in bicycle
trip-making behavior. Using global positioning system (GPS)
tracking data, Hood et al. (2011) developed a path-size logit model
(Ben-Akiva and Birelaire 1999) as a cyclist route choice model and
performed the bicycle traffic assignment on a pre-enumerated route
set generated by the doubly stochastic method (Bovy and Fiorenzo
Catalano 2007).

Because of the diverse set of influential factors in bicycle travel,
many route planners provide a variety of bicycle routes based on
different factors (e.g., least elevation gain route, shortest distance
route, safest route, least accident route, bike-friendly route, lowest
pollution route, route with green space, etc.) to satisfy the require-
ments of different cyclists (see Table 1 for a list of selected online
bicycle trip planners).

All the routes provided by the online bicycle trip planners are
based on a single objective to suit individual cyclists’ level of bik-
ing experience and on a single dominate criterion affecting the
bicycle route choice decision (i.e., shortest route based on distance
or safest route based on some measure of safety). These single-
criterion routes are not suitable for bicycle traffic assignment be-
cause cyclists do not all travel on any one route, but rather on many
routes based on different influential factors that can affect cyclist
route choice decisions. Currently only a few research efforts focus
on network analysis for bicycle trips (e.g., Klobucar and Fricker
2007; Hood et al. 2011; Mekuria et al. 2012). These methods pro-
vide an initial effort to develop a traffic assignment method for
bicycle trips, but they are too simplistic. They are simply based
on the all-or-nothing (AON) assignment method that uses single
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attributes such as distance, safety, or a composite measure of safety
multiplied by distance.

The purpose of this paper is to develop a two-stage traffic as-
signment model by considering key factors (or criteria) in cyclist
route choice behavior. As an initial effort, the first stage considers
two key criteria (distance-related attributes and safety-related
attributes) to generate a set of nondominated (or efficient) routes.
These two criteria are a composite function of subcriteria
[i.e., route distance consists of link distances and intersection delays
combined to give the distance-related attribute, while route safety
makes use of the Highway Capacity Manual (HCM 2010) bicycle
level of service (BLOS) measure, which consists of many subcri-
teria to determine the safety-related attribute]. Nondominated
routes are generated based on the above two key criteria in this

first stage with a biobjective shortest path algorithm (e.g., Ehrgott
et al. 2012). The second stage determines the flow allocation to
the set of nondominated routes. Several traffic assignment meth-
ods (i.e., equal share assignment, travel distance per benefit of
BLOS assignment, reference point assignment, and dominated
area assignment) recently adapted by Raith et al. (2014) from op-
erations research for solving the multiobjective traffic assignment
problem are adopted to determine the flow allocations in a bicycle
network. In addition, the path-size logit model (i.e., a widely
adopted random utility model for discrete choice analysis) is
modified as a multipath assignment for the bicycle traffic assign-
ment problem.

This two-stage process is similar to some existing methods
(e.g., Hood et al. 2011) that use empirical data for bicycle route
generation as a preprocess procedure [i.e., a pre-enumerated route
set generated using different route generation methods such as the
doubly stochastic method by Bovy and Fiorenzo Catalano (2007)
or the breadth-first search link elimination approach by Menghini
et al. (2010)] and a standard traffic assignment procedure (i.e., all-
or-nothing assignment or multipath assignment) for flow alloca-
tion. The two-stage approach adopts a biobjective shortest path
problem based on two key attributes to generate nondominated
routes and various traffic assignment methods for flow allocation
to the nondominated route sets for each origin-destination pair.

The remainder of this paper is organized as follows. After the
introduction, the two-stage bicycle traffic assignment procedure is
presented, followed by two numerical experiments to demonstrate
the features and applicability of the proposed two-stage procedure,
and some concluding remarks.

Two-Stage Bicycle Traffic Assignment Procedure

This section describes the proposed two-stage procedure for bicycle
traffic assignment as shown in Fig. 1. In Stage 1, two key criteria,
namely route distance and route level of service, are used in a bio-
bjective shortest path algorithm to generate a set of nondominated
(or efficient) routes. In Stage 2, several traffic assignment methods

Table 1. Online Bicycle Trip Planners

Route planner Provided routes

Los Angeles Route Planner Avoiding elevation gain
Avoiding pollution
Preferring green space
Avoiding prior bicycle accidents

San Francisco Bicycle Trip Planner Shortest route
Balanced route
Bike-friendly route
Restrictions on gradient

Sacramento Region Bicycle Trip
Planner

Shortest route
Bike-friendly route

Vancouver Cycle Trip Planner Shortest route
Least traffic pollution
Least elevation gain
Vegetated route
Restrictions on gradient

Washington D.C. Bike Planner Shortest route
Least elevation gain
Bike-friendly route

New York City Bike Map Shortest route
Safe route
Safer route

Fig. 1. Two-stage procedure for bicycle traffic assignment
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are adopted to determine the flow allocations to the nondominated
routes generated in Stage 1 to obtain the complete bicycle flows on
the network. The following subsections describe the two key cyclist
route choice criteria, the biobjective shortest path algorithm, and
several traffic assignment methods for flow allocations to the non-
dominated routes.

