
Smart card-based secure authentication protocol
in multi-server IoT environment

Won-il Bae1,2 & Jin Kwak2,3

Received: 12 May 2017 /Revised: 8 November 2017 /Accepted: 14 December 2017

The Author(s) 2017. This article is an open access publication

Abstract In recent years, the internet of things has been widely utilized in various fields, such
as in smart factories or connected cars. As its domain of application has expanded, it has begun
to be employed using multi-server architectures for a more efficient use of resources. However,
because users wishing to receive IoT(Internet of Things) services connect to multi-servers over
wireless networks, this can expose systems to various attacks and result in serious security
risks. To protect systems (and users) from potential security vulnerabilities, a secure authen-
tication technology is necessary. In this paper, we propose a smart card-based authentication
protocol, which performs the authentication for each entity by allowing users to go
through the authentication process using a smart card transmitted from an authentica-
tion server, and to login to a server connected to the IoT. Furthermore, the security of
our proposed authentication protocol is verified by simulating a formal verification
scenario using AVISPA(Automated Validation of Internet Security Protocols and Ap-
plications), a security protocol-verification tool.

Keywords User authentication .Multi server . Internet of things . Formal verification . Security

1 Introduction

By enabling devices such as machines to exchange information with embedded software,
sensors, and so on via internet networks and consequently enhancing the functionality and

https://doi.org/10.1007/s11042-017-5548-2

* Jin Kwak
security@ajou.ac.kr

Won-il Bae
wibae.isaa@gmail.com

1 Department of Computer Engineering, Ajou University, Suwon, South Korea
2 Industry-University Cooperation, Ajou University, 260 Worldcup-ro, Yeongtong-gu, Suwon-si,

Gyunggi-do 16499, South Korea
3 Department of Cyber Security, Ajou University, Suwon, South Korea

Multimed Tools Appl (2020) 79:15793–15811

Published online: 26 2017December
/

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-017-5548-2&domain=pdf
mailto:security@ajou.ac.kr

performance of individual devices, the IoT enables the provision of new intelligent services. In
recent years, as the applications of the IoT have expanded, it has undergone considerable
progress through interactions with a diverse range of other industries, and has been employed
in various applications such as smart factories, intelligent buildings, and connected cars [11].

Although the IoT is utilized in various fields, the performance of its sensors is not
particularly high. Therefore, it is employed with multi-servers, in order to increase the resource
efficiency. In particular, in terms of reducing the number of operations, the authentication
protocol of a smart card-based multi-server environment involves the operations of one-way
functions and the exclusive or (XOR) function. Thus, this authentication protocol has been the
subject of ongoing research [1, 3–6].

However, if the multi-server authentication system is vulnerable, then attacks such as user
impersonation, session key leakages, and replay attacks may occur in the process of
connecting to the multi-server where the user stores IoT information over wireless networks
[8]. This may result in leakages of confidential information by an unauthorized attacker, data
sniffing and forgery/tampering, and other attacks during the communication process, and may
lead to issues with the service availability of the multi-server [9, 13, 14]. Therefore, to mitigate
the potential security vulnerabilities in a multi-server IoT environment, a secure authentication
protocol is required.

In this study, we analyze the threats that may occur in multi-server IoT environment
networks during the communication process, and propose a secure authentication
protocol that can respond to such security threats. In addition, we verify the security
of the proposed protocol by performing a formal verification of the proposed authen-
tication protocol using the AVISPA.1

In the authentication protocol proposed in this paper, a user logs in to the IoT server using a
smart card, and the authentication server can verify the user and the IoT server. By generating
the same session key, the authentication process between the user, the IoT server, and the
authentication server is performed. The composition of this paper is as follows.

In Section 2, we describe the security threats that may occur in a multi-server IoT
environment and explain AVISPA, a formal verification tool for security protocols. In
Section 3, we propose a secure authentication protocol for multi-server IoT environments,
and describe the authentication protocol specified by the HLPSL(high-level protocol specifi-
cation language). In Section 4, we describe the security analysis of the proposed protocol, and
in Section 5, we simulate the formal verification of the authentication protocol via AVISPA.
Finally, our conclusions are listed in Section 6.

2 Related work

2.1 Multi-server IoT security threats

The vast amount of data collected by sensors connected to a multi-server can be considered an
attractive target for attackers. In a multi-server IoT environment, a user may access the multi-
server over a wireless network, which can be a serious security threat. The security threats that

1 AVISPA, DIST, Eidgenoessische Technische Hochschule Zuerich (ETHZ), CASSIS, Siemens
Aktiengesellschaft, http://www.avispa-project.org/

Multimed Tools Appl (2020) 79:15793–1581115794

http://www.avispa-project.org

can occur in the network communication process of a multi-server IoT environment are as
follows [7, 12].