Two Key Cyclist Route Choice Criteria

Because of the quantity of influential factors in bicycle route choice
decisions, using the conventional single objective as the sole
criterion for determining route choice decisions as with private
motorized vehicles modeling (i.e., the Wardrop user equilibrium
model based on flow-dependent travel times) may not be adequate
in modeling cyclist route choice behavior (Menghini et al. 2010;
Kang and Fricker 2013). From the empirical studies on bicycle
route choice reviewed above, two key criteria (distance-related
attributes and safety-related attributes) were identified to capture
the most important factors affecting cyclist route choice behavior.
These two criteria are a composite function of subcriteria as shown
in Fig. 2.

Route Distance
Route distance is a composite measure of not only the sum of link
distances along the route, but also the turning movement penalties
(or delays) at intersections that the route passes through. For bi-
cycle trips, intersection delays have been shown to be a deterrent
to cyclist route choice behavior. Since link length and intersection
delay measure different qualities (length in meters and time in sec-
onds, respectively), delay is converted to an equivalent distance unit
with an appropriate conversion factor. The route distance criterion
is computed as follows:

drsk ¼
X
a∈A

laδrskaþ
X
a∈INi

X
b∈OUTi

cftid
t
iδ

rs
kaδ

rs
kb; rs ∈RS; k ∈Krs ð1Þ

where drsk = distance (in meters) on route k connecting origin-
destination (O-D) pair rs; la = length (in meters) on link a;
δrskaðδrskbÞ = route-link indicator; 1 if link a (b) is on route k between
O-D pair rs and 0; cfti = penalty conversion factor to equivalent
distance unit (in meters=second) for turning movement t at inter-
section i; dti = penalty (in seconds) of turning movement t at
intersection i; A = set of links; INi and OUTi = sets of links
terminating into and originating out of intersection i; RS = set
of O-D pairs; and Krs = set of routes connecting O-D pair rs.
The route distance in Eq. (1) can be computed by summing link

distances (first term) and intersection penalties (second term) that
make up that route. The first term can further include other attrib-
utes such as the penalty for links with elevation gain or restriction
on gradient as shown in Table 1, while the second term can include
turning movement penalties and/or signalized delays at intersec-
tions (i.e., a predetermined value for each turning movement
and each intersection, which can be obtained from a traffic signal
timing plan or estimated from a traffic assignment procedure with
the capability of accounting for turning penalties/intersection de-
lays). Using the intersection turning movement estimation pro-
cedure developed by Chen et al. (2012), the turning movement
penalty at intersection i is determined by two consecutive route-
link indicators δrskaδ

rs
kb (i.e., link a and link b along route k between

origin r and destination s) without network expansion at each in-
tersection to represent all turning movements. Adding nodes and
links to the network to model intersection turning movements is
a costly scheme. A standard four-leg intersection would require
adding 3 nodes and 12 links to model individual turning move-
ments (left, through, and right) for all approaches. For real net-
works, it will not only increase the size of the network but also
increase the route storage, which will subsequently increase the
computation burden of route generation in Stage 1 and flow allo-
cation in Stage 2.

Route Bicycle Level of Service
There are numerous measures for assessing the safety aspect of bi-
cycle facilities or the suitability of infrastructure for bicycle travel.
Lowry et al. (2012) provided a recent review of 13 methods used in
the literature. All methods attempt to provide a score of the per-
ceived safety of bicycle facilities by using a linear regression with
variables that represent conditions of the roadway and the environ-
ment that affect a cyclist’s comfort level. For this study, the BLOS
developed by the Highway Capacity Manual (HCM 2010) is
adopted as a surrogate measure to account for different attributes
contributing to the safety of bicycle routes. The BLOS measure is
considered as the state-of-the-art method and has been adopted by
many cities in the United States as a guide for bicycle facility de-
sign. However, other bicycle safety measures could also be used in
the proposed framework for modeling cyclist route choice behav-
ior. The route BLOS measure described in Eq. (2) is a composite
measure based on the average bicycle segment (ABSeg) score on a
route, average bicycle intersection (ABInt) score on a route, and
average number of unsignalized conflicts/driveways (Cflt) per
1.61 km (1 mi) on a route as follows:

BLOS ¼ 0.200 · ðABSegÞ þ 0.030 · ½expðABIntÞ�
þ 0.050 · ðCfltÞ þ 1.40 ð2Þ

where la = length of link a; Bsega = bicycle segment score of
link a; ABSeg ¼ P

a∈kla · Bsega=
P

a∈kla = length weighted aver-
age bicycle score on route k; IntBLOSn = bicycle score of inter-
section n; Nk = total number of intersections on route k; and
ABInt ¼ P

nIntBLOSn=Nk = simple intersection average bicycle
score on route k.

The segment and intersection bicycle scores (Bsega and
IntBLOSn) provided in Eqs. (3) and (4) are calibrated based on
the volume and speed of motorized vehicles, width configuration
of bicycle facilities, pavement conditions, number of intersections,
and so on. The derived BLOS score is a relative measurement with-
out score units to evaluate the level of comfort on the cycling
route. The details of the BLOS development can be found in
the National Cooperative Highway Research Program (NCHRP)
report by Dowling et al. (2008)

Fig. 2. Two key criteria affecting cyclists’ route choice decisions
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BSeg ¼ 0.507 ln

�
V

4 · PHF · L

�
þ 0.199Fsð1þ 10.38 · HVÞ2

þ 7.066

�
1

PC

�
2 − 0.005ðWeÞ2 þ 0.76 ð3Þ

where V = directional motorized vehicle volume given in vehicles/
hour (vph); PHF = peak hour factor; L = total number of direc-
tional through lanes; Fs = effective speed factor; HV = proportion
of heavy vehicles in motorized vehicle volume; PC = Federal
Highway Administration’s five-point pavement surface condition
rating; and We = average effective width of outside through lane
given in 0.305 m (1 ft)

IntBLOS ¼ −0.2144 · Wtþ 0.0153 · CD

þ 0.0066

�
Vol15
L

�
þ 4.1324 ð4Þ

whereWt = width of outside through lane plus paved shoulder (in-
cluding bike lane where present); CD = crossing distance (the
width of the side street including auxiliary lanes and median);
and Vol15 = volume of directional traffic during a 15-min period.

The calculation of segment and intersection bicycle scores
requires not only the volume and speed of motorized vehicles,
which are obtained exogenously by solving the multiclass traffic
assignment problem with multiple vehicle types, but also detailed
network topology information (e.g., pavement surface condition,
average effective width of outside through lane, crossing distance,
etc.) as shown in Fig. 3. The interaction effect between motorized
and nonmotorized vehicles is implicitly accounted for in the BLOS
measure, which is used in the first stage for route generation and in
the second stage for traffic assignment.

Stage One: Biobjective Shortest Path Procedure

Solving the biobjective shortest path problem is like solving any
multiobjective optimization problem because a single optimal sol-
ution that dominates all other solutions in all objectives may not
exist. Hence, solving multiobjective problems requires generating
a set of nondominated (or Pareto) solutions. The biobjective short-
est path problem belongs to a class of NP-hard problems (Serafini
1986). Several solution procedures have been developed to solve
this complex problem; these include the label correcting approach
(Skriver and Andersen 2000), the label setting approach (Tung and
Chew 1992), the two-phase method (Ulungu and Teghem 1995),
and the ranking method (Climaco and Martins 1982).

Of the two objectives (or criteria) considered for bicycle
route generation, the route BLOS measure given in Eq. (2) is not

a simple additive sum of the link attributes. Instead, route BLOS is
a composite measure based on the average segment bicycle score
on a route [ABSeg given in Eq. (3)], the average intersection bicycle
score on a route [ABInt given in Eq. (4)], the average number of
unsignalized conflicts/driveways per 1.61 km (1 mi) on a route
(Cflt), and the route-specific constant (1.40). These four terms
(ABSeg, ABInt, Cflt, and 1.40) are combined in a nonadditive man-
ner (i.e., not a simple sum of the link/intersection attributes). The
handling of nonadditive route cost structure (e.g., route BLOS) may
not be easy in the biobjective shortest path problem despite the de-
velopment of the above solution procedures. In this paper, the rank-
ing method proposed by Climaco and Martins (1982) was modified
for solving the multiobjective shortest problem with a nonadditive
route cost structure. In the ranking method, no weights are needed
since the method explicitly generates a set of nondominated routes.
Using a weighted-sum approach, which converts the biobjective
(or multiobjective) into a single objective, can only generate one
optimal route for a given weight combination. Although multiple
routes can be generated by varying the weight combinations, it is
well known in the literature that some nondominated routes in the
duality gap may not be generated by any weight combinations
(Daskin 1995).

The overall modified ranking procedure is described in Fig. 4.
In the first step, the procedure uses the distance-related attributes
(i.e., link distance and intersection turning movement penalty) to
generate a set of realistic routes without exceeding the maximum
allowable bound. In the second step, the corresponding safety-
related attributes are computed for each route in the set to determine
the nondominated routes according to the two key criteria, route
distance and route BLOS.