& User impersonation attack

In this kind of attack, assuming that the malicious attacker has knowledge of
the user’s login request message from the previous session with the IoT server, the
attacker masquerades as the authorized user by deriving the login request message
of the current session.

& Session key disclosure attack

A public channel can occur when a user connects to the server over a wireless network.
In this public channel, a malicious attacker can leak the session key by extracting the
secret values. Through this attack, leakage and forgery/tampering of data stored on the
server can occur.

& Denial-of-service attack

If one or more attackers generate a large number of identical login request messages
using their smart cards and send them to the server connected to the sensor, then there may
be a problem in service availability in the server.

& Replay attack

In this type of attack, an attacker can authenticate the user from the server connected to
the sensor by storing the message that was communicated to the authentication server in
the previous session for the authenticated user, and retransmitting the message to the
current session or a subsequent session.

& Server spoofing attack

A malicious attacker can impersonate the IoT server when the user logs in. Therefore,
the attacker can masquerade as the server to obtain the user login information.

& Invasion of privacy

Invasion of privacy is a violation of privacy through the revelation of private material,
exposing various information and communication subjects of the user on the communi-
cation networks between the user and the server.

2.2 AVISPA

AVISPA is a tool that formally verifies the security of the internet protocol, and
notifies the user with messages when it discovers attacks against the protocol [10].
AVISPA is composed of independently developed modules and the HLPSL, which is
used as the input for the protocol specification. HLPSL is a module-type role-based

Multimed Tools Appl (2020) 79:15793–15811 15795

language that can express various operators, as well as data flow and structure,
intruder models, and complex security properties [15].

The roles can be divided into two types according to their purposes. One type consists of
descriptions of the values required to describe each entity, and performs message transmission/
reception using SND and RCV commands. The other role is to contain the overall scenario,
and include the contents of the declared constants, the information known to an attacker, and
the verification properties for the authentication protocol.

Furthermore, AVISPA is automatically generated in intermediate format (IF) via the HLPSL2IF
translator, and used as input to the OFMC(On-the-flyModel-Checker), CL-AtSe(CL-based Attack
Searcher), SATMC(SAT-based Model-Checker), and TA4SP(Tree Automata-based Protocol
Analyser) models. The schematic of its architecture is shown in Fig. 1 [2].

3 Proposed authentication protocol

The authentication protocol proposed in this paper consists of the user Ui, IoT server Sj, and
authentication server CS. When the user logs into the IoT server, the protocol performs
authentication for each entity. Table 1 lists the parameter values used in the proposed
authentication protocol.

There are three phases in the proposed authentication protocol, and these are carried out in
the following order: registration, login and authentication, and password change. CS is an
authentication server that can be trusted, and it is responsible for the registration and authen-
tication of the user and the IoT server. In addition, because the proposed authentication
protocol employs timestamps, the authentication server CS, user Ui and IoT server Sj performs
time synchronization.

3.1 Registration phase

During the registration phase, the user Ui and the IoT server Sj request registration to the
authentication server CS. In return, the authentication server issues a smart card to the user Ui,

Fig. 1 Architecture of the AVISPA tool

Multimed Tools Appl (2020) 79:15793–1581115796

and sends the necessary values for the login and authentication phases to the IoT server Sj .
This process is illustrated in Fig. 2.

STEP 1. Sj sends its identification value SIDj to CS via a secured channel, and CS computes
the Serinforj value that contains the information on the IoT server send to Sj via
secure channel.

Serinfor j ¼ h SIDj∥x
� � ð1Þ

STEP 2. Ui chooses the user IDi and password Pi, computes EncPassi, and sends the
registration request message (IDI, EncPassi,UIDi) with the user’s anonymity
values to CS.

EncPassi ¼ h IDi∥h Pið Þð Þ ð2Þ

STEP 3. CSgenerates the user’s secret information value, Userinfori, and stores UIDi,
Userinfori, EncPassi, h(∗), and h(x) in the smart card.