Stage Two: Bicycle Traffic Assignment Methods

Dial (1979) introduced a model and algorithm for the multicriteria
route choice problem that aims to proportion travel among routes
and modes simultaneously as a traffic assignment model. This
model has been extended to a biobjective (or bicriteria) traffic as-
signment model by adopting a linear value of time (VOT) to convert
travel time to an equivalent monetary unit (Dial 1996, 1997).
Gabriel and Bernstein (1997), on the other hand, adopted a nonlin-
ear VOT function for the nonadditive traffic equilibrium problem.
Nagurney (2000), Nagurney et al. (2001, 2002), and Nagurney and
Dong (2002) introduced variable weights for the multicriteria traffic
assignment problem by assuming a linear generalized cost function
for combining the criteria with variable weights. Recently, Raith
et al. (2014) adapted four multiobjective methods from operations
research for solving the multiobjective traffic assignment problem.
These multiobjective traffic assignment methods have not been

Fig. 3. Input data for computing BLOS Fig. 4. Modified ranking method for generating nondominated routes
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applied to real transportation networks. In this paper, the authors
not only operationalize these methods for solving the bicycle traf-
fic assignment problem, but also compare them to the path-size
logit multipath traffic assignment method, a widely adopted ran-
dom utility model for route choice analysis. Table 2 provides a
summary of the traffic assignment methods for flow allocations
in Stage 2.

Equal Share Assignment Method
The equal share assignment (ESA) method evenly allocates the
O-D demand to all nondominated routes as follows:

frsk ¼ qrs
jKrsj

ð5Þ

where frsk = flow on route k connecting O-D pair rs; qrs = demand
between O-D pair rs; and jKrsj = number of routes in O-D pair rs.
Hence, each nondominated route in O-D pair rs has an equal share
of the O-D demand.

Travel Distance per Benefit of BLOS Assignment Method
The travel distance per benefit of BLOS assignment (TBA) method
allocates the O-D demand according to the distribution of travel
distance per benefit of BLOS relative to the shortest distance route.
The slopes (ρ) between the shortest distance route and other non-
dominated routes in the Pareto set represent the travel distance per
benefit of BLOS. With the computed slopes, ρ, route choice prob-
abilities can be obtained from a predetermined distribution function
as follows:
1. Compute ρrsk between the shortest distance route k̄rs and other

nondominated routes k of O-D pair rs.
2. Compute route choice probability with ρrsk :

a. Pr½k̄rs� ¼ Pr½0 ≤ ρrs
k̄
< ρrs

k̄þ1
� ¼ ∫

ρrs
k̄þ1

0 fðρÞdρ;
b. Pr½krs� ¼ Pr½ρrsk ≤ ρrsk < ρrskþ1� ¼ ∫

ρrs
k̄þ1

ρrsk
fðρÞdρ;

c. Pr½jKrsj� ¼ 1 −PjKrsj−1
k Pr½krs�.

Reference Point Assignment Method
The reference point assignment (RPA) method allocates the O-D
demand based on route attractiveness. Route attractiveness is

determined by the Euclidean distance (ε) to the reference point
(i.e., a virtual or an ideal point), and the route choice prob-
ability is determined by the computed route attractiveness. Raith
et al. (2014) suggested the following three different probability
functions:

Prs
k ¼

P
l¼1ε

rs
l − εrsk

ðjKrsj − 1ÞPl¼1 ε
rs
l

ð6Þ

Prs
k ¼

P
l¼1ðεrsl Þ2 − ðεrsk Þ2

ðjKrsj − 1ÞPl¼1 ðεrsl Þ2
ð7Þ

Prs
k ¼

Q
l≠kε

rs
lP

l1¼1

�Q
l2≠l1 ε

rs
l2

� ð8Þ

The first function given in Eq. (6) is a sum-based approach.
The target εrsk is extracted from the sum of all routes

P
l¼1ε

rs
l ,

and the probability can be determined by dividing the total Euclid-
ean distance of all routes weighted by the number of routes minus
the target route. Alternatively, the probability can be computed
based on the square sum as shown in Eq. (7). Finally, the product
approach is introduced in Eq. (8).

Dominated Area Assignment Method
The dominated area assignment (DAA) method allocates the O-D
demand to the probability obtained from the share space computed
with both objective values. See Fig. 5 for an illustration of the share
space and route choice probability.

Path-Size Logit Assignment Method
The path-size logit assignment (PSLA) method allocates the O-D
demand based on the combined utilities of two objectives via
the path-size logit (PSL) choice function. The multinomial logit
(MNL) model is a widely used route choice model under the
random utility principle. However, it is well known that the major
drawback in applying the MNL model to the route choice problem
is the inability to account for overlapping (or correlation) among
routes. Ben-Akiva and Bierlaire (1999) proposed the PSL model

Table 2. Summary of Traffic Assignment Methods

Method Description Advantage Disadvantage Critical input

Equal share
assignment (ESA)

O-D demand is split evenly
between all nondominated routes

Easy to implement Allocated flows not
dependent on the objective
values

None

Travel distance per
benefit of BLOS
assignment (TBA)

O-D demand is allocated according
to the distribution of travel distance
per unit of better BLOS compared
to the shortest distance route

Enables the flow allocation
to nonsupported routes
(nonconvex points) and
nonextreme supported
routes

Sensitive to the assumed
distribution

Distribution of travel
distance per benefit of
BLOS relative to the
shortest distance route

Reference point
assignment (RPA)

The route attractiveness is
determined by the Euclidean
distance to the reference point, and
the probability is determined by the
route attractiveness relative to the
attractiveness of other routes

Easy and intuitive in
modifying the shares of
demand allocated to each
nondominated route

Sensitive to the reference
point and potential bias with
different objective scales

Reference (ideal) point

Dominated area
assignment (DAA)

Shares of demand are allocated to
the nondominated routes based on
the part of the objective space
dominated by the corresponding
route attribute point

Considers the attributes of
the nondominated routes

Sensitive to the maximum
objective values (extreme
supported routes)

Maximum value for each
objective

Path-size logit
assignment (PSLA)

O-D demand is allocated based on
the combined utilities of two
objectives

Account for the total route
cost values and an economic
interpretation

Requires detailed survey
data to calibrate the
parameters

Parameters for the utility
function
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as an alternative to solve the route overlapping problem in MNL.
The closed-form probability of PSL is expressed as follows:

Prs
k ¼ PSrsk · expðUrs

k ÞP
n
j¼1 PS

rs
j · expðUrs

j Þ
; ∀ k ∈ Krs; rs ∈ RS ð9Þ

where Urs
k ¼ −½ðdrsk Þα · ðBLOSrsk Þβ � = utility of route k between

O-D pair rs; PSrsk ¼ P
a∈k

�
la
Lrs
k

�
·

�
1P

l∈Krs δ
rs
la

�
= path-size factor

of route k between O-D pair rs; Lrs
k = length on route k between

O-D pair rs; and la = length of link a.

Numerical Results

To demonstrate the proposed two-stage bicycle traffic assign-
ment procedure, two networkswere adopted in the numerical experi-
ments. First, a simple network was used to illustrate the features
of the different traffic assignment methods. Then, a real network
was employed to demonstrate the applicability of the two-stage
procedure.

Simple Network

The network shown in Fig. 6 is used to illustrate the features of
different traffic assignment methods for bicycle trips. To simplify

the analysis, the authors assumed that both objectives (i.e., distance
and BLOS) were obtained from a prior analysis. In the left panel,
the numbers in parentheses next to each link number are the link
distance (in meters) and link BLOS, while the turning delay and
intersection BLOS are provided in the right panel. The travel de-
mand from Node 1 to Node 5 is 10 trips.

Using the link characteristics above, the route distance and route
BLOS can be computed as shown in Fig. 7. In this experiment,
there are five dominated routes (i.e., Routes 2, 3, 7, 8, and 9)
and four nondominated routes: Route 1 is the shortest distance
route; Route 4 has the lowest BLOS score (a lower BLOS score
means a higher level of service); and Routes 5 and 6 are nondomi-
nated routes between the two extremes (i.e., they have route dis-
tance and route BLOS between the shortest distance route and
the least BLOS route).

Comparison of Five Bicycle Traffic Assignment Methods
Using these generated nondominated routes, the following bicycle
traffic assignment methods were performed:
• ESA: Uniformly allocate the O-D demand to the four nondomi-

nated routes.
• TBA: Gamma distribution with shape ðkÞ ¼ 2.00, scale ðθÞ ¼

2.97 (i.e., assumed parameters that yield the probability
Pr½ρ ≤ 10.0� ¼ 85%).

• RPA: Route distance and route BLOS for the reference point are
5.0 and 1.90, respectively.

Fig. 5. Illustration of route choice probability using the DAA method

(a) (b)

Fig. 6. Test network and network characteristics: (a) test network and link characteristics; (b) intersection characteristics
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• DAA: Maximum distance is 15.0 and maximum route BLOS
is 5.0.

• PSLA: Parameters α ¼ 0.862, β ¼ 0.117 of the utility function
[obtained from Kang and Fricker (2013)].
Table 3 provides a comparison of allocated flows using the

five traffic assignment methods for bicycle trips. From the table,
all methods allocate more flows to the shortest distance route
(Route 1) except for the ESA and DAA methods. As mentioned,
the ESA method allocates an equal amount of flows to all four non-
dominated routes regardless of the objective values on the routes,
while the DAA method allocates flows according to the share space
of the route, which is sensitive to the maximum objective values of
the extreme supported routes. The TBA and RPA methods allocate
flows to the nondominated routes using the objective values
(i.e., route distance and route BLOS) in different ways. In the
TBA method, the O-D demands are allocated according to the dis-
tribution of travel distance per unit of better BLOS compared to the
shortest distance route. It enables the flow allocation to nonsup-
ported routes (nonconvex points) and nonextreme supported routes.
As for the RPA method, it uses the three probability functions given
in Eqs. (6)–(8) to allocate the O-D demand based on route attrac-
tiveness determined by the Euclidean distance to the reference
point. It is intuitive and easy to modify the shares of demand allo-
cated to each nondominated route. However, both methods do not
explicitly consider actual cyclist route choice behavior (i.e., no cal-
ibration). The PSLA method, on the other hand, requires addi-
tional survey and parameter calibration to fit the cyclists’ choice to
the two key criteria. In this study, the authors adopt the parameter
values from Kang and Fricker (2013). From Table 3, it seems that
both TBA and RPA using Eq. (8) can produce allocated flow results
like those of the PSLA model. In summary, the ESA and DAA
methods, albeit simple, are not suitable for modeling cyclists’ route
choice behavior since they either do not consider the objective val-
ues or they are sensitive to the maximum values when allocating
flows to the nondominated routes. The TBA, RPA using Eq. (8),
and PSLA methods seem to produce flow patterns that not only

account for the objective values but also reflect cyclist route choice
behavior.