Table 1 Notation used in the proposed protocol

Notation Description

Ui i th user
Sj j th user
CS Control server
IDi Identity of Ui

Pi Password of Ui

UIDi Anonymity value of Ui

SIDj Identity of SIDj

x Master secret key chosen by CS
Ts Timestamp
Ni1 Random number generated by Ui’s smart card for session key agreement
Ni2 Random number generated by Sj for session key agreement
Ni3 Random number generated by CS for session key agreement
SK Common session key shared among Ui, Sj, and CS
h(*) Collision-free one-way hash function
⨁ Exclusive OR operation
∥ Message concatenation operation

Fig. 2 Registration phase

Multimed Tools Appl (2020) 79:15793–15811 15797

Userinfori ¼ h EncPassi∥xð Þ ð3Þ

STEP 4. CS stores the user secret information value Userinfori, the user’s anonymity value
UIDi, and the status-bit value in the verifier table. If the user performs the
registration process, then the status-bit value is stored as 1, and if there is no
registration then the value is stored as 0. The verifier table is presented in Table 2.

STEP 5. CS issues the smart card to the user Ui.

3.2 Login and authentication phase

During the login and authentication phase, the verification of the legitimate smart card holder
is performed. In order to login, the user Ui sends a login request message to the IoT server Sj,
and CS performs the verification of each entity. Then, Ui, Sj, and CS all generate the same
session key (Fig. 3).

STEP 1. Ui inserts the smart card into the card reader, and enters their ID, IDi, and
password, Pi. The smart card computes EncPassi

′, and compares the informa-
tion with EncPassi contained in the smart card. If the information matches, then
the user is verified as the legitimate owner of the smart card. If the information
does not match, then the session is terminated.

EncPassi
0 ¼ h IDi∥h Pið Þð Þ ð4Þ

EncPassi ¼ ?EncPassi
0 ð5Þ

STEP 2. The user Ui who is verified as the legitimate owner of the smart card, selects a
random value Nj1 to be generated for each session, and computes Ai and Verui with
h(x) and UserInfori contained in the smart card and the chosen random value Nj1.
Then, the timestamp Ts is generated.

Ai ¼ Userinfori⊕h xð Þ⊕Ni1 ð6Þ

Verui ¼ h h xð Þ‖Ni1

� �
ð7Þ

Table 2 The verifier table

Anonymity value User-verifier Status-bit

⋮ ⋮ ⋮
UIDi Userinfori 0/1
UIDi Userinforj 0/1
⋮ ⋮ ⋮

Multimed Tools Appl (2020) 79:15793–1581115798

STEP 3. The user Ui configures the login request message (Ai, Verui, UIDi,Ts) with his/her
anonymity value UIDi, computes Ai and Ts, and sends the message to the IoT
server Sj.

STEP 4. The IoT server Sj that received the login request message from Ui selects a random
value Ni2 to be generated for each session, and computes Bi and Versi using the
Serinforj value received in the registration phase.

Bi ¼ Serinfor j⊕Ni2 ð8Þ

Versi ¼ h h SIDj‖x
� �

‖Ni2

� �
ð9Þ

STEP 5. Si sends the login request message (UIDi, Ai, Verui, Bi, Versi, SIDj, Ts) to
CS. The message is configured for the Ai, UIDi (received from the user
Ui), Si’s own identification value SIDj, Bi (which was generated earlier),
and the timestamp Ts.

STEP 6. The CS that received the login request message from Si computes Ts′ = Ts + 1, and
then confirms whether ⊿Ts ≥ Ts′ − Ts. Here, Ts′ is the stamp for the time the server
received the login message, and ⊿Ts is the minimum authentication time consid-
ering the time for the login message transmission.

STEP 7. CS generates Serinforj
′ using the received SIDj value and its own master

key, and extracts the Ni2 value via the Bi value received from the login
request message.

Serinfor j
0 ¼ h SIDj∥x

� � ð10Þ

Ni2
0 ¼ Serinfor j

0
⊕Bi ð11Þ

STEP 8. By using the computed Ni2
′ value, CS generates the Versi

′ value, and if this matches
the Bi value received by the login request message, it is authenticated as the
legitimate IoT server Sj; if not, the session is terminated.

Fig. 3 Login and authentication phase

Multimed Tools Appl (2020) 79:15793–15811 15799

Versi
0 ¼ h h SIDj‖x

� �
‖Ni2

0
� �

ð12Þ

Versi ¼ ?Versi
0 ð13Þ

STEP 9. By using the UIDi of the login request message, CS can search for Userinfori from
the verifier table generated in the registration phase.