Sensitivity Analysis with Different Parameters of the TBA,
RPA, and PSLA Methods
The above analysis indicates that the ESA and DAA methods are
inadequate for the biobjective bicycle traffic assignment problem.
In the following analyses, several sensitivity tests with different
parameters using the TBA, RPA, and PSLA methods were con-
ducted to examine how the parameters affect the route flow allo-
cations. For each assignment method shown in Fig. 8, a figure and a
table are used to illustrate the effect of the parameter setting on the
assignment method and flow allocation to the nondominated
routes, respectively.
• Three cases of the shape and scale parameters of the gamma

probability function for TBA (i.e., Case 1: k ¼ 2.0 and
θ ¼ 2.97; Case 2: k ¼ 2.0 and θ ¼ 1.48; Case 3: k ¼ 2.0 and
θ ¼ 4.45);

• Three cases of the reference point for RPA [i.e., Case 1 =
(5.0, 1.9); Case 2 = (5.0, 2.1); Case 3 = (8.0, 1.9)]; and

• Three cases of the two parameters of the utility function for
PSLA (i.e., Case 1: α ¼ 0.862, β ¼ 0.117; Case 2:
α ¼ 1.362, β ¼ 0.117; Case 3: α ¼ 0.862, β ¼ 1.117) are
performed.
As the probability of Pr½ρ < 10.0� increases in the TBA method

(i.e., from 65% inCase 3 to 85% inCase 1 and from 85% inCase 1 to
99% in Case 2), the flow on the shortest route (i.e., Route 1) is sig-
nificantly increased from 3.07 in Case 3 to 4.99 in Case 1 and from
4.99 in Case 1 to 8.48 in Case 2. Compared to other routes, the flow
on Route 1 was more highly affected by the adopted parameter
values of the assumed gamma distribution. In the RPA method,
the allocated flows are also sensitive to different reference points
for calculating route attractiveness. Because route attractiveness is
determined by the Euclidean distance to the reference point and
because the probability is determined by the route attractiveness rel-
ative to the attractiveness of other routes, a nondominated route
closer to the reference point would have a higher probability. For
the PSLAmethod, it appears that the distance parameter has a greater
effect than the BLOS parameter in the utility function. That is, in-
creasing α from 0.862 in Cases 1 and 3 to 1.362 in Case 2 signifi-
cantly increases the probability of Route 1 from 0.604 in Case 1 and
from 0.577 in Case 3 to 0.914 in Case 2. However, increasing β
from 0.117 in Cases 1 and 2 to 1.117 in Case 3 only increases
the probability of Route 5 from 0.306 in Case 1 and from 0.086
in Case 2 to 0.355 in Case 3. Overall, all three methods seem to
be sensitive to the parameter setting with respect to its assignment
method.

Route # Link member 
Route 

distance 
(meter) 

Route 
BLOS 

1 1-5 6.00 2.33 

2 1-4-10 10.30 2.34 

3 1-4-9-7 12.50 2.29 

4 3-8-5 12.50 1.88 

5 3-10 6.80 2.17 

6 3-9-7 9.00 1.98 

7 2-7 7.00 2.23 

8 2-6-10 8.80 2.33 

9 2-6-8-5 12.50 2.12 

Fig. 7. Estimated route distance and route BLOS and the corresponding generated nondominated routes

Table 3. Comparison of Allocated Flows Using Five Assignment Methods

Route
number

Route
distance

Route
BLOS ESA TBA

RPA

DAA PSLAEq. (6) Eq. (7) Eq. (8)

1 6.00 2.33 2.50 4.99 3.08 3.28 4.96 3.78 6.04
5 6.80 2.17 2.50 2.87 2.91 3.19 2.97 0.70 3.06
6 9.00 1.98 2.50 1.70 2.41 2.64 1.35 0.87 0.84
4 12.50 1.88 2.50 0.44 1.60 0.89 0.72 4.64 0.06
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Comparison between Bicriteria and Single-Criterion
Assignment Results
In this section, the authors compare the link flow pattern between
three bicriteria assignment methods (i.e., TBA, RPA, and PSLA)
and two existing single-criterion AON assignments using route
distance and route BLOS (i.e., AON-distance and AON-BLOS).
The mean absolute error (MAE) and the root-mean-square error
(RMSE) were adopted as statistical measures for assessing the link
flow differences between each pair of methods. In Fig. 9, RMSE
values are shown in the upper triangle, while the MAE values are
shown in the lower triangle. The magnitude of the error is indicated
by the size of the circle (i.e., a larger circle is associated with a
larger error). In general, there is a difference between the single-
criterion and bicriteria assignment methods as indicated the larger
RMSE (first three columns of the first two rows) and MAE (last
three rows of the last two columns) values, implying that the num-
ber of criteria used to generate routes and allocate flows is an
important factor. Within the three bicriteria assignment methods,
RPA and PSLA methods have the most similar link flow pattern
as indicated by the lower RMSE and MAE values (i.e., 4.80
and 2.09). As for the two single-criterion AON assignment meth-
ods, the link flow patterns are quite different, as indicated by the

Fig. 8. Comparison of allocated flows with different parameters on the TBA, RPA, and PSLA assignment methods

Fig. 9. Link flow comparison between bicriteria (bold text) and single-
criterion (unbolded text) assignment methods
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highest RMSE and MAE values (i.e., 41.91 and 19.64), im-
plying that the two criteria (route distance and route BLOS) give
quite different routes, which lead to quite different assignment
results.

Winnipeg Network
In this section, the two-stage approach is applied to a real network
in the city of Winnipeg, Canada. The Winnipeg network, shown in
Fig. 10, consists of 154 zones; 1,067 nodes; 2,555 links (1,943

(a)

(b) (c)

Fig. 11. Generated routes analysis based on route distance and route BLOS: (a) route distribution by distance; (b) route distribution by BLOS;
(c) sample routes generated for O-D pair (1-8)

Fig. 10. Winnipeg network with bike lanes
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links without centroid connectors); and 4,345 O-D pairs for motor-
ized vehicles. The network structure, O-D trip table for motorized
vehicles, and link performance parameters are from the Emme/4
software. The bicycle network was assembled based on information
obtained from the City of Winnipeg (2013b). Among the 2,555
links, 541 links include bike routes or bike lanes. Using the 2006
census data (City of Winnipeg 2013a), the bicycle O-D demand is
created based on the gravity model with the gamma function.

The two-stage bicycle traffic assignment procedure was coded
in Intel Visual FORTRAN XE and runs on a 3.60 GHz processor
and 16.00 GB of random access memory (RAM). The total com-
putational effort required was 610–620 s for different assignment
problems, about 95% of which is spent in the first stage.

Stage One: Bicycle BLOS Analysis and Route Generation
Results
Fig. 11 shows the generated route results in the Winnipeg net-
work. To compute the BLOS measures in Eqs. (3) and (4), traffic

conditions (e.g., motorized vehicle volumes) and space availability
(e.g., lane width) were obtained from the multiclass traffic as-
signment results provided by Emme/4 software and Google Earth,
respectively. A segment with a high motorized vehicle volume
typically gives a higher BLOS value, while links with a larger out-
side lane width typically give a lower BLOS value. After evaluating
the BLOS measures, the modified rank method was performed to
generate the nondominated routes in terms of route distance
and route BLOS for each O-D pair in the Winnipeg network
[Figs. 11(a and b)]. In total, there are 58,846 nondominated routes.
Longer distance O-D pairs typically have more nondominated
routes, while shorter distance O-D pairs have fewer nondominated
routes. As for the route distribution in terms of BLOS, most routes
are between 2.5 and 4.0, which correspond to BLOS of B, C,
and D. Fig. 11(c) provides an illustration of the nondominated
routes for O-D pair (1-8). Route 1 has the shortest distance
(1.11 km) and the worst BLOS (3.5), while Route 5 has the best
BLOS (2.6) and the longest distance (1.58 km).

(a) (b)

(c)

(d)

Fig. 12. Link flow patterns of three assignment methods: (a) link flow pattern using TBA; (b) link flow pattern using RPA; (c) link flow pattern using
PSLA; (d) link flow distribution
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Stage Two: Bicycle Traffic Assignment Results
Using the generated nondominated routes in the first stage, three
bicycle traffic assignment methods were performed: TBA, RPA
with Eq. (8), and PSLA with the following assumed parameters:
• TBA: Gamma distribution with α ¼ 1.50; β ¼ 0.32

(i.e., the assumed parameters give the following Pr½ρ ≤
1.0 ðkmper BLOSÞ� ¼ 90%).

• RPA: Route distance and route BLOS for the reference point
are minfdrsk g and minfBLOSrsk g.

• PSLA: Parameters for the utility function are α ¼ 0.862; β ¼
0.117 (Kang and Fricker 2013).
Figs. 12(a–c) depict the link flow patterns of TBA, RPA, and

PSLA, while Fig. 12(d) compares the link flow distributions of
the three assignment methods. Visually, the three link flow patterns
look similar.

The main differences from Fig. 12(d) are that TBA and RPA
allocate a higher percentage of links to low flow values (i.e., 0–
10 units), while PSLA allocates a higher percentage of links to
medium flow values (i.e., 10–50 units). For the high flow values
(i.e., 50–100þ), the three assignment methods identify similar
numbers and locations of links in the network as shown by the red
color-coded links in Figs. 12(a–c).