STEP 10. CS selects the random value Ni3 and computes the N
0
i1value using the received Ai

value, the generated h(x) and the previously retrieved Userinfori. Using this

computed N
0
i1 value and h(x), it generates the Verui

′ value. Next, if this matches
the Verui value received with the login request message, then it is authenticated as
a legitimate user, and generates the following session key SK. If it does not match,
then the session is terminated.

N
0
i1 ¼ Userinfori⊕h xð Þ⊕Ai ð14Þ

Verui
0 ¼ h h xð Þ‖Ni1

0
� �

ð15Þ

Verui ¼ ?Verui
0 ð16Þ

SKi ¼ h h A‖h xð Þ
� �

⊕h Ni1⊕Ni2⊕Ni3ð Þ
� �

ð17Þ

STEP 11. The CS generates the timestamp Ts. Next, it computes Ci, Di, and Ei, and sends
the mutual authentication message (Ci, Di,Ei, Ts) to Si.

Ci ¼ Ni1⊕Ni3⊕h SIDj⊕Ni2
� � ð18Þ

Di ¼ h A‖h xð Þ
� �

⊕h SIDj⊕Ni2
� � ð19Þ

Ei ¼ Ni2⊕Ni3⊕h A‖h xð Þ
� �

ð20Þ

STEP 12. Si receives the mutual authentication message, and computes (Ni1⊕Ni3)
′ via its

own SIDj value and the random value Ni2.

Ni1⊕Ni3ð Þ0 ¼ Ci⊕h SIDj⊕Ni2
� � ð21Þ

STEP 13. Si computes h(A‖h(x))′ via its own SIDj value and the random value Ni2, using the
Di value received in the mutual authentication message. It generates the session
key SK by on operating its own random value Ni2 with the previously computed
(Ni1⊕Ni3)

′. Next, Si computes Ei and sends a login response message (Ei, Ts) to
the user Ui.

Multimed Tools Appl (2020) 79:15793–1581115800

h A‖h xð Þ
� �0

¼ Di⊕h SIDj⊕Ni2
� � ð22Þ

SK
0 ¼ h h A‖h xð Þ

� �0

⊕h Ni1⊕Ni2⊕Ni3ð Þ
� �0

ð23Þ

Ei ¼ Ni2⊕Ni3ð Þ⊕h A‖h xð Þ
� �

ð24Þ

STEP 14. After receiving the login request message from the Si, the user Ui computes Ts′ =
Ts + 1 to confirm that ⊿Ts ≥ Ts′ − Ts. Ts′ is the timestamp for when the login
message is received by the server, and ⊿Ts is the minimum authentication time
considering the transmission time for the login message.

STEP 15. By using the Ei value received in the mutual authentication message, Ui can
compute the (Ni2⊕Ni3)

′ value via the Ai value generated by the user and the
h(x) value contained in the smart card.

Ni2⊕Ni3ð Þ0 ¼ Ei⊕h A‖h xð Þ
� �

ð25Þ

STEP 16. Ui can operate on its own random value Ni1 with (N2⊕N3)
′ that was computed

earlier, and can generate the session key SK via its own Ai value and the h(x)
value contained in the smart card. Therefore, the user Ui, IoT server Sj, and
authentication server CS can perform the authentication by generating the same
session key.

SK
0 0 ¼ h A‖h xð Þ

� �
⊕ Ni1⊕Ni2⊕Ni3ð Þ0 ð26Þ

3.3 Password change phase

The password change phase is the process performed when the user Ui wants to change their
password Pi to a new one Pi

NEW. The process is illustrated in Fig. 4.
STEP 1. The user Ui inserts a smart card into the card reader and inputs their ID, IDi, and

password, Pi. The smart card computes EncPassi and generates Userinfori
′

using the computed EncPassi.

EncPassi ¼ h IDi∥h Pið Þð Þ ð27Þ

Userinfori
0 ¼ h EncPassi∥xð Þ ð28Þ

STEP 2. The smart card compares the generated Userinfori
′ with Userinfori contained in the

smart card. If these match, then the user is verified as the legitimate owner of the
smart card, and the user can change the password. The smart card requests a new
password.

Multimed Tools Appl (2020) 79:15793–15811 15801

Userinfori ¼ ?Userinfori
0 ð29Þ

STEP 3. Once verified as the legitimate smart card owner, the user enters the new password
Pi

NEW, generates EncPassi
NEW, and enters this into the smart card.

EncPassiNEW ¼ h IDi∥h Pi
NEW� �� � ð30Þ

STEP 4. By using the EncPassi
NEW generated in the above process, the new

Userinfori
NEWcan be computed, and the existing Userinfori is replaced with

Userinfori
NEW, which is stored in the smart card. In this manner, the password

change process is completed.