In terms of the flow distributions allocated by route distance and
route BLOS, Fig. 13 shows the results of the three assignment
methods. The TBA method tends to allocate more flows to the
shorter distance routes (0–3 km) with a higher value of BLOS
or a lower level of safety (3–4.5þ), while both the RPA and PSLA
methods seem to allocate similar percentages of flows by route
distance with some variations by route BLOS. The aggregate mea-
sures, total traveled distance (TTD), average traveled distance
(ATD), total traveled BLOS (TTB), and average traveled BLOS
(ATB), were also computed for the three traffic assignment
methods (see the bottom of Fig. 13). Similar to route flow distri-
bution, the TBAmethod has the lowest TTD and ATD and the high-
est TTB and ATB. On the other hand, both the RPA and PSLA
methods have similar TTD (20,142 and 20,161 km) and ATD
(3.61 and 3.62 km), but the RPA method allocates a slightly lower
TTB and ATB than those of the PSLA method (20,299 and 20,626
for TTB and 3.64 and 3.70 for ATB). Overall, the results of the
Winnipeg network demonstrate the applicability of the two-stage
bicycle traffic assignment procedure with the flexibility of using
different traffic assignment methods.

Concluding Remarks

In this paper, the authors presented a two-stage bicycle traffic as-
signment model with consideration of cyclist route choice behavior.
In Stage 1, two key criteria (e.g., route distance and route BLOS)
were considered to generate a set of nondominated paths using a
biobjective shortest path procedure. In Stage 2, five traffic assign-
ment methods (equal share assignment, travel distance per benefit
of BLOS assignment, reference point assignment, dominated area
assignment, and path-size logit assignment) were adopted for flow
allocations to the set of nondominated routes identified in Stage 1.

From the first case study, the authors found that the ESA and
DAA methods, albeit simple, are not suitable for modeling cyclists’
route choice behavior since these methods either do not consider
the objective values or are sensitive to the maximum values when
allocating flows to the nondominated routes. The TBA, RPA using
Eq. (8), and PSLA methods appeared to produce flow patterns that
not only account for the objective values but also reflect cyclists’
route choice behavior.

From the second case study, the authors found that there are
strong correlations in terms of flow allocations among the TBA,
RPA using Eq. (8), and PSLA methods, but that the RPA method
seems to allocate a similar flow pattern as the PSLA method. Over-
all, the results of the Winnipeg network demonstrate the applicabil-
ity of the two-stage bicycle traffic assignment procedure with the
flexibility of using different criteria in the first stage to generate
nondominated paths and different traffic assignment methods in
the second stage to allocate flows. However, since these results
have not been validated with real bicycle data, care should be used
when interpreting these assignment results with assumed or bor-
rowed parameters from other studies. The difficulty of validating
the model results is the need to have a credible and accurate trip
table as an input to the bicycle traffic assignment model. This
difficulty is echoed in the work of Hood et al. (2011) using
San Francisco as a case study. The validation of the trip assignment
results against bicycle counts was poor because of the lack of an
accurate bicycle trip table. Hence, it is necessary to develop a bi-
cycle trip table estimation method that can be used in conjunction
with a bicycle traffic assignment model.

In this paper, the HCM’s bicycle level of service was chosen
as a surrogate measure for modeling cyclists’ perception of safety
(or risk) on different bicycle facility types. It would be helpful to

TBA RPA PSLA 

TTD 18,607 km 20,142 km 20,161 km

ATD 3.34 km 3.61 km 3.62 km 

TBA RPA PSLA 

TTB 21,054  20,299 20,626 

ATB 3.78 3.64 3.70 

(a) (b)

Fig. 13. Route flow distribution in terms of route distance and route BLOS: (a) route distance; (b) route BLOS (note: ATB = average traveled BLOS;
ATD = average traveled distance; TTB = total traveled BLOS; TTD = total traveled distance)
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consider other measures, such as the bicycle compatibility index
(Harkey et al. 1998) or the stress indicator (Mekuria et al. 2012),
and to examine their effect on nondominated route generation and
flow allocations to the bicycle network. Additional criteria, such as
route pollution linked to health risks (Pankow et al. 2014) and route
cognition using the concept of space syntax (Raford et al. 2007),
could be considered to model bicycle route choice behavior in the
route generation procedure. In addition, more tests should be con-
ducted with different network topologies with different bicycle
facilities and travelers’ characteristics. The current two-stage bi-
cycle traffic assignment model did not consider the effect of con-
gestion (i.e., link travel times are independent of bicycle flows). As
the number of cyclists increases, it would be necessary to consider
flow-dependent link travel times to capture the effect of conges-
tion in the two-stage bicycle traffic assignment procedure. Also,
multiple user classes should be considered to differentiate different
levels of biking experience as well as relevant criteria to reflect
different user classes’ bicycle route choice behavior. These exten-
sions will further improve the realism of the two-stage bicycle traf-
fic assignment model developed in this paper.
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