Userinfori
NEW ¼ h EncPassiNEW∥x

� � ð31Þ

3.4 Authentication protocol specification utilizing HLPSL

In this study, we use the AVISPA web tool for the formal verification of the authentication
protocol. The AVISPA web tool can specify the authentication protocol with the CAS and
HLPSL languages. This section explains the registration, and login and authentication phases
of the proposed authentication protocol written in the HLPSL language.

Because AVISPA is a role-based language, it assigns a role to each participant. It is
composed of role_U, which represents the user, role_S, which is assigned to the IoT server,
and role_CS, representing the authentication server. In the role environment (), the constants
used by the specified protocol are defined, and can specify the property values known to the
attacker. In addition, secrecy_of and weak_authentication_on are specified depending on the
goal, in order to add the secrecy () and witness () functions. These functions are used to verify
the security and authentication. The security and authentication are the properties of the
protocol’s verification.

Fig. 4 Password change phase

Multimed Tools Appl (2020) 79:15793–1581115802

In the part where the formula is specified, concatenation can be expressed as B.^, xor
operates as Bxor(A, B)^ and the exponent EN operates as Bexp(E, N).^ In addition, in the part
where each role is specified, the message specified as RCV can be transmitted, and the
received contents can be expressed as SND.

This section deals with the specifications for the sent and receivedmessages, and for the security
properties. Table 3 details the specification of the user, and Table 4 concerns the specification of the
IoTserver. Table 5 presents the specification of the authentication server, and Table 6 illustrates the
role environment, which contains the specified constants. Finally, Table 7 shows the specification
of the goal, by specifying a function to verify the authentication protocol.

4 Security analysis

4.1 User impersonation (i.e., masquerading) attack

An attacker impersonates the authorized user by extracting the login request message of the
current session, assuming that he/she knows the login request message from the previous
session of the IoT server.

Assume that the attacker has learned the login message (UIDi, Ai, Ts) of the previous
session via the public channel. Then, because the malicious attacker cannot compute
EncPassi, the random value Ni1, and h(x), they cannot compute Ai, which is composed of
theUserinfori⊕ h(x)⊕Ni1 operation. Therefore, they cannot extract the login request message
for the current session by impersonating the authorized user, and the proposed authentication
protocol is secure against user impersonation attacks.

4.2 Session key disclosure attack

Assuming that an attacker can intercept and steal Ai, Bi, Ci, Di, and Ei through the previous
session via public channels, they still cannot extract the session key. The attacker cannot

Table 3 Specification for the user

Multimed Tools Appl (2020) 79:15793–15811 15803

compute Userinfori and Ni1 through the known value of Ai because they cannot determine
h(X). Furthermore, the attacker cannot compute the value Ni2 via the publicly accessible Bi
value, because they cannot determine Serinforj. For the same reason, the attacker cannot
extract the random values Ni1, Ni2, and Ni3 selected by the user Ui, IoT server Sj, and the
authentication server CS, respectively, from the published Ci, Di, and Ei values and h(x)
generated by the authentication server CS. Therefore, the proposed authentication protocol is
secure against such attacks involving session key leakages.

4.3 Denial-of-service (Dos) attack

When an attacker uses their own smart card to send a large number of identical login request
messages (AK1, UIDK1,Ts), (AK2, UIDK2,Ts),…, (AKn, UIDKn,Ts), the IoT server Sj may
experience problems with its availability. However, in the registration phase the value of the
status bit is stored as 1, using the verifier table given in Table 2. In this manner, the proposed
protocol is designed not to receive such login request messages. Thus, the proposed authen-
tication protocol is secure against the denial-of-service attacks.

4.4 Replay attack

The proposed authentication protocol uses the timestamp for the authentication of messages in
communications between the user Ui, the IoT server Sj, and the authentication server CS.

Table 4 Specification for the IoT server

Multimed Tools Appl (2020) 79:15793–1581115804

Therefore, if an attacker participates in a session to perform eavesdropping (i.e., sniffing) or
forgery/tampering attacks on transmitted or received messages, the value of the timestamp Ts
changes, and the protocol terminates the session.

Table 5 Specification for the authentication server

Table 6 Specification for the role environment

Multimed Tools Appl (2020) 79:15793–15811 15805

4.5 Server spoofing attack

In a server spoofing attack, an attacker impersonates an IoT server to obtain the desired
information. However, in the login phase of the proposed authentication protocol, the authen-
ticated user is identified via the verification of the smart card as EncPassi = ? EncPassi

′.
Because the session is terminated if this does not match, the attacker cannot masquerade as
the IoT server. Thus, the proposed authentication protocol is secure against server spoofing
attacks, because it verifies the IoT server Si by checking Versi = ? Versi

′ with the CS.

4.6 Invasion of privacy

Invasion of privacy is the infringement of privacy by exposing information regarding the
subject during a communication procedure on a network. However, the proposed authentica-
tion protocol uses the identifiers of the user and the IoT server, UIDi and SIDj, and the
anonymity value, to perform the communication procedure. Therefore, when the
transmitted/received messages on a network are thought to have been eavesdropped, the
communication subject cannot be identified, thus ensuring the privacy of the user and the
IoT server.

5 Experimental result through formal verification

In this section, we analyze the experimental results by employing AVISPA, a formal verifica-
tion tool for the authentication protocol, where the registration phase and login and authenti-
cation phase are specified using the HLPSL language, as described in Section 3.4.

The result of executing the specified HLPSL code file using the AVISPAweb tool is shown
in Fig. 5. From left to right, the figure shows CS, Sj, and Ui. The authentication messages are

Table 7 Specification for the goal

Multimed Tools Appl (2020) 79:15793–1581115806

transmitted and received through eight main phases, including the registration phase. However,
in practice, authentication messages are transmitted and received in 10 phases, because the Ci,
Di, and Ei values sent to Sj from CS are divided and transmitted sequentially.

The secret() and witness() functions and the verification properties for the authentication
protocol were employed in the goal of the HLPSL created in Section 3.4 for verification. For
the secret () and witness () functions shown in Table 7, the specified security properties are as
follows:

1. secret(P′,auth_1,{U,S})

This pertains to the login and authentication phase of STEP 3, and verifies whether the
secrecy of Pi in the login request message (Ai, UIDi,Ts) between the user Ui and IoT server
Si is satisfied.

2. secret(H(X),auth_2,{U,S})

This pertains to the login and authentication phase of STEP 3, and verifies whether the
secrecy of h(X) in the login request message (Ai, UIDi,Ts) between the user Ui and IoT
server Si is satisfied.

3. secret(NU’,auth_3,{U,S})

This pertains to the login and authentication phase of STEP 3, and verifies whether the
secrecy of Ni1 in the login request message (Ai, UIDi,Ts) between the user Ui and IoT
server Si is satisfied.

Fig. 5 Execution screen of the AVISPA

Multimed Tools Appl (2020) 79:15793–15811 15807

4. secret(NS’,auth_4,{S,CS})

This pertains to the login and authentication phase of STEP 5, and verifies whether the
secrecy of Ni2 in the login request message (UIDi, Ai, Verui, Bi, Versi, SIDj, Ts) between
the IoT server Sj and the authentication server CS is satisfied.

5. secret(H(SId.H(X)),auth_5,{S,CS})

This pertains to the login and authentication phase of STEP 5, and verifies whether the
secrecy of Serinforj in the login request message (UIDi, Ai, Verui, Bi, Versi, SIDj,
Ts) between the IoT server Sj and the authentication server CS is satisfied.

6. secret(NCS’,auth_6,{CS,S})

This pertains to the login and authentication phase of STEP 11, and verifies whether
the secrecy of Ni3 in the mutual authentication message (Ci, Di,Ei, Ts) between the
authentication server CS and the IoT server Si is satisfied.

7. secret(NS,auth_7,{CS,S})

This pertains to the login and authentication phase of STEP 11, and verifies whether
the secrecy of Ni2 in the mutual authentication message (Ci, Di,Ei, Ts) between the
authentication server CS and the IoT server Si is satisfied.

8. secret(NU,auth_8,{CS,S})

This pertains to the login and authentication phase of STEP 11, and verifies whether
the secrecy of Ni1 in the mutual authentication message (Ci, Di,Ei, Ts) between the
authentication server CS and IoT server Si is satisfied.

9. secret(H(X),auth_9,{CS,S})

This pertains to the login and authentication phase of STEP 11, and verifies whether
the secrecy of h(X) in the mutual authentication message (Ci, Di,Ei, Ts) between the
authentication server CS and the IoT server Si is satisfied.

10. secret(NU,auth_10,{S,U})

This pertains to the login and authentication phase of STEP 13, and verifies whether
the secrecy of Ni1 in the login response message (Ei, Ts) between the IoT server Si and the
user Ui is satisfied.

11. witness(CS,S,auth_11,xor(H(SId.X),NS’))

This pertains to the login and authentication phase of STEP 8, and the authentication
server CS verifies whether the IoT server Sj is authenticated through the Versi value in the
login request message (UIDi, Ai, Verui, Bi, Versi, SIDj, Ts) sent to the IoT server Sj.

Multimed Tools Appl (2020) 79:15793–1581115808

12. witness(CS,U,auth_12,xor(xor(H(H(ID.H(P)).X),H(X)),NU’))

This pertains to the login and authentication phase of STEP 10, and the authentication
server CS verifies whether the userUi is authenticated through the Versi value in the login
request message (UIDi, Ai, Verui, Bi, Versi, SIDj, Ts) sent to the IoT server Sj.

13. witness(S,CS,auth_13, xor(xor(NU’,NCS’),H(xor(SId,NS’))))

This pertains to the login and authentication phase of STEP 12, and the IoT server Sj
verifies whether the authentication server CS is authorized through the Civalue in the
mutual authentication message (Ci, Di,Ei, Ts) sent to the authentication server CS.

14. wi tness(U,S,auth_14,xor(xor(NS ’ ,NCS’) ,H(xor(xor(H(H(ID.H(P)).X),
H(X)),NU).H(X))))

This pertains to the login and authentication phase of STEP 15, and the user Ui

verifies whether the IoT server Sj is authenticated through the Ei value in the mutual
authentication message (Ei, Ts) sent to the IoT server Sj.

In this study, the formal verification of the authentication protocol is performed through the
OFMC and CL-AtSe models, as shown in Figs. 5. and 6. It can be seen that the h(x), Ni1,Ni2,
and Ni3 values, which should be kept secret during the process of sending/receiving messages in
the proposed authentication protocol, are not exposed to an attacker. Furthermore, through the
verification performed by each entity, it was possible to confirm that the authentication performed
between the user Ui, IoT server Sj, and authentication server CS was securely authenticated.

6 Conclusion

In recent years, as the scope of applications of IoT has broadened, the amount of data generated
in IoT has become enormous, and the multi-server architecture has been utilized to manage this
scenario efficiently. In a multi-server IoT environment, a user can manage and receive

Fig. 6 a Simulation result for the AVISPA tool under the OFMC model.; b Simulation result for the AVISPA
tool under the CL-AtSe model

Multimed Tools Appl (2020) 79:15793–15811 15809

information collected by a sensor by connecting to a server via wireless networks from remote
locations. However, if a malicious attacker accesses a communication network by exploiting a
vulnerable authentication system, the system can be exposed to user impersonation and session
key leakage attacks. Thus, a secure authentication protocol is required to prevent this.

Therefore, in this paper, we propose a secure authentication protocol to analyze and respond
to security threats that may occur in a multi-server IoT environment. The proposed authenti-
cation protocol has been shown to be secure against user impersonations, session key leakage
attacks, as well as various other attacks. The verification properties are specified by
utilizing the formal specification language HLPSL. By using the formal verification
tool AVISPA, the security of the required verification properties has also been verified
through the results of our experiments.

The authentication protocol proposed in this paper is expected to be employed in applica-
tions such as key exchanges using smart cards, as well as applications in various other fields.

Acknowledgements This work was supported by the National Research Foundation of Korea(NRF) grant
funded by the Korea government(MSIP) (No. NRF-2014R1A2A1A11050818) and by the MSIT(Ministry of
Science and ICT), Korea, under the ITRC(Information Technology Research Center) support program (IITP-
2017-2015-0-00403) supervised by the IITP(Institute for Information & communications Technology
Promotion).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.

References

1. Abdellatif R, Aslan HK, Elramly SH (2011) New real time multicast authentication protocol. International
Journal of Network Security 12:13–20. https://doi.org/10.1016/j.ejrs.2011.11.003.

2. Armando A, Basin D, Boichut Y (2005) The AVISPA tool for the automated validation of internet security
protocols and applications. International Conference on Computer Aided Verification 3576:281–285.
https://doi.org/10.1007/11513988_27

3. Chang CC, Wu HL, Wang ZH, Mao Q (2013) An efficient smart card based authentication scheme using
image encryption. J Inf Sci Eng 29:1135–1150

4. El-Emam E, Koutb M, Kelash H, Faragallah OS (2011) An authentication protocol based on Kerberos 5.
International Journal of Network Security 12:159–170

5. He D, Chen J, Hu J (2011) Weaknesses of a remote user password authentication scheme using smart card.
International Journal of Network Security 13:58–60

6. Hwang MS, Chong SK, Chen TY (2010) Dos-resistant ID-based password authentication scheme using
smart cards. J Syst Softw 83:163–172. https://doi.org/10.1016/j.jss.2009.07.050

7. Li X, Xiong Y, Ma J, Wang W (2012) An efficient and security dynamic identity based authentication
protocol for multi-server architecture using smart cards. J Netw Comput Appl 35:763–769. https://doi.
org/10.1016/j.jnca.2011.11.009

8. Mittal H (2014) Diffie-Hellman based smart-card multi-server authentication scheme. Sixth International
Conference on Computational Intelligence and Communication Networks. https://doi.org/10.1109
/CICN.2014.173.

9. Odelu V, Das AK, Goswami A (2015) A secure biometrics-based multi-server authentication protocol using
smart cards. IEEE Trans Inf Forensics Secur 10:1953–1966. https://doi.org/10.1109/TIFS.2015.2439964

10. Ruhul A, Hafizul Islam SK, Karati A (2016) Design of an enhanced authentication protocol and its
verification using AVISPA. Recent Advances in Information Technology. https://doi.org/10.1109
/RAIT.2016.7507936

11. Sethi P, Sarangi SR (2017) Internet of things: architectures, protocols, and applications. J Electr Comput Eng
2017:25. https://doi.org/10.1155/2017/9324035

Multimed Tools Appl (2020) 79:15793–1581115810

https://doi.org/10.1016/j.ejrs.2011.11.003.
https://doi.org/10.1007/11513988_27
https://doi.org/10.1016/j.jss.2009.07.050
https://doi.org/10.1016/j.jnca.2011.11.009
https://doi.org/10.1016/j.jnca.2011.11.009
https://doi.org/10.1109/CICN.2014.173
https://doi.org/10.1109/CICN.2014.173
https://doi.org/10.1109/TIFS.2015.2439964
https://doi.org/10.1109/RAIT.2016.7507936
https://doi.org/10.1109/RAIT.2016.7507936
https://doi.org/10.1155/2017/9324035

12. Sood SK, Sarje AK, Singh K (2011) A secure dynamic identity based authentication protocol for multi-
server architecture. J Netw Comput Appl 34:609–618. https://doi.org/10.1016/j.jnca.2010.11.011

13. Tanmoy M, Hafizul Islam SK, Amin R, Giri D, Khan MK, Kumar N (2010) An enhanced multi-server
authentication protocol using password and smart-card: cryptanalysis and design. Security and
Communication Networks. https://doi.org/10.1002/sec.1653

14. Yoon E-J, Yoo K-Y (2009) Robust multi-server authentication scheme. IFIP International Conference on
Network and Parallel Computing. https://doi.org/10.1109/NPC.2009.42

15. Ziauddin S, Martin B (2013) Formal analysis of ISO/IEC 9798-2 authentication standard using AVISPA.
Eighth Asia Joint Conference on Information Security. https://doi.org/10.1109/ASIAJCIS.2013.25

Won-il Bae Ms. Candidate at Department of Computer Engineering, Ajou University, Korea B.S degree from
Department of Computer Engineering, Mokwon University, Korea. Interest: IoT security, Cryptographic proto-
cols, Cloud security

Jin Kwak Professor, Department of Cyber Security, College of Information and Technology, Ajou University,
Korea B.S, M.S., Ph.D. degree from Sungkyunkwan University, Korea. Interest: Cryptographic protocols,
Application System Security, Secure Privacy

Multimed Tools Appl (2020) 79:15793–15811 15811

https://doi.org/10.1016/j.jnca.2010.11.011
https://doi.org/10.1002/sec.1653
https://doi.org/10.1109/NPC.2009.42
https://doi.org/10.1109/ASIAJCIS.2013.25

	Smart card-based secure authentication protocol in multi-server IoT environment
	Abstract
	Introduction
	Related work
	Multi-server IoT security threats
	AVISPA

	Proposed authentication protocol
	Registration phase
	Login and authentication phase
	Password change phase
	Authentication protocol specification utilizing HLPSL

	Security analysis
	User impersonation (i.�e., masquerading) attack
	Session key disclosure attack
	Denial-of-service (Dos) attack
	Replay attack
	Server spoofing attack
	Invasion of privacy

	Experimental result through formal verification
	Conclusion
	References

